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Abstract This paper investigates a robustH? sampled-data

control problem for uncertain nonlinear systems with time-

varying delay described by Takagi–Sugeno fuzzy model. By

introducing the free-weighting matrices, new stability cri-

teria are obtained in terms of linear matrix inequalities based

on Lyapunov–Krasovskii functional theory. Then, a fuzzy

sampled-data H? controller is designed to achieve a pre-

scribed disturbance attenuation level in the sense that the

fuzzy closed-loop system is robustly asymptotically stable.

Compared with the existing results, the obtained ones are less

conservative without using the conservative crossing

inequality and the Jensen integral inequality. Two illustra-

tive examples are provided to show the effectiveness and the

merits of the proposed method.

Keywords Takagi–Sugeno (T–S) fuzzy system �
Sampled-data control � Time-varying delay � Robust H?

control

1 Introduction

Fuzzy control approach offers a systematic and effective

platform for analysis and synthesis of nonlinear control

systems. It is shown that the this approach has been applied

successfully in a wide range of engineering control designs

such as tracking control [1], output feedback control [2–4],

stability of continuous stirred tank reactor (CSTR) [5] and

stabilization of computer-simulated truck-trailer [6].

It is well known that Takagi–Sugeno (T–S) fuzzy sys-

tem [7] plays an important role in fuzzy control. It is used

to represent the nonlinear systems, e.g., robotic system [8],

CSTR [5] and truck-trailer system [6]. This model supplies

a bridge between the nonlinear system and linear system

and combines the linear control theory with the fuzzy logic

concept. Therefore, the last decade witnessed a rapidly

growing interest in T–S fuzzy system [9–13].

With the development of the digital circuit technologies,

the controller is implemented by powerful microcontrollers

and digital computers, which can be made available at

simplicity, scalability and cost-effectiveness. In this case,

the control signal is a constant during a sampling period

and is changed at the sampling instant. Thus, the overall

control system is referred as a sampled-data system.

Recently, many works have researched analysis and syn-

thesis of sampled-data control for nonlinear systems that is

based on T–S fuzzy system in [10–43]. In

[32, 35, 36, 42, 43], the direct discrete time design

approach is used to develop the sampled-data controllers.

The papers [28–31, 33, 34, 37–41] employ the input time-

delay conversion method to present sampled-data control

schemes.

Time delays appear in many practical engineering sys-

tems such as microwave oscillators, nuclear reactors and

aircraft systems. The existence of time delays is frequently

a source of instability and degraded performance. Thus, it

is a challenge to develop the control theory of time-delay

systems. Many efforts have been made in analysis and

synthesis of time-delay systems during the last two decades

[44–46]. Recently, fuzzy sampled-data control schemes are

also proposed for nonlinear time-delay systems by using

the input delay approach and Lyapunov–Krasovskii func-

tional (LKF) theory in [12, 14, 18, 20]. With the aid of the

free-weighting matrix approach, in [18, 20], some slack
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matrices are introduced to obtain the less conservative

results. And Jensen’s integral inequality method [18, 20] is

a powerful tool to provide a simpler form of stability and

stabilization results. However, the system convergence rate

decreased by using Jensen’s integral inequality to enlarge

the LKF. Moreover, the conservative crossing inequality in

[12, 14] also affects the system convergence rate. How to

lessen this conservativeness is an open problem.

On the other hand, time delays are assumed to be con-

stant in these works [12, 14, 18, 20]. Many practical sys-

tems show the problem of time-varying delays, such as

mechanical systems [5] and network-based systems [47].

So, it is important to design a fuzzy sampled-data system to

solve the effect of time-varying delays. Reliable sampled-

data stabilization is discussed for time-varying delay sys-

tems in [21], and the paper [28] has paid attention to the

study of fuzzy sampled-data filtering for time-varying

delay systems. However, there is no focus concerned with

the robust H? sampled-data control for time-varying

delays based on T–S fuzzy systems.

Based on above discussions, in this paper, we consider a

robust H? sampled-data control problem for uncertain

nonlinear time-varying delay systems in T–S fuzzy form.

By use of the input delay approach and introducing some

free-weighting matrices, new sufficient conditions of H?

control with less conservatism are given in terms of linear

matrix inequalities (LMIs). Illustrative examples of CSTR

and computer-simulated truck-trailer are provided to

demonstrate the feasibility of the proposed method.

The main contributions and advantages are summarized

as follows:

1. Considering the estimation of the sampling period, the

delay bound and time-varying delay, the use of input

delay approach and free-weighting matrix approach to

fuzzy sampled-data T–S systems manifests a better

performance and less conservativeness.

2. Without using the conservative crossing inequality and

the Jensen integral inequality, a less conservative

stabilization design via fuzzy sampled-data control

scheme is developed. With the improved system

convergence rate, faster state responses are achieved.

What’s more, our method obtains a larger sampling

interval. So, the proposed fuzzy sampled-data con-

troller can lower the implementation cost and time.

Notations: Throughout this paper, the notations P[ 0,

P\ 0 and P C 0 denote a positive definite matrix, a neg-

ative definite semi-positive matrix and a semi-positive

definite matrix, respectively. The transposed element is

denoted by the notation * in symmetric positions. PT is the

transpose of a matrix P. Matrices are assumed to be

compatible.

2 Problem Formulation

Consider the following uncertain nonlinear time-varying

delay system, which is described by a T–S fuzzy system

with uncertainties and time-varying delay:

Plant Rule i: IF X ¼ X11 X12

� X22

� �
� 0 is Y ¼

Y11 Y12

� Y22

� �
� 0 and npðtÞ is Mip, THEN

_xðtÞ ¼ �AixðtÞ þ �Aidxðt � dðtÞÞ þ �BiuðtÞ þ BixxðtÞ;
i ¼ 1; . . .; r;

xðtÞ ¼ uðtÞ; t 2 ½�maxðdM ; hÞ; 0�;
ð1Þ

where i ¼ 1; . . .; r, r is the number of IF–THEN rules;

xðtÞ 2 Rn, uðtÞ 2 Rm and xðtÞ 2 Rq are the state vector the

input vector and the disturbance vector; uðtÞ is the initial

condition of the system state; dðtÞ is a time-varying delay,

0 � dðtÞ� dM and _dðtÞ� dD, where dM and dD are con-

stants; h is the sample period; �Ai ¼ Ai þ DAiðtÞ; �Aid ¼
Aid þ DAidðtÞ and �Bi ¼ Bi þ DBiðtÞ; Ai, Aid, Bi, Bixði ¼
1; 2; . . .; rÞ are constant matrices with compatible dimen-

sions; DAiðtÞ, DAidðtÞ and DBiðtÞ are time-varying matrices

with appropriate dimensions, and are defined as

DAiðtÞ DAidðtÞ DBiðtÞ½ � ¼ DiFiðtÞ Eia Eid Eib½ �; ð2Þ

where Di, Eai; Edi; Ebi (i ¼ 1; 2; . . .; r) are known

constant real matrices with appropriate dimensions; FiðtÞ is

an unknown real time-varying matrix with

FT
i ðtÞFiðtÞ� I: ð3Þ

By using a center average defuzzifier, product inference

and singleton fuzzifier, the global dynamics of the T–S

fuzzy system (1) can be inferred as

_xðtÞ ¼
Xr

i¼1

kiðnðtÞÞ½�AixðtÞ þ �Aidxðt � dðtÞÞ þ �BiuðtÞ

þBixxðtÞ�;
ð4Þ

where

kiðnðtÞÞ ¼
biðnðtÞÞPr
i¼1 biðnðtÞÞ

; biðnðtÞÞ ¼
Yp
j¼1

MijðnjðtÞÞ

and MijðnjðtÞ is the membership value of njðtÞ in Mij. It is

seen that kiðnðtÞÞ has the following properties:

kiðnðtÞÞ� 0; i ¼ 1; 2; . . .; r;
Xr

i¼1

kiðnðtÞÞ ¼ 1:

For the T–S fuzzy system described in (1), the following

fuzzy sampled-data controller via parallel distributed

compensation approach can be expressed as follows:
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Controller Rule j: IF n1ðtkÞ is Mj1 and npðtkÞ is Mjp,

THEN

uðtÞ ¼ KjxðtkÞ; tk � t\tkþ1; j ¼ 1; 2; . . .; r ð5Þ

where Kj is the feedback gain, the time tkðk ¼ 0; 1; . . .Þ is

the sampling instant, the sampling interval is assumed to

satisfy 0\tkþ1 � tk ¼ hk � h. Thus, the output of the con-

troller (5) is given by

uðtÞ ¼
Xr

j¼1

kjðnðtkÞÞKjxðtkÞ; tk � t� tkþ1 ð6Þ

By using input delay approach, fuzzy sampled-data

controller (6) is converted to the following form

uðtÞ ¼
Xr

j¼1

kjðnðtkÞÞKjxðt � sðtÞÞ: ð7Þ

Substituting (7) into (1) yields the fuzzy closed-loop

system

_xðtÞ ¼
Xr

i¼1

Xr

j¼1

kiðnðtÞÞkjðnðtkÞÞ½�AixðtÞ þ �Aidxðt � dðtÞÞ

þ �BiKjxðt � sðtÞÞ þ BixxðtÞ�:
ð8Þ

Consider the following H? control performance

Z1

0

xTðtÞQxðtÞdt� q2

Z1

0

xTðtÞxðtÞdt; ð9Þ

where q is a prescribed attenuation level, q2 can be mini-

mized and the weighting positive definite matrix Q is

specified beforehand according to the design purpose.

The purpose of this paper is to find a sampled-data state

feedback controller such that the H? performance in (9)

with a minimized disturbance attenuation level q is

achieved in the sense that the fuzzy closed-loop system (8)

is robustly asymptotically stable.

Lemma 1 (Petersen and Hollot [48]) Let Q ¼ QT, H, E

and FðtÞ satisfying FTðtÞFðtÞ� I are appropriately

dimensional matrices, then the following inequality:

Qþ HFðtÞE þ ETFTðtÞHT\0

is true, if and only if the following inequality holds for any

e[ 0,

Qþ e�1HHT þ eETE\0:

Remark 1 Our proposed control schemes are effective for

nonlinear systems either constant or time-varying. Mean-

while, these schemes are feasible for nonlinear systems

without or with uncertainties.

3 Fuzzy H? Sampled-Data Control

In this section, we discuss the robust H? sampled-data con-

trol problem of fuzzy closed-loop system (8) by use of the

input delay approach and free-weighting matrix approach.

Theorem 1 For given the matrix Q[ 0, given the sca-

lars h[ 0, dM [ 0, dD [ 0, l[ 0, e[ 0, the H? perfor-

mance (9) with a minimized attenuation level q is achieve

in the sense that the fuzzy closed-loop system (8) is robustly

asymptotically stable if there exist matrices �P[ 0, �W [ 0,
�H[ 0, �R[ 0, �Z[ 0, �G[ 0, any appropriately dimen-

sioned matrices

�X ¼
�X11

�X12

� �X22

� �
; �Y ¼

�Y11
�Y12

� �Y22

� �
;

�N ¼ �NT
1

�NT
2

� �T
; �M ¼ �MT

1
�MT

2

� �T
;

�S ¼ �ST1
�ST2

� �T
; �T ¼ �TT

1
�TT

2

� �T
; Kjðj ¼ 1; 2; . . .; LÞ

such that the LMIs (10), (11) and (12) are feasible for all

i; j ¼ 1; 2; . . .; r,

Pij ¼
Pij

11 Pij
12

� Pij
22

� �
\0; ð10Þ

W1 ¼
�X11

�X12
�N1

� �X22
�N2

� � �Z

2
64

3
75� 0;

W2 ¼
�X11

�X12
�M1

� �X22
�M2

� � �Z

2
64

3
75� 0;

ð11Þ

U1 ¼
�Y11

�Y12
�S1

� �Y22
�S2

� � �G

2
64

3
75� 0;

U2 ¼
�Y11

�Y12
�T1

� �Y22
�T2

� � �G

2
64

3
75� 0;

ð12Þ

where

Pij
11 ¼

Nij11 Nij12 Nij13 Nij14 Nij15 Nij16 Nij17 Nij18

� Nij22 0 0 0 0 0 0

� � Nij33 Nij34 0 0 Nij37 0

� � � Nij44 0 0 0 0

� � � � Nij55 Nij56 Nij57 0

� � � � � Nij66 0 0

� � � � � � Nij77 Nij78

� � � � � � � Nij88

2
66666666666664

3
77777777777775

;

ð13Þ
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Pij
12 ¼ �D �ET

� �
;

Pij
22 ¼ �eI 0

� �e�1I

� �

with

Nij11 ¼ Ai
�Pþ �PAT

i þ �W þ �Rþ �H þ �N1 þ �NT
1

þ dM �X11 þ �S1 þ �ST1 þ h�Y11;

Nij12 ¼ �P;Nij22 ¼ �Q�1; Nij13 ¼ Aid
�P� �N1 þ �NT

2

þ �M1 þ dM �X12;

Nij14 ¼ � �M1; Nij15 ¼ Bi
�Kj � �S1 þ �ST2 þ �T1 þ h�Y12;

Nij16 ¼ � �T1; Nij17 ¼ l�PAT
i ; Nij18 ¼ Bix

Nij33 ¼ �ð1 � dDÞ �H � �N2 � �NT
2 þ �M2 þ �MT

2 þ dM �X22

Nij34 ¼ � �M2; Nij37 ¼ l�PAT
id; Nij44 ¼ � �W ;

Nij55 ¼ ��S2 � �ST2 þ �T2 þ �TT
2 þ h�Y22; Nij56 ¼ � �T2;

Nij57 ¼ l �KT
j B

T
i ; Nij66 ¼ �R;

Nij77 ¼ �2l�Pþ dM �Z þ h �G;

Nij78 ¼ lBix; Nij88 ¼ �q2I

�D ¼ DT
i 0 0 0 0 0 lDT

i 0
� �T

;

�E ¼ Eai
�P 0 Edi

�P 0 Ebi
�Kj 0 0 0

� �
:

and the state feedback control gains Kj ¼ KjP
�1

(j ¼
1; 2; . . .; r).

Proof Choose the following Lyapunov–Krasovskii fun

ctional:

VðxtÞ ¼ V0ðxÞ þ V1ðxtÞ þ V2ðxtÞ þ V3ðxtÞ þ V4ðxtÞ
þ V5ðxtÞ;

where

V0ðxÞ ¼ xTðtÞPxðtÞ; V1ðxtÞ ¼
Z t

t�dM

xTðsÞWxðsÞds

V2ðxtÞ ¼
Z t

t�dðtÞ

xTðsÞHxðsÞds; V3ðxtÞ ¼
Z t

t�h

xTðsÞRxðsÞds

V4ðxtÞ ¼
Z 0

�dM

Z t

tþh
_xTðsÞZ _xðsÞdsdh;V5ðxtÞ

¼
Z 0

�h

Z t

tþh
_xTðsÞG _xðsÞdsdh

with P[ 0, W[ 0, H[ 0, R[ 0, Z[ 0, G[ 0.

Taking the derivative of V with respect to t yields that

_V0ðxÞ ¼ _xTðtÞPxðtÞ þ xTðtÞP _xðtÞ

¼
Xr

i¼1

Xr

j¼1

kiðnðtÞÞkjðnðtkÞÞ½xTðtÞ�AT
i PxðtÞ

þ xTðt � dðtÞÞ�AT
idPxðtÞ þ xTðt � sðtÞÞKT

j B
T
i PxðtÞ

þ xTðtÞP�AixðtÞ þ xTðtÞP�Aidxðt � dðtÞÞ
þ xTðtÞP�BiKjxðt � sðtÞÞ þ xTðtÞBT

ixPxðtÞ
þ xTðtÞPBixxðtÞ� ð14Þ

_V1ðxtÞ ¼ xTðtÞWxðtÞ � xTðt � dMÞWxðt � dMÞ: ð15Þ
_V2ðxtÞ ¼ xTðtÞHxðtÞ � ð1 � _dðtÞÞxTðt � dðtÞÞHxðt � dðtÞÞ

� xTðtÞHxðtÞ � ð1 � dDÞxTðt � dðtÞÞHxðt � dðtÞÞ
ð16Þ

_V3ðxtÞ ¼ xTðtÞRxðtÞ � xTðt � hÞRxðt � hÞ: ð17Þ

_V4ðxtÞ ¼ dM _xðtÞTZ _xðtÞ �
Z t

t�dM

_xTðsÞZ _xðsÞds

¼ dM _xðtÞTZ _xðtÞ �
Z t

t�dðtÞ
_xTðsÞZ _xðsÞds

�
Z t�dðtÞ

t�dM

_xTðsÞZ _xðsÞds:

ð18Þ

_V5ðxtÞ ¼ h _xðtÞTG _xðtÞ �
Z t

t�h

_xTðsÞG _xðsÞds

¼ h _xðtÞTG _xðtÞ �
Z t

t�sðtÞ
_xTðsÞG _xðsÞds

�
Z t�sðtÞ

t�h

_xTðsÞG _xðsÞds:

ð19Þ

For a given scalar l[ 0 in fuzzy closed-loop system

(8), the following equality is true:

0¼�2l _xTðtÞP _xðtÞ

þl _xTðtÞP
Xr

i¼1

Xr

j¼1

kiðnðtÞÞkjðnðtkÞÞ �AixðtÞ½
(

þ�Aidxðt�dðtÞÞþ �BiKjxðt� sðtÞÞþBixxðtÞ
�
g

þl
Xr

i¼1

Xr

j¼1

kiðnðtÞÞkjðnðtkÞÞ �AixðtÞþ �Aidxðt�dðtÞÞ½
(

þ�BiKjxðt� sðtÞÞþBixxðtÞ
�
gTP _xðtÞ

¼�2l _xTðtÞP _xðtÞþ
Xr

i¼1

Xr

j¼1

kiðnðtÞÞkjðnðtkÞÞ½l _xTðtÞP�AixðtÞ

þl _xTðtÞP�Aidxðt�dðtÞÞþl _xTðtÞP�BiKjxðt� sðtÞÞ
þl _xTðtÞPBixxðtÞþlxTðtÞ�AT

i P _xðtÞ
þlxTðt�dðtÞÞ�AT

idP _xðtÞþlxTðt� sðtÞÞKT
j
�BT
i P _xðtÞ

þlxTðtÞBT
ixP _xðtÞ�: ð20Þ
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By use of the Newton–Leibniz formula, for appropriately

dimensioned matrices N;M; S; T , the following equations

hold:

0 ¼ 2fT1 ðtÞN xðtÞ � xðt � dðtÞÞ �
Z t

t�dðtÞ
_xðsÞds

" #
; ð21Þ

0 ¼ 2fT1 ðtÞM xðt � dðtÞÞ � xðt � dMÞ �
Z t�dðtÞ

t�dM

_xðsÞds
" #

;

ð22Þ

0 ¼ 2fT2 ðtÞS xðtÞ � xðt � sðtÞÞ �
Z t

t�sðtÞ
_xðsÞds

" #
; ð23Þ

0 ¼ 2fT2 ðtÞT xðt � sðtÞÞ � xðt � hÞ �
Z t�sðtÞ

t�h

_xðsÞds
" #

; ;

ð24Þ

where

f1ðtÞ ¼ xTðtÞ xTðt � dðtÞÞ
� �T

; f2ðtÞ
¼ xTðtÞ xTðt � sðtÞÞ

� �T
:

For semi-positive definite matrices

X ¼ X11 X12

� X22

� �
� 0; Y ¼ Y11 Y12

� Y22

� �
� 0;

the following equations hold:

0 ¼
Z t

t�dM

fT1 tð ÞXf1 tð Þds�
Z t

t�dM

fT1 tð ÞXf1 tð Þds

¼ dMf
T
1 tð ÞXf1 tð Þ �

Z t

t�d tð Þ
fT1 tð ÞXf1 tð Þds

�
Z t�d tð Þ

t�dM

fT1 tð ÞXf1 tð Þds;

ð25Þ

0 ¼
Z t

t�h

fT2 tð ÞYf2 tð Þds�
Z t

t�h

fT2 tð ÞYf2 tð Þds

¼ hfT2 tð ÞYf2 tð Þ �
Z t

t�s tð Þ
fT2 tð ÞYf2 tð Þds

�
Z t�s tð Þ

t�h

fT2 tð ÞYf2 tð Þds:

ð26Þ

Combing (14–26), we conclude

_VðxtÞþ xTðtÞQxðtÞþq2xTðtÞxðtÞ

�
Xr

i¼1

Xr

j¼1

kiðnðtÞÞkjðnðtkÞÞ~xTðtÞRij~xðtÞ

�
Z t

t�d tð Þ
gT1 t; sÞw1g1 t; sÞðð ds�

Z t�d tð Þ

t�dM

gT1 t; sÞw2g1 t; sÞðð ds

�
Z t

t�s tð Þ
gT2 t; sÞ/1g2 t; sÞðð ds�

Z t�s tð Þ

t�h

gT2 t; sÞ/2g2 t; sÞðð ds;

ð27Þ

where

~xðtÞ ¼ ½ xTðtÞ xTðt � dðtÞÞ xTðt � dMÞ xTðt � sðtÞÞxTðt � hÞ _xTðtÞ xTðtÞ �T ;

g1ðt,s) ¼ fT1 tð Þ _xT sð Þ
� �T

; g2ðt,s) ¼ fT2 tð Þ _xT sð Þ
� �T

;

Rij ¼

Rij11 Rij12 Rij13 Rij14 Rij15 Rij16

� Rij22 Rij23 0 0 Rij26

� � Rij33 0 0 0

� � � Rij44 Rij45 Rij46

� � � � Rij55 0

�
�

�
�

�
�

�
�

�
�

Rij66

�

Rij17

0

0

0

0

Rij67

Rij77

2
666666664

3
777777775
;

ð28Þ

w1 ¼
X11 X12 N1

� X22 N2

� � Z

2
4

3
5; w2 ¼

X11 X12 M1

� X22 M2

� � Z

2
4

3
5;

ð29Þ

/1 ¼
Y11 Y12 S1

� Y22 S2

� � G

2
4

3
5; /2 ¼

Y11 Y12 T1

� Y22 T2

� � G

2
4

3
5; ð30Þ

with

Rij11 ¼ AT
i Pþ PAi þW þRþHþN1 þ NT

1 þ dMX11

þ S1 þ ST1 þ hY11 þ Q

Rij12 ¼ PAid � N1 þ NT
2 þM1 þ dMX12;�Rij13 ¼ M1;

Rij14 ¼ PBiKj � S1 þ ST2 þ T1 þ hY12;

Rij15 ¼ �T1;Rij16 ¼ lAT
i P

Rij17 ¼ PBix;Rij22 ¼ �ð1 � dDÞH � N2 � NT
2 þM2

þMT
2 þ dMX22

Rij23 ¼ �M2;Rij26 ¼ lAT
idP;Rij33 ¼ �W ;

Rij44 ¼ �S2 � ST2 þ T2 þ TT
2 þ hY22;

Rij45 ¼ �T2;Rij46 ¼ lKT
j B

T
i P;Rij55 ¼ �R;

Rij66 ¼ �2lPþ dMZ þ hQ;

Rij67 ¼ lPBix;Rij77 ¼ �q2I:

Pre- and post-multiplying Rij in (28) by diag½ P�1

P�1P�1P�1P�1P�1I�with

P ¼ P�1; �W ¼ P�1WP�1; �R ¼ P�1RP�1; �H ¼ P�1HP�1;

�Z ¼ P�1ZP�1; �G ¼ P�1GP�1; �X11 ¼ P�1X11P
�1

�X12 ¼ P�1X12P
�1; �X22 ¼ P�1X22P

�1; �Y11 ¼ P�1Y11P
�1;

�Y12 ¼ P�1Y12P
�1; �Y22 ¼ P�1Y22P

�1; �N1 ¼ P�1N1P
�1

�NT
2 ¼ P�1NT

2 P
�1; �M1 ¼ P�1M1P

�1; �M2 ¼ P�1M2P
�1;

�S1 ¼ P�1S1P
�1; �S2 ¼ P�1S2P

�1; �T1 ¼ P�1T1P
�1

�T2 ¼ P�1T2P
�1; �Kj ¼ Kj

�P�1; ðj ¼ 1; . . .; LÞ;
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we have

�Rij ¼ �R0
ij þ �D0FðtÞ�E0 þ �E0TFðtÞ �D0T ; ð31Þ

where

�R0
ij ¼

Nij11 Nij12 Nij13 Nij14 Nij15 Nij16

� Nij22 Nij23 0 0 Nij26

� � Nij33 0 0 0

� � � Nij44 Nij45 Nij46

� � � � Nij55 0

�
�

�
�

�
�

�
�

�
�

Nij66

�

Nij17

0

0

0

0

Nij67

Nij17

2
666666664

3
777777775
;

�D0 ¼ DT
i 0 0 0 0 lDT

i 0
� �T

;

�E0 ¼ Eai
�P Edi

�P 0 Ebi
�Kj 0 0 0

� �
:

From Lemma 1, �Rij\0 in (31) is equivalent to

�R0
ij þ e�1 �D0 �D0T þ e�E0 �E0T\0: ð32Þ

By using Schur complement, (32) is equivalent to

P0
ij ¼

Pij0
11 Pij0

12

� Pij0
22

� �
\0; ð33Þ

where

Pij0
11 ¼

Nij11 þ �Q Nij13 Nij14 Nij15 Nij16 Nij17

� Nij33 Nij34 0 0 Nij37

�� Nij44 0 0 0

�� � Nij55 Nij56 Nij57

�� �� Nij66 0

�

�

�

�

�

�

�

�

�

�

Nij77

�

Nij18

0

0

0

0

Nij78

Nij88

2
6666666666664

3
7777777777775

;

Pij0
12 ¼ �D0 �E0T� �

;Pij0
22 ¼

�eI 0

� �e�1I

� �
:

Based on Schur complement, Pij\0 is equivalent to

P0
ij\0. Thus, Rij\0 is equivalent to Pij\0.

Pre- and post-multiplying the matrices w1;w2 in (29)

and /1;/2 in (30) by diag½P�1 P�1 P�1 �, we have

W1;W2, U1 and U2. W1 � 0;W2 � 0;U1 � 0;U2 � 0 in (11–

12) are equivalent to w1 � 0;w2 � 0;/1 � 0;/2 � 0 in (29–

30), respectively.

If xðtÞ � 0, there exists a constant c[ 0 such that

_VðxtÞ� � c xðtÞk k2: ð34Þ

Thus, the fuzzy closed-loop system (8) is robustly

asymptotically stable.

Under zero initial condition, integrating both sides of

(27) from 0 to t and letting t ? ?, we haveZ 1

0

xTðtÞQxðtÞdt � q2

Z 1

0

xTðtÞxðtÞdt:

Thus, the proof is completed.

If there do not exist the uncertainties in the controlled

system (1), we have the following Corollary 1.

Corollary 1 For given the matrix Q[ 0, given the scalars

h[ 0, dM [ 0, dD [ 0, l[ 0, the H? performance (9) with

a minimized attenuation level q is achieved in the sense that

the fuzzy closed-loop system (8) is robustly asymptotically

stable if there exist matrices �P[ 0, �W[ 0, �H[ 0, �R[ 0,
�Z[ 0, �G[ 0, any appropriately dimensioned matrices

�X ¼
�X11

�X12

� �X22

� �
; �Y ¼

�Y11
�Y12

� �Y22

� �
; �N ¼ �NT

1
�NT

2

� �T
;

�M ¼ �MT
1

�MT
2

� �T
�S ¼ �ST1

�ST2
� �T

; �T ¼ �TT
1

�TT
2

� �T
;Kj; ðj ¼ 1; 2; . . .; rÞ

such that the LMIs (11), (12) and (13) are feasible. And the

state feedback control gains Kj ¼ KjP
�1

(j ¼ 1; 2; . . .; r).

If there do not exist the uncertainties and time delays in the

controlled system (1), we have the following Corollary 2.

Corollary 2 For given the matrix Q[ 0, given the sca-

lars h[ 0, l[ 0, the H? performance (9) with a mini-

mized attenuation level q is achieved in the sense that the

fuzzy closed-loop system (8) is robustly asymptotically

stable if there exist matrices �P[ 0, �W [ 0, �H[ 0,�R[ 0,
�Z[ 0, �G[ 0, any appropriately dimensioned matrices

�Y ¼
�Y11

�Y12

� �Y22

� �
; �S ¼ �ST1

�ST2
� �T

; �T ¼ �TT
1

�TT
2

� �T
;

Kjðj ¼ 1; 2; . . .; rÞ

such that the LMIs (12) and (35) are feasible for all

i; j ¼ 1; 2; . . .; r,

Nij ¼

Nij11 Nij12 Nij15 Nij16 Nij17 Nij18

� Nij22 0 0 0 0

� � Nij55 Nij56 Nij57 0

� � � Nij66 0 0

� � � � Nij77 Nij78

� � � � � Nij88

2
6666664

3
7777775
\0;

ð35Þ

where

Nij11 ¼ Ai
�Pþ �PAT

i þ �W þ �Rþ �H þ �N1 þ �NT
1 þ dM �X11

þ �S1 þ �ST1 þ h�Y11;

Nij12 ¼ �P; Nij22 ¼ �Q�1;

Nij13 ¼ Bi
�Kj � �S1 þ �ST2 þ �T1 þ h�Y12;

Nij14 ¼ � �T1; Nij15 ¼ l�PAT
i ; Nij16 ¼ Bix

Nij33 ¼ ��S2 � �ST2 þ �T2 þ �TT
2 þ h�Y22;

Nij34 ¼ � �T2; Nij35 ¼ l �KT
j B

T
i ; Nij44 ¼ �R;

Nij55 ¼ �2l�Pþ dM �Z þ h �G

Nij56 ¼ lBix; Nij66 ¼ �q2I
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And the state feedback control gains Kj ¼ KjP
�1

(j ¼ 1; 2; . . .; r).

3.1 Design Procedure

The fuzzy sampled-data H? control for the time-varying

delay system is summarized as follows:

Step 1: Select membership functions and fuzzy rules in (1).

Step 2: Give the upper bound of sampling interval h[ 0,

the upper bounds of time delay dM [ 0, dD [ 0 and the

scalars l[ 0; e[ 0.

Step 3: Solve the LMIs (10–12) to obtain Kj

(j ¼ 1; 2; � � �; L) and P. Thus,Kj ¼ KjP
�1

(j ¼ 1; 2;

. . .; L) can also be obtained.

Step 4: Increase h, and repeat Step 3 until Kj

(j ¼ 1; 2; � � �; L) and P cannot be found.

Step 5: Construct the fuzzy sampled-data controller (4).

Remark 2 In this paper, the conservative crossing

inequality and the Jensen integral inequality are not used to

enlarge the LKF, which helps to improve the asymptotic

convergence rate. Due to the improved system convergence

rate, with the same state responses, the proposed method in

this paper will show a larger sampling interval. In the

demonstration of superiority, the compared results of

sampling interval will be given rather than those of state

responses. Illustrative results will demonstrate the merits of

our proposed method. That is to say, a better system per-

formance is achieved.

4 Illustrative Examples

In this section, CSTR and computer-simulated truck-trailer

are given to illustrate the effectiveness and the feasibility

of fuzzy H? sampled-data control design.

Example 1 Consider the following CSTR system [5]

_x1ðtÞ ¼ � 1

v
x1ðtÞ þ Drð1 � x1ðtÞÞe

x2ðtÞ
1þx2ðtÞ=c0

þ 1

v
� 1

� �
x1ðt � sÞ

_x2ðtÞ ¼
1

v
þ b

� �
x2ðtÞ þ HDrð1 � x1ðtÞÞe

x2ðtÞ
1þx2ðtÞ=c0

þ 1

v
� 1

� �
x2ðt � sÞ þ buðtÞ þ bwðtÞ:

ð36Þ

where x1ðtÞ corresponds to the conversion rate of the

reactor, 0� x1ðtÞ� 1, x2ðtÞ is the dimensionless tempera-

ture.c0 ¼ 20;H ¼ 8;Dr ¼ 0:072; v ¼ 0:8; b ¼ 0:3. wðtÞ is

the bounded external disturbance xðtÞ ¼ ½x1ðtÞ; x2ðtÞ�T ,

x1ð0Þ x2ð0Þ½ � ¼ 0:5 �1½ �.

A three-rule T–S fuzzy model is used to represent the

nonlinear CSTR system.

Rule 1: IF x2ðtÞ is about 0.8862, THEN

_xðtÞ ¼ A1xðtÞ þ A1dxðt � sÞ þ B1uðtÞ þ B1xxðtÞ; ð37Þ

Rule 2: IF x2 (t) is about 2.7520, THEN

_xðtÞ ¼ A2xðtÞ þ A2dxðt � sÞ þ B2uðtÞ þ B2xxðtÞ; ð38Þ

Rule 3: IF x2ðtÞ is about 4.7052, THEN

_xðtÞ ¼ A3xðtÞ þ A3dxðt � sÞ þ B3uðtÞ þ B3xxðtÞ; ð39Þ

where

A1 ¼
�1:4274 0:0757

�1:4189 �0:9442

� �
; A1d ¼

0:25 0

0 0:25

� �
;

B1 ¼
0

0:3

� �
; B1x ¼

0

0:3

� �
;

A2 ¼
�2:0508 0:3958

�6:4066 1:6268

� �
; A2d ¼

0:25 0

0 0:25

� �
;

B2 ¼
0

0:3

� �
; B2x ¼

0

0:3

� �
;

A3 ¼
�4:5279 0:3167

�26:2228 0:9387

� �
; A3d ¼

0:25 0

0 0:25

� �
;

B3 ¼
0

0:3

� �
; B3x ¼

0

0:3

� �
;

xðtÞ ¼ 0

wðtÞ

� �
, and wðtÞ ¼ 0:5e�0:1t sinð0:1tÞ.

The membership functions are defined as

k1ðx2ðtÞÞ ¼

1; x2 � 0:8862

1 � x2ðtÞ � 0:8862

2:7520 � 0:8862
; 0:8862\x2\2:7520

0; x2 � 2:7520

8>><
>>:

k2ðx2ðtÞÞ ¼
1 � k1ðx2ðtÞÞ; x2 � 2:7520

1 � k3ðx2ðtÞÞ; x2 [ 2:7520

�

k3ðx2ðtÞÞ ¼

0; x2 � 2:7520

1 � x2ðtÞ � 2:7520

4:7052 � 2:7520
; 2:7520\x2\4:7052

1; x2 � 4:7052

8>><
>>:

A three-rule sampled-data fuzzy controller is employed

to stabilize the CSTR system:

uðtÞ ¼
X3

i¼1

kiðx2ðtkÞÞKixðtkÞ:

By using the input delay approach, the sampled-data

controller is converted to time-varying delay signal to

guarantee the system stability.
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Firstly, we consider that there does not exist time delay.

By using the methods of [17] and Corollary 2, the maxi-

mum allowable upper bounds of sampling interval under

q ¼ 0:5 and q ¼ 1 are given in Table 1.

Table 1 shows that the method in this paper can get a

larger sampling interval, which is less conservative than the

approach in [17]. This implies that a better performance is

achieved in this paper.

We design the controller for time-varying delay

s ¼ 0:2 þ 0:2 cos t. The maximum allowable upper bound

of sampling interval that is obtained by Corollary 1 is given

in Table 2. Similarly, other design parameters are given

Q ¼ diagf1 15g 	 10�3, l ¼ 0:08.

When time-varying delay s is 0:5 þ 0:45 cos t, Corollary

1 gives the maximum allowable upper bound of sampling

interval h ¼ 0:182 with the design parameters

Q ¼ diagf1 15g 	 10�3, q¼ 1:0, l ¼ 0:08, dM ¼ 0:95,

dD ¼ 0:45 and the fuzzy state feedback control gains

K1 ¼ 19:7215 �9:2961½ �; K2 ¼ 19:7215 � 9:2961½ �;
K3 ¼ 19:7215 � 9:2961½ �:

The sampled-data fuzzy controller with the above con-

trol gains is applied to the CSTR system, and the state

responses and control input are shown in Figs. 1 and 2,

respectively.

Figure 1 shows the asymptotic stability the CSTR (36)

by the proposed fuzzy H? sampled-data controller. Fig-

ure 2 depicts the sampled-data behavior of fuzzy controller.

One design purpose of this paper is a sufficient condition

is provided to obtain feedback control gains. By solving the

LMIs in Theorem 1 (Corollary 1 or Corollary 2), we can

obtain a feasible solution rather than a unique one. Like,

K1 ¼ K2 ¼ K3 is a feasible solution, K1 6¼ K2 6¼ K3 is also

suitable. In this example, K1, K2 and K3 are same. And, in

the following example 2, K1, K2 and K3 are different.

Example 2 Consider the computer-simulated truck-trailer

system [6]

_x1ðtÞ ¼ �a
vt

ðLþ DLðtÞÞt0
x1ðtÞ � ð1 � aÞ vt

ðLþ DLðtÞÞt0

x1ðt � tdÞ þ
vt

ðlþ DlðtÞÞt0
uðtÞ þ wðtÞ

_x2ðtÞ ¼ a
vt

ðLþ DLðtÞÞt0

x1ðtÞ þ ð1 � aÞ vt

ðLþ DLðtÞÞt0
x1ðt � tdÞ

_x3ðtÞ ¼
vt

t0
sinðx2ðtÞ þ

vt

2ðLþ DLðtÞÞ

x1ðtÞ þ ð1 � aÞ vt

2ðLþ DLðtÞÞ x1ðt � tdÞÞ ð40Þ

where x2(t), _xðtÞ ¼ A2xðtÞ þ A2dxðt � sdÞ þ B2uðtÞ þ wðtÞ,
x2(t), _xðtÞ¼A3xðtÞþA3dxðt�sdÞþB3uðtÞþwðtÞ, �t¼2:0,

t0 = 0.5, x1ðtÞ2½�p=2;p=2�, _x1ðtÞ2½�3;3�, x2ðtÞ2½�p=2;p=2�,
_x2ðtÞ2½�2;2�, w(t) is the external bounded disturbance.

_xðtÞ2½x1ðtÞx2ðtÞx3ðtÞ�T , ½x1ð0Þx2ð0Þx3ð0Þ�¼½1:5�25�.

The nonlinear truck-trailer system is modeled by a two-

rule T–S fuzzy model:

Table 1 Maximum allowable upper bounds of sampling interval

Method [17] Corollary 2

hmaxðq¼0:5Þ 0.181 0.203

hmaxðq¼ 1Þ 0.186 0.208

Table 2 Maximum upper

bounds of sampling interval

under different q

q 0.1 0.5 1.0

hmax 0.163 0.186 0.190

Fig. 1 State responses x1, x2

Fig. 2 Control input u
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Rule 1: IF hðtÞ ¼ x2ðtÞ þ aðvt=2LÞx1ðtÞ þ ð1 � aÞ
ðvt=2LÞx1ðt � tdÞ is about 0,

Then _xðtÞ ¼ �A1xðtÞ þ �A1dxðt � dðtÞÞ þ �B1uðtÞ þ B1xxðtÞ;
ð41Þ

Rule 2: IF hðtÞ ¼ x2ðtÞ þ aðvt=2LÞx1ðtÞ þ ð1 � aÞ
ðvt=2LÞx1ðt � tdÞ is about p or - p,

Then _xðtÞ ¼ �A2xðtÞ þ �A2dxðt � dðtÞÞ þ �B2uðtÞ þ B2xxðtÞ;
ð42Þ

where

A1 ¼

�a
vt

Lt0
0 0

a
vt

Lt0
0 0

a
v2t2

2Lt0

vt

t0
0

2
66666664

3
77777775
;

A1d ¼

�ð1 � aÞ vt

Lt0
0 0

ð1 � aÞ vt

Lt0
0 0

ð1 � aÞ v
2t

2

2Lt0
0 0

2
66666664

3
77777775
;

B1 ¼

vt

lt0
0

0

2
664

3
775; B1x ¼

1

0

0

2
64

3
75;

A2 ¼

�a
vt

Lt0
0 0

a
vt

Lt0
0 0

a
dv2t

2

2Lt0

dvt

t0
0

2
66666664

3
77777775
;

A2d ¼

�ð1 � aÞ vt

Lt0
0 0

ð1 � aÞ vt

Lt0
0 0

ð1 � aÞ dv
2t2

2Lt0
0 0

2
66666664

3
77777775
;

B2 ¼

vt

lt0
0

0

2
664

3
775; B2x ¼

1

0

0

2
64

3
75

DA1 ¼ 0:05FðtÞ
0:5091 0 0

�0:5091 0 0

0:5091 0 0

2
64

3
75;

DA1d ¼ 0:05FðtÞ
0:2182 0 0

�0:2182 0 0

0:2182 0 0

2
64

3
75;

DB1 ¼ 0:05FðtÞ
�0:3571

0

0

2
64

3
75;

DA2d ¼ 0:05FðtÞ
0:2182 0 0

�0:2182 0 0

0:3474 0 0

2
64

3
75;

DB2 ¼ 0:05FðtÞ
�0:3571

0

0

2
64

3
75;

F(t) = sin (t), d = 10t0/p and w(t) = 0.5e-0.1t sin (0.1t).

The membership functions are defined as

k1ðhðtÞÞ ¼ 1 � 1

1 þ expð�3ðhðtÞ � 0:5pÞÞ

� �

	 1

1 þ expð�3ðhðtÞ þ 0:5pÞÞ

� �
; k2ðhðtÞÞ

¼ 1 � k1ðhðtÞÞ:

We design the following fuzzy sampled-data control law:

Rule 1: IF hðtÞ ¼ x2ðtÞ þ aðvt=2LÞx1ðtÞ þ ð1 � aÞðvt=2LÞ
x1ðt � tdÞ is about 0,THEN u(t) = K1x(tk), Rule 2: IF

hðtÞ ¼ x2ðtÞ þ aðvt=2LÞx1ðtÞ þ ð1 � aÞðvt=2LÞx1ðt � tdÞ is

about p or - p, THEN u(t) = K2x(tk).

By using the input delay approach, the sampled-data

controller is converted to time-varying delay signal to

guarantee the system stability.

First, we assume that there is no uncertainty in the truck-

trailer system.

If the delay is time-invariant, i.e., dD = 0. By the

methods of [20] and Corollary 1, the maximum allowable

upper bounds of sampling interval under q¼0:5 and q¼1

for given time delays are given in Tables 3 and 4.

Table 3 Maximum allowable upper bounds of sampling interval

under q¼0:5

Method [20] Corollary 1

hmax(td = 0.5) 0.352 0.457

hmax(td = 2) 0.137 0.261
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Tables 3 and 4 show that the method in this paper is less

conservative than the approach in [20]. This implies that

the proposed method achieves a better performance.

If the delays is time-varying, we design the controller

for time-varying delay td = 0.2 ? 0.2 cos t. The maxi-

mum allowable upper bounds of sampling interval that are

obtained by Corollary 1 are given in Table 5, and the other

design parameters are also given by Q ¼ diagf2 30 6g 	
10�4; l = 0.8.

Next, we consider that there have the uncertainties in the

truck-trailer system.

When time-varying delay td is 0:5 þ 0:45 cos t, Theo-

rem 1 gives the maximum allowable upper bound of

sampling interval hmax = 0.209 with the design parame-

tersQ ¼ diagf2 30 6g 	 10�4;q ¼ 0:8; e ¼ 1, l = 0.1,

dM = 0.95, dD = 0.45 and the fuzzy state feedback control

gains

K1 ¼ 4:0609 �3:2384 0:0714½ �;
K2 ¼ 3:7284 �2:9930 0:0661½ �:

Based on the sampled-data fuzzy controller with the

above control gains, the stability of the truck-trailer system

and the sampled-data behavior of fuzzy controller are

shown in Figs. 3, 4 5 and 6, respectively.

Two illustrative examples demonstrate the effectiveness

and the merits of the proposed method.

From these data, it is known that, without using the

conservative crossing inequality and the Jensen integral

inequality, our H? controller achieved a prescribed dis-

turbance attenuation level in the sense that the fuzzy

Fig. 3 State response x1

Table 5 Maximum upper

bounds of sampling interval

under different q

q 0.1 0.5 1.0

hmax 0.071 0.421 0.555

Table 4 Maximum allowable upper bounds of sampling interval

under q¼1

Method [20] Corollary 1

hmax(td = 0.5) 0.385 0.589

hmax(td = 2) 0.264 0.453

Fig. 4 State response x2

Fig. 5 State response x3

Fig. 6 Control input u

1426 International Journal of Fuzzy Systems, Vol. 19, No. 5, October 2017

123



closed-loop system is robustly asymptotically stable. It

means, our method is effective and can lower implemen-

tation cost and time.

5 Conclusion

This paper is concerned with the fuzzy H? sampled-data

control problem for uncertain nonlinear systems with time-

varying delay. A fuzzy sampled-data H? controller is

designed to guarantee the system stability and achieve a

prescribed disturbance attenuation level. Compared with

the existing ones, the obtained H? criteria are less con-

servative with the improved system convergence rate and

the larger sampling interval. Two illustrative examples are

provided to show the advantage of the proposed method.

The proposed control approach could be applied in

engineering systems with the property of time-varying

delay. On the one hand, faster system convergence rate is a

basic requirement in control system design. On the other

hand, sampled-data control could meet engineering

requirement. For sampled-data controller, this paper sup-

plies a method to improve the system convergence rate and

lower implementation cost and time. Thus, the proposed

results show a significant practical value.

In the control system design, the controller is sampled-

data signal. In fact, the controller design with the analog-

to-digital (AD) converter and the digital-to-analog (DA)

converter is of engineering value. In the following, our

method could be extended to this problem.
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