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Abstract In this paper, a new method is proposed to solve

fully fuzzy transportation problems using the approach of

the Hungarian and MODI algorithm. The objective of the

proposed algorithm, namely, fuzzy Hungarian MODI

algorithm, is to obtain the solution of fully fuzzy trans-

portation problems involving triangular and trapezoidal

fuzzy numbers. The introduced method together with

Yager’s ranking technique gives the optimal solution of the

problem. It also satisfies the conditions of optimality, fea-

sibility, and positive allocation of cells using the elemen-

twise subtraction of fuzzy numbers. A comparative study

of the proposed method with existing procedure reveals

that the solution of the proposed method satisfies the nec-

essary conditions of a Transportation Problem (TP) to be

an optimal solution in which the other methods do not

guarantee. The proposed method is the extension of the

Hungarian MODI method with fuzzy values. It is easy to

understand and implement, as it follows the standard steps

of the regular transportation problems. The method can be

extended to other kinds of fuzzy transportation problems,

such as unbalanced fuzzy TP, fuzzy degeneracy problem,

fuzzy TP with prohibited routes, and many more.

Keywords Fuzzy number � Triangular fuzzy number �
Trapezoidal fuzzy number � Fuzzy arithmetic operations �
Fuzzy transportation problems � Fuzzy optimal solution

1 Introduction

Transportation problem (TP) is a special case of Linear-

Programming Problem. Transportation problems have wide

applications in logistics and supply chain management for

reducing the cost. It deals with the transportation of a com-

modity from various sources of supply to various sinks of

demand in such a way that the total distribution cost is min-

imized. The transportation problem was introduced by

Hitchcock [1]. Dantzig and Thapa [2] used the simplex

method to solve the transportation problem. Charnes and

Cooper [3] proposed the stepping-stone method as an alter-

native to the simplex method. In the transportation problem,

the decision parameters, such as availability, requirement,

and the transportation cost per unit, must be fixed to get a

solution. Due to some uncontrollable situations, the deter-

mination of supply, demand, and unit transportation cost may

be imprecise. The uncertainty in determining the data can be

modelled using fuzzy notions which was introduced by Zadeh

[4, 5] in the year 1965. If the requirement, availability, and the

cost per unit are represented by fuzzy numbers in a TP, then

the TP is called a fully fuzzy TP or TP with fuzzy environ-

ment. There are many approaches to solve a fuzzy TP, and the

fuzzy linear-programming technique is one among them.

Chanas et al. [6, 7] developed a method for solving the fuzzy

TP using the parametric programming technique and also

suggested a method by converting the given problem into a bi-
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criterial TP with a crisp objective function. The parametric

programming method not only identifies the solution, but also

gives all other alternatives. Liu and Chiang Kao [8] approa-

ched the fuzzy TP using the extension principle. Verma et al.

[9] applied the fuzzy-programming technique with hyperbolic

and exponential membership function. Liang et al. [10, 11]

used the possibilistic linear-programming technique for fuzzy

transportation planning decisions and fuzzy linear program-

ming to solve interactive multiobjective transportation plan-

ning decision problems. Nagoorgani et al. [12] used a

parametric approach to obtain a fuzzy solution for a two-stage

cost-minimizing fuzzy transportation problem. Pandian et al.

[13] solved the fuzzy TP with trapezoidal fuzzy numbers

using the ranking technique by incorporating the fuzzy zero

point method. Kumar et al. [14] introduced the general fuzzy

least cost method, fuzzy north-west corner rule, and fuzzy

VAM to solve fuzzy TP with generalized triangular fuzzy

numbers as well as trapezoidal fuzzy numbers. In the existing

methods, either the solution turns out to be a crisp value or it

does not guarantee the fuzzy solution to be positive. When the

solution becomes crisp, one cannot identify the corresponding

fuzzy solution. If the solution has negative components, it

may not become the solution of the real-world fuzzy TP. So

far, the fuzzy TP, unbalanced fuzzy TP, and degeneracy fuzzy

TP problems are not approached with a single algorithmic

technique. The existing techniques are helpful to find the

solution of a particular kind of problems. The method pro-

posed in this paper is unique and applicable to any fully fuzzy

TP. The proposed method not only gives the optimal solution,

but also satisfies the feasibility condition and retains the

positive allocation of cells.

The choice of a ranking technique is important for

ordering the fuzzy numbers. Yuan [15], Wang et al. [16],

and Chien et al. [17] proposed the properties of ranking for

fuzzy numbers. In this paper, Yager’s ranking technique

[18] is used to order the fuzzy numbers. It does not require

the explicit form of membership function, as it uses the

extreme values of a-cut of fuzzy number. It satisfies the

ranking properties of compensation, linearity, and additive.

Moreover, it also provides results which are consistent with

human intuition. This helps us interms of decision making.

Recently, Karaman et al. [19] did a thorough literature

review on fuzzy multiattribute decision and fuzzy multi-

objective decision making. In the proposed method, the

fuzzy Hungarian method with elementwise addition and

subtraction [20–22] is used to get the assignments. Fuzzy

initial basic feasible solution is obtained through the cost

allocation of assigned cells. Finally, the fuzzy MODI

method is applied to optimize the fuzzy transportation cost.

Tabular illustrations are given for the examples.

In this paper, Sect. 2 deals with fuzzy preliminaries fol-

lowed by Sect. 3 in which the proposed algorithm is given in

detail. In Sect. 4, the implementation of the algorithm through

examples is explained, and the comparison between the

existing fuzzy zero point method [13] and the proposed

method is given. In addition, the comparison between the

method introduced by Amarpreet and Amit kumar [14] has

been done for a case study. Section 5 describes the conclusion.

2 Preliminaries

Definition 2.1 A fuzzy set [23] can be mathematically

constructed by assigning to each possible individual in the

universe of discourse a value representing its grade of

membership.

Definition 2.2 A fuzzy number [23] ~A is a fuzzy set,

whose membership function l �AðxÞ satisfies the following

condition:

(1) l ~AðxÞ is piecewise continuous.

(2) l ~AðxÞ is convex.

(3) l ~AðxÞ is normal, i.e., l ~Aðx0Þ ¼ 0.

Definition 2.3 A fuzzy number ~A ¼ ða; b; cÞ with mem-

bership function of the form

l ~AðxÞ ¼

x� a

b� a
a� x� b

1 x ¼ b
c� x

c� b
b� x� c

0 otherwise

8
>>>>><

>>>>>:

are called a triangular fuzzy number [23], and a fuzzy

number ~A ¼ ða; b; c; dÞ with membership function of the

form

l ~AðxÞ ¼

x� a

b� a
a� x� b

1 b� x� c

d � x

d � c
c� x� d

0 otherwise

8
>>>>><

>>>>>:

is called a trapezoidal fuzzy number [23]. The Triangular

and Trapezoidal fuzzy numbers are depicted in Fig 1(a) and

Fig 1(b).

a b c d x

µ

0

1

a b c x

µ

0

1

(a) (b)

Fig. 1 a Triangular fuzzy number. b Trapezoidal fuzzy number
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Definition 2.4 The fuzzy operations [23] of fuzzy num-

bers are defined as

Fuzzy Addition:

ða1; b1; c1; d1Þ þ ða2; b2; c2; d2Þ ¼ ða1 þ a2; b1 þ b2; c1

þ c2; d1 þ d2Þ
ða1; b1; c1Þ þ ða2; b2; c2Þ ¼ ða1 þ a2; b1 þ b2; c1 þ c2Þ:

Fuzzy Subtraction:

ða1; b1; c1; d1Þ � ða2; b2; c2; d2Þ
¼ ða1 � d2; b1 � c2; c1 � b2; d1 � a2Þ

ða1; b1; c1Þ � ða2; b2; c2Þ ¼ ða1 � c2; b1 � b2; c1 � a2Þ:

Definition 2.5 The elementwise operations [20–22] of

fuzzy numbers are defined as follows:

Elementwise Addition:

ða1; b1; c1; d1Þ þ ða2; b2; c2; d2Þ ¼ ða1 þ a2; b1 þ b2; c1þ
c2; d1 þ d2Þ

ða1; b1; c1Þ þ ða2; b2; c2Þ ¼ ða1 þ a2; b1 þ b2; c1 þ c2Þ.
Elementwise Subtraction:

ða1; b1; c1; d1Þ � ða2; b2; c2; d2Þ ¼ ða1 � a2; b1 � b2; c1�
c2; d1 � d2Þ

ða1; b1; c1Þ � ða2; b2; c2Þ ¼ ða1 � a2; b1 � b2; c1 � c2Þ.
Elementwise Multiplication:

ða1; b1; c1; d1Þ � ða2; b2; c2; d2Þ ¼ ða1 � a2; b1 � b2; c1�
c2; d1 � d2Þ

ða1; b1; c1Þ � ða2; b2; c2Þ ¼ ða1 � a2; b1 � b2; c1 � c2Þ.

Definition 2.6 The Yager’s ranking [18] of a fuzzy

number ~A is given by

Yð~AÞ ¼
Z 1

0

ð0:5Þ Aa
U þ Aa

L

� �
da

where Aa
L = Lower a-level cut and Aa

U = Upper a-level cut.

If Yð~AÞ� Yð~BÞ, then ~A� ~B.

• Two fuzzy numbers ~A and ~B are said to be equal if they

are elementwise equal.

• Two fuzzy numbers ~A and ~B are said to be equivalent if

their crisp values ðYð~AÞ ¼ Yð~BÞÞ are equal.

• A fuzzy number ~A are said to be negative if all the

terms in it are negative or its crisp value ðYð~AÞÞ is

negative.

• A fuzzy number ~A are said to be a zero fuzzy number if

all the terms in it are zero or its crisp value ðYð~AÞÞ is

zero.

Theorem 2.7 The fuzzy subtraction and the elementwise

subtraction of fuzzy numbers are equivalent.

Proof Let ~A ¼ ða1; a2; a3; a4Þ and ~B ¼ ðb1; b2; b3; b4Þ.

Using fuzzy subtraction, ~A� ~B ¼ ða1 � b4; a2 � b3;

a3 � b2; a4 � b1Þ.
The membership function for this fuzzy trapezoidal

number is

l ~A� ~BðxÞ¼

x�ða1�b4Þ
ða2�b3Þ�ða1�b4Þ

ða1�b4Þ�x�ða2�b3Þ

1 ða2�b3Þ�x�ða3�b2Þ
ða4�b1Þ�x

ða4�b1Þ�ða3�b2Þ
ða3�b2Þ�x�ða4�b1Þ

0 otherwise

8
>>>>>>><

>>>>>>>:

To calculate the upper and lower a-cuts, consider
x�ða1�b4Þ

ða2�b3Þ�ða1�b4Þ ¼ a ) x ¼ a½ða2 � b3Þ � ða1 � b4Þ� þ ða1 �
b4Þ and

ða4�b1Þ�x

½ða4�b1Þ�ða3�b2Þ� ¼ a ) x ¼ ða4 � b1Þ � a½ða4 � b1Þ
�ða3 � b2Þ�

Using Yager’s ranking,
R 1

0
ð1

2
ÞðaaU þ aaLÞda ¼

ða1þa2þa3þa4�½b1þb2þb3þb4�
4

Þ
where aaL ¼ a½ða2 � b3Þ � ða1 � b4Þ� þ ða1 � b4Þ and

aaU ¼ ½ða4 � b1Þ � a½ða4 � b1Þ � ða3 � b2Þ��.
On the other hand, the elementwise subtraction of ~A and

~B gives ~A� ~B ¼ ða1 � b1; a2 � b2; a3 � b3; a4 � b4Þ.
The membership function for this fuzzy trapezoidal

number is

l ~A� ~BðxÞ¼

x�ða1�b1Þ
ða2�b2Þ�ða1�b1Þ

ða1�b1Þ�x�ða2�b2Þ

1 ða2�b2Þ�x�ða3�b3Þ
ða4�b4Þ�x

ða4�b4Þ�ða3�b3Þ
ða3�b3Þ�x�ða4�b4Þ

0 otherwise

8
>>>>>>><

>>>>>>>:

Consider
x�ða1�b1Þ

ða2�b2Þ�ða1�b1Þ ¼ a ) x ¼ a½ða2 � b2Þ � ða1 �
b1Þ� þða1 � b1Þ and

ða4�b4Þ�x

½ða4�b4Þ�ða3�b3Þ� ¼ a ) x ¼ ða4 � b4Þ�
a½ða4 � b4Þ � ða3 � b3Þ�

Using Yager’s ranking,
R 1

0
ð1

2
ÞðaaU þ aaLÞda ¼)

ða1þa2þa3þa4�½b1þb2þb3þb4�
4

Þ, where aaL ¼ a½ða2 � b2Þ � ða1 �
b1Þ� þ ða1 � b1Þ and aaU ¼ ½ða4 � b4Þ � a½ða4 � b4Þ � ða3

�b3Þ��. Hence, the fuzzy subtraction of trapezoidal (trian-

gular) fuzzy numbers is equivalent to the elemen-

twise subtraction of fuzzy trapezoidal (triangular)

numbers. h

Definition 2.8 A fully fuzzy transportation problem [6, 7]

is defined as

min ~Z �
Xm

i¼1

Xn

j¼1

~cij ~xij

subject to

S. Dhanasekar et al.: Fuzzy Hungarian MODI Algorithm... 1481
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Xn

j¼1

~xij � ~si for; i ¼ 1; 2; 3. . .m;

Xm

i¼1

~xij � ~dj for j ¼ 1; 2; 3. . .n:

for all ~xij � ~0, where i ¼ 1; 2; 3. . .m and j ¼ 1; 2; 3. . .n.

Here, ~xij is the number of units to be transported from ith

source to jth destination, ~cij is the cost of one unit to

transport from ith source to jth destination, ~si is the number

of units available in the ith source, and ~dj is the number of

units required in the jth destination.

The above problem can be depicted as a cost matrix

given in Table 1.

Definition 2.9 The fuzzy feasible solution of the fully

fuzzy transportation problem is defined as a set of non-

negative values ~xij, i ¼ 1; 2; 3. . .m; j ¼ 1; 2; 3. . .n, such that
Pm

i¼1 ~si �
Pn

j¼1
~dj for i ¼ 1; 2; 3. . .m; j ¼ 1; 2; . . .n (i.e.,

total fuzzy supply is equal to total fuzzy demand).

The following theorems are proposed to get the neces-

sary and sufficient condition for the existence of the fuzzy

feasible solution of a fully fuzzy transportation problem.

Theorem 2.10 The fuzzy feasible solution of a fully fuzzy

transportation problem exists if and only if
Pm

i¼1 ~si �
Pn

j¼1
~dj for i ¼ 1; 2; 3. . .m; j ¼ 1; 2; . . .n.

Proof Let there be a fuzzy feasible solution to the fully

fuzzy transportation problem exists. Then

Xm

i¼1

Xn

j¼1

~xij �
Xm

i¼1

~si ð1Þ

and

Xn

j¼1

Xm

i¼1

~xij �
Xn

j¼1

~dj: ð2Þ

From (1) and (2),
Pm

i¼1 ~si �
Pn

j¼1
~dj.

Conversely, suppose
Pm

i¼1 ~si �
Pn

j¼1
~dj � ~k (say).

Let ~ki 6¼ ~0 be a fuzzy number, such that ~xij � ~ki ~dj8i; j.
Then, ~ki is given by

Xn

j¼1

~xij �
Xn

j¼1

~ki ~dj � ~ki �
Xm

i¼1

~si � ~k ~ki; ~ki �
1

~k
�
Xn

j¼1

~xij � ~si=~k:

Thus, ~xij � ~ki ~dj � ~si ~dj
~k
; 8i; j.

Hence, a fuzzy feasible solution exists. h

Theorem 2.11 The number of fuzzy basic variables in a

fully fuzzy transportation problem is at the most mþ n� 1,

where m ¼ number of rows and n ¼ number of columns.

Proof To prove that the number of fuzzy basic variables

is at the most mþ n� 1, it is enough to show that there are

mþ n� 1 linearly independent equations in mn variables.

To prove this, first add m rows and then subtract from

the sum of first ðn� 1Þ column equations. This gives

Xn�1

j¼1

Xm

i¼1

~xij �
Xn

j¼1

Xm

i¼1

~xij �
Xn�1

j¼1

~dj �
Xm

i¼1

~si:

Alternatively

Xn

j¼1

Xm

i¼1

~xij �
Xm

i¼1

~xin

 !

�
Xn

j¼1

Xm

i¼1

~xij

�
Xn

j¼1

~dj � ~dn

 !

�
Xm

i¼1

~si

i.e.,
Pm

i¼1 ~xin � ~dn. Thus, out of mþ n equations, one (any)

is redundant and the remaining mþ n� 1 equations form a

linearly independent set. h

From Theorem 2.11, a fuzzy basic feasible solution will

consist of at the most mþ n� 1 fuzzy positive variables

and others being zero. In the case of degeneracy, some of

the fuzzy basic variables will also be zero, i.e., the number

of positive variables is less than mþ n� 1. By funda-

mental theorem of linear programming, one of the fuzzy

basic feasible solutions will be the optimal solution.

Finally, the fuzzy optimality test is defined as follows: If

we have a fuzzy feasible solution consisting of m?n-1

independent allocations and if fuzzy numbers ~ui and ~vj
satisfy ~cij � ~ui þ ~vj for each occupied cell (i, j), then the

evaluation ~Dij corresponding to each empty cell (i, j) is

given by ~Dij � ~cij � ~ui þ ~vj
� �

:

Table 1 General fully fuzzy transportation problem

A B C D E Supply

1

˜c11 ˜c12 ˜c13 ... ˜c1n

s̃1

2

˜c21 ˜c22 ˜c23 ... ˜c2n

s̃2

3

˜c31 ˜c32 ˜c33 ... ˜c3n

s̃3

.... ..... .... ...

... ....

m

˜cm1 ˜cm2 ˜cm3 ... ˜cmn

˜sm

Demand d̃1 d̃2 d̃3 ... d̃n

1482 International Journal of Fuzzy Systems, Vol. 19, No. 5, October 2017
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(i) If the cost difference ~Dij � 0, then the fuzzy

feasible solution is optimal.

(ii) If ~Dij 	 0 for one or more empty cells, then

allocate maximum possible cost to the cell with the

largest negative value of ~Dij. Continue the process

successfully until the optimal solution is obtained,

where ~Dij � 0 for each empty cell.

3 Algorithms for Fully Fuzzy Transportation
Problem

3.1 Fuzzy Zero Point Method [13]

Step 1 Construct the fuzzy transportation table for the

given fuzzy transportation problem and, then,

convert it into a balanced one if it is not. Subtract

each row entries of the fuzzy transportation

table from the row minimum. Do the same for

columns also.

Step 2 Check if each column fuzzy demand is less than

to the sum of the fuzzy supplies, whose reduced

costs in that column are fuzzy zero. In addition,

check if each row fuzzy supply is less than to the

sum of the column fuzzy demands, whose

reduced costs in that row are fuzzy zero. If so,

go to Step 5 or go to Step 3. The resultant table is

called allotment table.

Step 3 Cover all the fuzzy zeros [excluding some entries

of rows or/ and columns which do not satisfy the

previous step condition] of the allotment table by

the minimum number of horizontal lines and

vertical lines.

Step 4 Determine the smallest fuzzy element in the

matrix not covered by lines. Subtract the smallest

fuzzy element from all uncovered elements and

add the same element at the intersection of the

horizontal and vertical lines. The resultant matrix

will be called the revised reduced fuzzy trans-

portation, and then, go to Step 2.

Step 5 Select a cell in the reduced fuzzy transportation

table, whose reduced cost is the maximum cost.

Say ða; bÞ. If there are more than one, then select

anyone.

Step 6 Choose a fuzzy zero cell in the corresponding

row or column of the reduced fuzzy transporta-

tion table and allot the maximum possible to that

cell. If not choose the next maximum.

Step 7 Delete the fully used fuzzy supply points, and the

fully received fuzzy demand points modify it to

include the not used fuzzy supply and fuzzy

demand points.

Step 8 Repeat Steps 5 to 7 until all fuzzy supply points are

used and all fuzzy demand points are received.

This method ensures the feasibility of the solution but does

not guarantee the positive allocation of cells. In addition,

there is no evidence of applying the fuzzy zero point

method to degeneracy fuzzy transportation problems.

3.2 Generalized Fuzzy North-West Corner, Least

Cost, and Vogel’s Approximation Methods

and Fuzzy MODI Method [14]

The algorithm of generalized fuzzy north-west corner, least

cost, and Vogel’s approximation methods and fuzzy MODI

method is an extension/fuzzy version of the methods applied

for the solution of the transportation problem with crisp

values. The solution through these methods need not be

positive, and hence, it may not reflect the solution of the real-

life problems.

In this paper, the fuzzy version of the Hungarian MODI

algorithm is proposed, and it guarantees the positive allo-

cation of cells and satisfies the optimality and feasibility

conditions. The algorithm is given as follows.

3.3 Fuzzy Hungarian MODI method

Consider the matrix representation of the fully fuzzy

transportation problem considered in Table 1. If the matrix

is not a square matrix, make it a square matrix by adding

fuzzy zero element rows or fuzzy zero element columns

and call it as an effectiveness matrix with the number of

rows and columns as n.

Step 1 Using Yagers ranking for comparing two

fuzzy numbers, subtract the minimum among

the cells of each row of the effectiveness

matrix from all the fuzzy elements of the

respective rows.

Step 2 Repeat Step 1 for each column of the resulting

matrix and call the updated matrix as the first

modified matrix.

Step 3 Follow the procedure of the Hungarian method

to cover the fuzzy zero elements using a

minimum number of horizontal and vertical

lines. Let the sum of number of horizontal and

vertical lines be N. If N = n, then an optimal

assignment can be obtained and proceed to Step

6, otherwise proceed to Step 4.

Step 4 Determine the smallest fuzzy element in the

matrix not covered by N lines using Yager’s

ranking. Subtract the smallest fuzzy element

from all uncovered elements and add the same

S. Dhanasekar et al.: Fuzzy Hungarian MODI Algorithm... 1483
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element at the intersection of the horizontal

and vertical lines. The resultant matrix will be

called the second modified matrix.

Step 5 Repeat Steps 3 and 4 until the number of lines

is equal to the order of the matrix.

Step 6 Examine the rows one by one in the modified

matrix until exactly single fuzzy zero ele-

ments are found rowwise (columnwise). Mark

this fuzzy zero element using an open bracket

on the top of the corresponding cell to assign

the cost and crossover all other fuzzy zero

elements lying in the corresponding column

(row). The crossed cells cannot be considered

for future assignment.

Step 7 Repeat Step 6 successively until one of the

following situation arises:

(a) If no unmarked fuzzy zero element

is left, then proceed to Step 8.

(b) If there exists more than one

unmarked fuzzy zero element in any

column or row of the modified matrix,

then mark one of the unmarked fuzzy

zero element arbitrarily and cross the

remaining fuzzy zero elements in its

row or column. Repeat the process

until no unmarked fuzzy zero element

is left in the matrix.

Step 8 Starting from the first assignment cell, allo-

cate the least possible amount to all assign-

ment cells as follows. Suppose the first

assignment cell is (i, j), then allocate ~xij �
minð~si; ~djÞ in the cell (i, j) and update the

corresponding row or column:

(i) If ~si 	 ~dj, then cross out the ith row

and update the corresponding ~dj by

~dj � ~si.

(ii) If ~si � ~dj, then cross out the jth

column and update the corresponding

~si by ~si � ~dj.

(iii) If ~si � ~dj, then cross out the corre-

sponding row as well as the corre-

sponding column.

Step 9 If the fuzzy cost is not zero in supply and

demand and all the assigned cells are allo-

cated, then choose the smallest fuzzy element

in non assigned cells and repeat Step 8 until

the fuzzy cost becomes zero in supply and

demand. The obtained one is the fuzzy

feasible solution (FFS).

Step 10 Apply fuzzy modified distribution method to

optimize the FFS:

• Find the FFS of FFTP using the fuzzy

Hungarian method.

• For each ith row and jth column, introduce

~ui and ~vj, respectively. Write ~ui at the end

of each ith row and ~vj at the end of each

jth column. Assume any one of ~ui or ~vj to

be zero fuzzy number.

• For all the allocated cells, using the

relation ~cij � ~ui þ ~vj, find the values of ~ui
and ~vj.

• For the non allocated cells, find ~Dij �
~cij � ~ui þ ~vj

� �
and put them in the corner

of the corresponding cell. Then, there exist

two cases:

• If all ~Dij � ~0, then the FFS obtained is

fuzzy optimal solution.

• If there exists at least one ~Dij, such that

~Dij 	 ~0, then the obtained FFS is not

fuzzy optimal solution and go to the

next step.

• In the fully fuzzy transportation problem,

choose the most negative ~Dij. Make the

cell which is most negative as allocated

cell by assigning the fuzzy quantity ~h and

construct a loop as follows: rule for

making the loop: reaching the nearest

allocated cell from the newly allocated

cell by moving either horizontally or

vertically with the constrain that the

turning of the loop is allowed only in the

allocated cell.

• Adding and subtracting ~h in the corners of

the loop, where the value of ~h is taken as

minimum of the fuzzy entries from which
~h is subtracted.

• Replacing the value of ~h, the next impro-

vised fuzzy feasible solution is obtained.

• Repeat these steps again and again, until

all ~Dij � ~0 appear. The obtained fuzzy

solution is the fuzzy optimal solution.

4 Numerical Examples

Example I

Consider the fully fuzzy transportation problem with

triangular numbers given in Table 2
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Solution:

As the total supply (4, 15, 27) is equal to the total

demand (4, 15, 27), this problem will be called a balanced

fuzzy TP.

Note that the matrix representation of the problem is not

a square one and, hence, introduces a fuzzy zero cost row

to make it as a square matrix. The converted matrix is

given in Table 3.

In Table 4, the fuzzy costs and fuzzy units of fuzzy

transportation table are given with their crisp values.

Choose the smallest fuzzy number in each and every

row and subtract it with the other elements in the corre-

sponding row. Repeat the same for the columns also. The

resultant matrix is given in Table 5.

Cover the fuzzy zeros by the minimum number of lines

and is given in Table 6 with a dark-black mark to represent

the corresponding covering of lines. Here, in this example,

the order of the matrix is four, where as the number of lines

covering the fuzzy zeros is equal to three.

Choose the minimum fuzzy number, i.e., (1, 1, 1), from

the uncovered fuzzy numbers. Subtract (1, 1, 1) from all

the other uncovered fuzzy numbers and add the same to the

fuzzy numbers, which are in the intersection of the cov-

ering lines. The resultant matrix is given in Table 7.

Table 2 Example I: fuzzy transportation problem

A B C D Supply

1

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

(0,3,6)

2

(4 9 16) (4 8 12) (2,5,8) (1,4,7)

(2,7,13)

3

(2,7,13) (0,5,10) (0,5,10) (4,8,12)

(2,5,8)

Demand (1,4,7) (0,3,5) (1,4,7) (2,4,8) (4,15,27)

Table 3 Initial step

A B C D

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

(4,9,16) (4,8,12) (2,5,8) (1,4,7)

(2,7,13) (0,5,10) (0,5,10) (4,8,12)

(0,0,0 ) (0,0,0 ) (0,0,0 ) (0,0,0)

Table 4 Fuzzy transportation problem with crisp values

A B C D

(-2,3,8)(3) (-2,3,8)(3) (-2,3,8)(3) (-1,1,4)(1.33)

(4,9,16)(9.667) (4,8,12)(8) (2,5,8)(5) (1,4,7)(4)

(2,7,13)(7.33) (0,5,10)(5) (0,5,10)(5) (4,8,12)(8)

(0,0,0 )(0) (0,0,0 )(0) (0,0,0 )(0) (0,0,0)(0)

Table 5 Steps 1 and 2

A B C D

(-1,2,4) (-1,2,4) (-1,2,4) (0,0,0)

(3,5,9) (3,4,5 ) (1,1,1 ) (0,0,0)

(2,2,3) (0,0,0) (0,0,0) (4,3,2)

(0,0,0 ) (0,0,0 ) (0,0,0 ) (0,0,0)

Table 6 Steps 3, 4, and 5

A B C D

(-1,2,4) (-1,2,4) (-1,2,4) (0,0,0)

(3,5,9) (3,4,5 ) (1,1,1 ) (0,0,0)

(2,2,3) (0,0,0) (0,0,0) (4,3,2)

(0,0,0 ) (0,0,0 ) (0,0,0 ) (0,0,0)
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Again, cover the fuzzy zeros using the minimum num-

ber of lines and it is given in Table 8. Note that the number

of covering lines is equal to the order of the matrix.

Using Steps 6 and 7, the assignment can be made

accordingly. The assignment table is given in Table 9.

From Table 9, we can identify the first assignment cell

as (1, 4). Using Step 8, allocate the least possible amount,

i.e., the supply (0, 3, 6) to the cell (1, 4). The corre-

sponding representation is given in Table 10. Now, strike

out the first row, then update the demand (2, 1, 2) by

subtracting the least supply. By repeatedly doing this

process using Steps 8 and 9, the updated tabular values are

given from Tables 11, 12, 13, and 14. From Table 14, the

value ð�1; 2; 4Þ can be assigned to the second row first

column.

The consolidated tabular values are given in Table 15,

and the corresponding fuzzy feasible solution can be

obtained as

T.C � ð�1; 1; 4Þ � ð0; 3; 6Þ þ ð2; 5; 8Þ � ð1; 4; 7Þ
þ ð0; 5; 10Þ � ð0; 3; 5Þ þ ð4; 9; 16Þ � ð�1; 2; 4Þ
þ ð1; 4; 7Þ � ð2; 1; 2Þ þ ð2; 7; 13Þ � ð2; 2; 3Þ

� ð4; 74; 247Þ:

Table 7 Steps 3, 4, and 5

A B C D

(-2,1,3) (-2,1,3) (-2,1,3) (0,0,0)

(2,4,8) (2,3,4 ) (0,0,0 ) (0,0,0)

(2,2,3) (0,0,0) (0,0,0) (5,4,3)

(0,0,0 ) (0,0,0 ) (0,0,0 ) (1,1,1)

Table 9 Steps 6 and 7

A B C D

(-2,1,3) (-2,1,3) (-2,1,3) (0,0,0)

(2,4,8) (2,3,4) (0,0,0) (0,0,0)

(2,2,3) (0,0,0) (0,0,0) (5,4,3)

(0,0,0 ) (0,0,0 ) (0,0,0 ) (0,0,0)

Table 8 Steps 3, 4, and 5

A B C D

(-2,1,3) (-2,1,3) (-2,1,3) (0,0,0)

(2,4,8) (2,3,4 ) (0,0,0 ) (0,0,0)

(2,2,3) (0,0,0) (0,0,0) (5,4,3)

(0,0,0 ) (0,0,0 ) (0,0,0 ) (1,1,1)

Table 10 Example I

A B C D Supply

1

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

(0,3,6)

2

(4 9 16) (4 8 12) (2,5,8) (1,4,7)

(2,7,13)

3

(2,7,13) (0,5,10) (0,5,10) (4,8,12)

(2,5,8)

Demand (1,4,7) (0,3,5) (1,4,7) (2,1,2)

Table 11 Example I

A B C D Supply

1

2

(4 9 16) (4 8 12) (2,5,8)

(1,4,7)

(1,4,7)

(1,3,6)

3

(2,7,13) (0,5,10) (0,5,10) (4,8,12)

(2,5,8)

Demand (1,4,7) (0,3,5) (2,1,2)

Table 12 Example I

A B C D Supply

1

2

(4 8 12) (1,4,7)

(1,3,6)

3

(2,7,13) (0,5,10)

(0,3,5)

(4,8,12)

(2,2,3)

Demand (1,4,7) (2,1,2)
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From Table 15, the number of allocations is equal to 6

which is equal to mþ n� 1 ¼ 4 þ 3 � 1 ¼ 6. Using fuzzy

MODI method, the optimal solution is obtained after three

iterations. The fuzzy optimal solution and the corre-

sponding fuzzy transportation cost (T.C) are given as

follows:

Fuzzy T.C � ð�2; 3; 8Þ � ð0; 3; 6Þ þ ð2; 5; 8Þ � ð0; 3; 5Þ
þ ð0; 5; 10Þ � ð0; 3; 5Þ þ ð0; 5; 10Þ � ð1; 1; 2Þ
þ ð1; 4; 7Þ � ð2; 4; 8Þ þ ð2; 7; 13Þ � ð1; 1; 1Þ

� ð4; 67; 227Þ:

Example II
Consider the fully fuzzy transportation problem with

trapezoidal fuzzy numbers [13] given in Table 16.

Solution :

This problem is an unbalanced fuzzy transportation

problem, since the total fuzzy supply ð6; 17; 21; 32Þ 6¼ the

total fuzzy demand (8, 17, 21, 30). To make this as a

balanced one, we introduce an additional column with

fuzzy costs as fuzzy zeros and the fuzzy demand as

ð�:2; 0; 0; :2Þ. By applying the proposed algorithm, the

corresponding fuzzy feasible solution can be obtained as

(37, 112, 159, 284) and is given in Table 17.

Note that the number of allocations is one less than the

sum of rows and columns of the given problem. The fuzzy

transportation cost is given by

T:C ¼ð1; 2; 3; 4Þ � ð1; 6; 7; 12Þ þ ð�1; 0; 1; 2Þ � ð0; 1; 2; 3Þ
þ ð3; 5; 6; 8Þ � ð4; 1; 1;�2Þ þ ð12; 15; 16; 19Þ

� ð1; 3; 4; 6Þ þ ð5; 8; 9; 12Þ � ð1; 4; 4; 7Þ
þ ð7; 9; 10; 12Þ � ð1; 2; 3; 4Þ þ ð0; 0; 0; 0Þ

� ð�2; 0; 0; 2Þ � ð37; 112; 159; 284Þ:

After applying the fuzzy modified distribution method, the

corresponding cost is given as

Table 13 Example I

A B C D Supply

1

2

(4 9 16) (1,4,7)

(2,1,2) (-1,2,4)

3

(2,7,13) (4,8,12)

(2,2,3)

Demand (1,4,7)

Table 14 Example I

A B C D Supply

1

2

(4 9 16)

(-1,2,4)

3

(2,7,13)

(2,2,3)

Demand (-1,2,4)

Table 15 Fuzzy feasible solution of Example I

A B C D Supply

1

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

(0,3,6) (0,3,6)

2

(4,9,16)

(-1,2,4)

(4,8,12) (2,5,8)

(1,4,7)

(1,4,7)

(2,1,2) (2,7,13)

3

(2,7,13)

(2,2,3)

(0,5,10)

(0,3,5)

(0,5,10) (4,8,12)

(2,5 ,8)

Demand (1,4,7) (0,3,5) (1,4,7) (2,4,8) (4,15,27)

Table 17 Fuzzy feasible solution of Example II

A B C D E Supply

1

(1 2 3 4)

(1,6,7,12)

(1,3,4,6) (9,11,12,14) (5,7,8,11)

(0,0,0,0) (1,6,7,12)

2

(0,1,2,4) (-1,0,1,2)

(0,1,2,3)

(5,6,7,8) (0,1,2,3)

(0,0,0,0) (0,1,2,3)

3

(3,5,6,8)

(4,1,1,-2)

(5,8,9,12)

(1,4,4,7)

(12,15,16,19)

(1,3,4,6)

(7,9,10,12)

(1,2,3,4)

(0,0,0,0)

(-2,0,0,2) (5,10,12,17)

Demand (5,7,8,10) (1,5,6,10) (1,3,4,6) (1,2,3,4) (-2,0,0,2)

Table 16 Example II: problem illustration

A B C D Supply

1

(1,2,3,4) (1,3,4,6) (9,11,12,14) (5,7,8,11)

(1,6,7,12)

2

(0,1,2,4) (-1,0,1,2) (5,6,7,8) (0,1,2,3)

(0,1,2,3)

3

(3,5,6,8) (5,8,9,12) (12,15,16,19) (7,9,10,12)

(5,10,12,17)

Demand (5,7,8,10) (1,5,6,10) (1,3,4,6) (1,2,3,4)
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T:C ¼ð1; 3; 4; 6Þ � ð1; 5; 6; 10Þ þ ð9; 11; 12; 14Þ � ð0; 1; 1; 2Þ
þ ð5; 6; 7; 8Þ � ð0; 1; 2; 3Þ þ ð3; 5; 6; 8Þ � ð5; 7; 8; 10Þ
þ ð12; 15; 16; 19Þ � ð1; 1; 1; 1Þ þ ð7; 9; 10; 12Þ

� ð1; 2; 3; 4Þ þ ð0; 0; 0; 0Þ � ð�2; 0; 0; 2Þ
� ð35; 100; 144; 259Þ:

The membership function for the obtained result is

35 100 144 259 x

µ

0

1

• According to the decision maker, the minimum trans-

portation cost will lie between 35 and 259 units.

• The overall level of satisfaction of the decision maker

about the statement that the minimum transportation

cost will lie between 100 and 144 units is 100

• The overall level of the satisfaction of the decision

maker for the remaining values of minimum trans-

portation cost can be obtained as follows: let x0

represents the minimum transportation cost, then the

overall level of satisfaction of the decision maker for x0

is l ~Aðx0Þ 
 100

where

l ~AðxÞ ¼

x� 35

65
35� x� 100

1 100� x� 144

259 � x

115
144� x� 259

0 otherwise

8
>>>>>><

>>>>>>:

Note: Using the fuzzy zero point method, the optimum

solution of the above problem is given as

ð�274; 58; 188; 575Þ. The negativity involved in the solu-

tion has no role in the real-time applications. In addition,

there is no evidence of applying the fuzzy zero point

method to degeneracy fuzzy transportation problem. The

proposed algorithm yields the optimal solution as

(35, 100, 144, 259) that satisfies the positive allocation of

cells and also satisfies the optimality condition.

Example III

The case study considered in Amarpreet and Amit [14]

has been considered to implement the proposed algorithm

and is given as follows.

Dali Company is the leading producer of soft drinks and

low- temperature foods in Taiwan. Currently, Dali plans to

develop the South-East Asian market and broadens the

visibility of Dali products in the Chinese market. Notably,

following the entry of Taiwan to the World Trade Orga-

nization, Dali plans to seek strategic alliance with promi-

nent international companies, and introduced international

bread to lighten the embedded future impact. In the

domestic soft drinks market, Dali produces tea beverages to

meet demand from four distribution centers in Taichung,

Chiayi, Kaohsiung, and Taipei with production being based

on three plants in Changhua, Touliu, and Hsinchu.

According to the preliminary environmental information,

the following summarizes the potential supply available

from these three plants, the forecast demand from the four

distribution centers and the unit transportation costs for

each route used by Dali for the upcoming season. The

environmental coefficients and related parameters gener-

ally are imprecise numbers with triangular possibility dis-

tributions over the planning horizon due to incomplete or

unobtainable information. For example, the available sup-

ply of the Changhua plant is (7.2,8,8.8) thousand dozen

bottles, the forecast demand of the Taichung distribution

center is (6.2,7,7.8) thousand dozen bottles, and the trans-

portation cost per dozen bottles from Changhua to Tai-

chung is (8,10,10.8) [cost is in dollars]. Due to

transportation costs being a major expense, the manage-

ment of Dali is initiating a study to reduce these costs as

much as possible. The fully fuzzy transportation problem

with trapezoidal fuzzy numbers of the Dali Company is

given in Table 18. Here, the supply and demand are in

tonnes.

Solution:

This is an unbalanced problem as the last cell in

Table 18 indicates that there is some difference between

supply and demand. To make it as a balanced transporta-

tion problem, add an additional row as zero entries of tri-

angular fuzzy numbers and make the problem as a balanced

one.

The number of allocations is seven which is equal to

mþ n� 1 ¼ 4 þ 4 � 1 ¼ 7.

Applying the proposed algorithm, the fuzzy feasible

solution is given by

Table 18 Example III problem illustration

A B C D Supply

1

(8,10,10.8 ) (20.4,22,24) (8,10,10.6) (18.8,20,22)

(7.2,8,8.8)

2

(14,15,16) (18.2,20,22) (10,12,13) (6,8,8.8)

(12,14,16)

3

(18.4,20,21) (9.6,12,13) (7.8,10,10.8) (14,15,16)

(10.2,12,13.8)

Demand (6.2,7,7.8) (8.6,10,11.4) (6.5,8,9.5) (7.8,9, 10.2)
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T:C�ð8;10;10:8Þ�ð6:2;7;7:8Þþð6;8;8:8Þ�ð7:8;9;10:2Þ
þð7:8;10;10:8Þ�ð6:5;8;9:5Þþð0;0;0Þ�ð�0:3;0;0:3Þ
þð20:4;22;24Þ�ð1;1;1Þþð18:2;20;22Þ�ð4:2;5;5:8Þ
þð9:6;12;13Þ�ð3:7;4;4:3Þ�ð279:46;392;484:1Þ:

After applying the fuzzy modified distribution method

T:C � ð8;10;10:8Þ � ð6:2;7;7:8Þþ ð6;8;8:8Þ � ð7:8;9;10:2Þ
þ ð7:8;10;10:8Þ � ð1:3;2;2:7Þþ ð9:6;12;13Þ
� ð8:9;10;11:1Þþ ð10;12;13Þ � ð4:2;5;5:8Þ
þ ð8;10;10:6Þ � ð1;1;1Þþ ð0;0;0Þ � ð�0:3;0;0:3Þ
� ð241:98;352;433:66Þ
� ð241980;352000;433660Þdollars:

The membership function for the obtained result is

241980 352000 433660 x

µ

0

1

• According to the decision maker, the minimum trans-

portation cost will lie between 241,980 and 433,660

dollars.

• The overall level of the satisfaction of the decision

maker about the statement that the minimum trans-

portation cost will be 352,000 dollars is 100

• The overall level of the satisfaction of the decision

maker for the remaining values of minimum trans-

portation cost can be obtained as follows: Let x0

represents the minimum transportation cost, then the

overall level of satisfaction of the decision maker for x0

is l ~Aðx0Þ 
 100, where

l ~AðxÞ ¼

x� 241980

110020
241980� x� 352000

1 x ¼ 352000
433660 � x

81660
352000� x� 433660

0 otherwise

8
>>>>><

>>>>>:

Remark 4.1 In [10], this problem was solved using pos-

sibilistic linear-programming technique and the solution of

the case study is given as (352000, 315800, and 367000),

which is not a triangular fuzzy number, since a triangular

fuzzy number (a, b, c) should satisfy the relation

ða� b� cÞ. The fuzzy transportation cost using the fuzzy

Hungarian MODI method is (241980, 352000, 433660),

which is a fuzzy number. In the literature [3] for solving

transportation problems, tabular methods are preferred as

compared to linear-programming techniques, and so it can

be suggested to use the proposed method instead of pos-

sibilistic linear-programming method for solving the fully

fuzzy transportation problems.

Remark 4.2 In [14], this problem was converted to a

generalized fuzzy numbers and solved by finding the

fuzzy basic feasible solution using the fuzzified version

of north-west corner rule, least cost method, Vogel’s

approximation method, and optimum solution using the

fuzzified version of the modified distribution method.

The solution is given as (279600, 352000, 382000; 1)

dollars. The calculated cost using the fuzzy Hungarian

MODI method is (241980, 352000, 433660) dollars and

it satisfies the optimality and feasibility conditions. The

number of iterations in fuzzy modified distribution

method is reduced in the fuzzy Hungarian MODI method

because of the use of elementwise subtraction. Therefore,

the convergence of the solution is faster in this fuzzy

Hungarian MODI method compared to the method

described in [14].

Note: The comparative study between the existing and

the proposed methods is given in Table 19.

5 Conclusions

In this paper, an efficient method called the fuzzy Hun-

garian MODI algorithm is proposed and implemented to

solve fully fuzzy transportation problem with triangular

fuzzy numbers. The method is also extended for solving the

fully fuzzy transportation problem with trapezoidal fuzzy

Table 19 Comparison table

Example Existing method optimal solution Proposed method optimal solution

4.1 (4,67,227) (4,67,227)

Optimality conditions satisfied

4.2 (-274,58,188,575)

Fuzzy zero point method [13]

(35,100,144,259)

The allocations are positive Optimality conditions satisfied

4.3 (279,600, 352,000, 382,000)

Amarpreet and Amit [14]

(241,980, 352,000, 433,620)

Optimality conditions satisfied
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numbers. The fuzzy Hungarian MODI method has the

advantage of obtaining the fuzzy optimal solution which

satisfies the feasibility, optimality conditions, and the

positive values in all the allocated cells. A comparative

study of this method with the methods based on [13, 14]

reveals that the method based on the elementwise sub-

traction gives the optimal solution with positive alloca-

tions. The proposed method satisfies all necessary

conditions to be an optimal solution. An advantage of the

proposed method is that it is systematic and easy to

understand. It can also be used to solve unbalanced trans-

portation problems and transportation problem with

degeneracy. It serves as an important tool for the decision

makers to handle various types of logistic problems

involving fuzzy parameters.
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