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Abstract In this paper, a gain scheduling technique using

type-2 fuzzy logic system has been proposed for load fre-

quency control in restructure power system. For this pur-

pose, at first the particle swarm optimization algorithm has

been employed to obtain proportional-integral-derivative

controller gains at some nominal operating points; then, a

multi-input multi-output type-2 fuzzy logic system is

trained in order to provide a general mapping between the

operating points and the related proportional-integral-

derivative gains. In addition, the same particle swarm

optimization algorithm has been used to train the multi-

input multi-output type-2 fuzzy logic system. In the online

applications, the trained type-2 fuzzy logic system is able

to infer the proportional-integral-derivative gains appro-

priately even in the presence of noise and uncertainties. So,

the type-2 fuzzy logic system is exploited due to its ability

to model uncertainties which may exist in the rules and

measured data. To illustrate the effectiveness of the pro-

posed strategy, the new controller has been compared with

a type-1 fuzzy gain scheduling and the proportional-inte-

gral-derivative controllers.

Keywords Load frequency control � Type-2 fuzzy logic

system � Gain scheduling technique � Restructure power

system

1 Introduction

One of the principle aspects of automatic generation con-

trol (AGC) in power systems is the maintenance of fre-

quency and power change over the tie lines at their

scheduled values. Therefore, it is a simultaneous load fre-

quency control [1]. In the load frequency control (LFC)

problem, each area has its own generator(s), and it is

responsible for its own load and scheduled interchanges

with neighboring areas. The tie lines are utilities for con-

tracted energy exchange between areas and they provide

interarea support in abnormal conditions. Area load chan-

ges and abnormal conditions lead to mismatch in frequency

and scheduled power interchanges between areas. These

mismatches have to be corrected by LFC, which is defined

as the regulation of the power output of generators within a

prescribed area [2–4]. Therefore, the LFC task is very

important in interconnected and restructure power systems.

Since parameters of the power systems are a function of the

operating point, and the load is never constant, thus non-

linearity and uncertainty always exist in the power systems.

To maintain these large-scale power systems, the control

algorithm must be able to deal with mechanical and elec-

trical nonlinear dynamics and must be operated under

imprecise and uncertain conditions which are mainly

caused by random load demands. It is obvious that the fixed

gain controllers which have been designed at nominal

operating conditions fail to provide best control perfor-

mance over a wide range of operating conditions, which

means that controller must be updated to keep system

performance near its optimum. But it is essential to con-

sider that system performance gets worse when noise and

uncertainty exist in the power systems while operating

conditions are changed simultaneously; so, it motivated the

authors to investigate this problem.
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Thus, nonfixed gain controllers have received consid-

erable attentions [5–17]. In [5–8], some classical adaptive

controllers have been presented for LFC. Despite the

promising results, the control algorithms are complicated

and require some online model identifications. Artificial

Neural Networks (ANNs), Fuzzy Logic Systems (FLSs),

and Fuzzy Neural Networks (FNNs) have been widely used

as a direct adaptive controller [9–13]. These controllers are

tuned online and they consume much time for learning due

to the large inputs and nonlinear properties of these sys-

tems. Fuzzy gain scheduling techniques have been pre-

sented in some literatures [14–16] where FLSs have been

used to tune the proportional-integral (PI) or proportional-

integral-derivative (PID) controller gains according to

fuzzy rules. Clearly, it is difficult to pinpoint the exact

definition of FLS rules and also, the fuzzy variables are not

optimum when the operating points change. In [17], an

adaptive neuro-fuzzy inference system (ANFIS) has been

trained by genetic algorithm to provide a general mapping

between the operating conditions and the optimal control

gains. In mentioned work, the trained ANFIS is able to

obtain integral gains in the online application even at the

off-nominal operating points.

In the aforesaid literatures, all of the fuzzy logic systems

are called Type-1 Fuzzy Logic Systems (T1FLS) which

have two-dimensional membership functions. The exten-

sion of the T1FLS is the Type-2 Fuzzy Logic System

(T2FLS) with three-dimensional membership functions.

This extra dimension provides a new degree of freedom

that lets the uncertainties to be handled in totally new ways

[18–20]. A Type-2 fuzzy set can be visualized as a three-

dimensional, primary, and secondary membership function.

The primary membership is any subset in [0, 1], and there

is a secondary membership value corresponding to each

primary membership value that defines the possibility for

primary membership.

T2FLSs have been applied in many practical applica-

tions such as mobile robot control [21], airplane flight

control [22], and Hot Strip Mill (HSM) process [23]. In

2012, Sepulveda and coworkers have shown that the

hardware implementation of T2FLS controller is easier

when high speed processing is needed [24, 25]. But the

important issue in the application of T2FLS is how to set

the parameters of the consequent parts as well as the

antecedent parts, such as standard deviations and means.

Therefore, chemical optimization paradigm, particle swarm

optimization, evolutionary method, simulated annealing,

and genetic algorithm (GA) have been employed to search

optimal values of these system parameters [26–33]. In [34],

authors have designed a decentralized controller based on

T2FLS for the LFC. In this work, the T2FLS is the main

controller with the fixed structure and its rules have been

tuned based on a trial-and-error method. In the industrial

system such as LFC, the PID controller is the main con-

troller not only due to its simplicities but also due to its

success in large number of industrial applications. Fur-

thermore, updating PID gains according to the variation of

operating points is an important issue that needs to be

considered.

Thus, the main contribution of this work is to introduce

an applicable Multi-Input Multi-Output (MIMO) T2FLS

which can tune PID gains online. This integrated system

(T2FLS and PID) leads to the robust controller which

handles power system in nominal and off-nominal points in

the presence of measurement noise and uncertainty.

Algorithm of proposed method is illustrated in Fig. 1.

Above strategy can be called Type-2 Fuzzy Gain

scheduling (T2FG) technique. The power system parame-

ters (i.e., power system time constant, Tpi, the synchro-

nizing power coefficient, Tij, and the frequency bias setting,

Bi) that may change are considered the inputs of the T2FLS

, and the PID controller gains are the outputs. The T2FLS is

trained off-line according to precomputed table which

consists of some nominal operating points and their related

PID gains. Meanwhile, this table has been designed by

particle swarm optimization (PSO) algorithm. In the online

applications, the trained T2FLS is able to infer PID gains

according to the monitored parameters even at the off-

nominal points and noisy conditions. A two-area restruc-

ture power system is assumed for demonstrating efficiency

of proposed method. The proposed T2FG controller has

been compared with the Type-1 Fuzzy Gain Scheduling

(T1FG) and the PID controllers through some simulations.

The remaining parts of the paper are organized as follows:

the dynamicmodel of a two-area restructure power system is

presented in Sect. 2. The design procedure of the PID con-

troller by PSO is expressed in Sects. 3 and 4. Also, online

adaptive T2FG technique is derived in the next section. In

Sect. 5, simulation results for a two-area power system are

stated. Finally, the conclusion is addressed in Sect. 6.

2 Model Description

In a traditional power system structure, generation, trans-

mission, and distribution are owned by a single entity

called a vertically integrated utility (VIU), which supplies

power to the customers at regulated rates. All such control

areas are interconnected by tie lines. Following a load

disturbance within an area, the frequency of that area

experiences a transient change, and the feedback mecha-

nism comes into play and generates an appropriate rise/

lower signal to the turbine to make the generation follow

the load. In steady state, the generation is matched with the

load, and the tie line power and frequency are enforced to

zero.
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In the restructured power systems, the VIU no longer

exists, however, the common objectives, i.e., restoring the

frequency and the net interchanges to their desired values

for each control area remain. In the vertically integrated

power system structure, it is assumed that each bulk gen-

erator unit is equipped with secondary control and fre-

quency regulation requirements, but in an open energy

market, Gencos may or may not participate in the AGC

problem. In that environment, Gencos sell power to various

Discos at competitive price. Thus, Discos have the liberty

to choose the Gencos for contract. The concept of a

‘‘generation participation matrix (GPM)’’ is used to make

the visualization of contracts easier. The GPM shows the

participation factors of each Genco in the considered

control area and each control area is determined by a

Disco. The rows of a GPM correspond to Genco and the

columns correspond to control areas that contract power.

For example, for a large-scale power system with m control

area (Discos) and n Gencos, the GPM will have the fol-

lowing structure:

Optimizing PID gains
(off-line)

Training MIMO T2FLS 
(off-line)

Select optimization 
method (GA, PSO, ..)

Find general mapping 
between operating points 

and related PID gains
By using selected 

optimization method

Find optimum PID gains 
related to some nominal

operating points

Controller (T2FLS + PID)
On-line

Optimum PID gainsInfer PID gains online 
even at the off-nominal 

points and noisy conditions

Plant (Restructure Power System)
with noise and uncertainty 

Error

Fig. 1 The algorithm of proposed method

Fig. 2 The configuration of i-th control area
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GPM

¼

gpf11 gpf12 . . . gpf1ðm�1Þ gpf1m

gpf21 gpf22 . . . gpf2ðm�1Þ gpf2m

..

. ..
. ..

. ..
. ..

.

gpfðn�1Þ1 gpfðn�1Þ2 . . . gpfðn�1Þðm�1Þ gpfðn�1ÞðmÞ

gpfn1 gpfn2 . . . gpfnðm�1Þ gpfnm

2
66666664

3
77777775

ð1Þ

where gpfij refers to ‘‘generation participation factor’’ and

shows the participation factor of Genco i in load flowing of

area j (based on a specified bilateral contract). The sum of

all the entries in a column in this matrix is unity, i.e.,

Xn
i¼1

gpfij ¼ 1: ð2Þ

To illustrate effectiveness of the proposed control design

and modeling strategy, a two-control area power system is

considered as a test system. It is assumed that each control

area includes twoGencos and twoDiscos. A block diagram of

the generalizedLFC scheme for control area iwill be obtained

in a deregulated environment as shown in Fig. 2 [35].

Table 1 PID controller gains at

different operating conditions
Pattern Operating conditions PID gains Pattern Operating conditions PID gains

Tpi Tij Bi Kpi KIi KDi TPi Tij Bi Kpi KIi KDi

1 10 0.145 0.125 6.1 0.17 5.2 25 23 0.145 0.125 8.3 0.21 9.4

2 10 0.145 0.275 3.0 0.07 3.1 26 23 0.145 0.275 6.9 0.2 5.7

3 10 0.145 0.425 2.5 0.07 2.3 27 23 0.145 0.425 8.1 0.1 4.5

4 10 0.278 0.125 4.9 0.11 5.2 28 23 0.278 0.125 5.9 0.17 7.1

5 10 0.278 0.275 2.7 0.05 3.0 29 23 0.278 0.275 5.7 0.18 5.5

6 10 0.278 0.425 2.3 0.04 1.7 30 23 0.278 0.425 5.8 0.1 4.3

7 10 0.411 0.125 3.5 0.06 4.2 31 23 0.411 0.125 6.5 0.1 5.2

8 10 0.411 0.275 2.3 0.06 2.5 32 23 0.411 0.275 5.0 0.1 5

9 10 0.411 0.425 2.5 0.05 2.1 33 23 0.411 0.425 4.0 0.1 3.9

10 10 0.545 0.125 1.8 0.05 2.9 34 23 0.545 0.125 8.4 0.14 5.0

11 10 0.545 0.275 2.3 0.07 2.7 35 23 0.545 0.275 4.8 0.17 5

12 10 0.545 0.425 3.4 0.07 2.4 36 23 0.545 0.425 3.8 0.11 4.16

13 16.6 0.145 0.125 7.8 0.19 9.3 37 30 0.145 0.125 6.9 0.14 6.0

14 16.6 0.145 0.275 5.8 0.17 5.2 38 30 0.145 0.275 6.8 0.16 6.3

15 16.6 0.145 0.425 6.7 0.10 4.0 39 30 0.145 0.425 8.2 0.18 4.3

16 16.6 0.278 0.125 5.7 0.17 6.3 40 30 0.278 0.125 5.3 0.13 6.1

17 16.6 0.278 0.275 5.3 0.13 5.1 41 30 0.278 0.275 4.2 0.16 7.0

18 16. 6 0.278 0.425 5.1 0.08 3.1 42 30 0.278 0.425 5.4 0.14 4.6

19 16.6 0.411 0.125 6.2 0.11 4.6 43 30 0.411 0.125 4.4 0.14 5.5

20 16. 6 0.411 0.275 4.7 0.10 3.8 44 30 0.411 0.275 3.9 0.21 6.7

21 16.6 0.411 0.425 3.0 0.06 3.1 45 30 0.411 0.425 4.3 0.12 4.50

22 16. 6 0.545 0.125 7.8 0.09 4.8 46 30 0.545 0.125 4.1 0.1 3.9

23 16.6 0.545 0.275 3.8 0.10 4.3 47 30 0.545 0.275 5.1 0.27 5.0

24 16.6 0.545 0.425 3.5 0.06 3.3 48 30 0.545 0.425 4.1 0.15 4.2

ba

Fig. 3 The Fuzzy type-1 membership function (a) and the Fuzzy type-2 membership function (b)
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The dashed line shows the demand signals based on the

possible contracts between Gencos and Discos, which carry

information as to which Genco has to follow a load demand

by which Disco.

These new information signals were absent in the tra-

ditional LFC scheme. As there are many Gencos in each

area, the area control error (ACE) signals have to be dis-

tributed among them due to their ACE participation factor

in the LFC task and
Pn

j¼1 aij ¼ 1. In Fig. 2, we have the

following:

Dfi Frequency

deviation

Tti Turbine time constant

DPgi Governor valve

position

Tij Tie line synchronizing

coefficient between areas i

and j

DPci Governor load

set point

Bi Frequency bias

DPti Turbine power Ri Drooping characteristic

DPtie_i Net tie line

power flow

aij ACE participation factor

DPdi Area load

disturbance

N Number of control areas

Kpi

0
Proportional

gain constant

DPLj Contracted demand of area j

Tpi Power system

time constant

DPLoc_i Contracted/uncontracted local

demand in area i

Tgi Governor time

constant

w1i ¼ DPLoc i þ DPdi; ð3Þ

w2i ¼
XN
j¼1
j 6¼i

TijDfj; ð4Þ

where w1i is the total of contracted and uncontracted local

demand in area I and w2i is other area frequency deviations

effect on area i.

The scheduled DPtie_i is obtained for an N control area

power system as follows [35]:

w3i ¼
X

ðTotal export power - Total import powerÞ

¼
XN
j¼1
j 6¼i

Xn
k¼1

gpfkj

 !
DPLj �

Xn
k¼1

XN
j¼1
j6¼i

gpfjk

0
BB@

1
CCADPLi;

ð5Þ

where w3i is the scheduled DPtie_i (net tie line power flow).

According to Fig. 2, it can be written

DPtie�i;error ¼ DPtie�i;actual � w3i: ð6Þ

And the elements of vector w4i can be expressed as

w4i�1 ¼
XN
j¼1

gpf1jDPLj

..

.

w4i�n ¼
XN
j¼1

gpfnjDPLj;

ð7Þ

where w4i is the generation of each Genco in area i.

The generation of each Genco must track the contracted

demands of Discos in steady state. The desired total power

generation of a Genco i in terms of GPM entries can be

calculated as follows:

DPmi ¼
XN
j¼1

gpfijDPLj; ð8Þ

where DPmi is the desired total power generation of a

Genco i. The input signal for controller, K(s), is ACE that

can be defined from Fig. 2, and it can be expressed as

follows:

DACEi ¼ DPtie�i;error þ BiDfi; ð9Þ

where DACEi is the i-th area control error.

3 PID Controller Design for LFC by PSO
Algorithm

It is well known that the PID controller is the most

popular approach for industrial process control, such as the

LFC problem. Therefore, several techniques have beenFig. 4 The structure of MIMO TSK T2FLS
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developed to tune this controller. In the LFC problem and

for i-th area, (by taking the ACEi as the system output), the

control signal for the PID controller (Fig. 2) in the con-

tinuous form can be given as follows:

uiðtÞ ¼ DPciðtÞ

¼ KPACEiðtÞ þ KDA _CEiðtÞ þ KI

Z t

0

ACEiðsÞds;

ð10Þ

where KP, KD, and KI are the proportional, derivative, and

integral gains and they should be designed so that the system

is functioning properly. Also uiðtÞ or DPciðtÞ is governor

load set point which can be called as ‘‘control effort.’’ In

classical methods, there are some approaches to tune the

PID controller such as Ziegler–Nichols and Cohen–Coon

methods [36]. Since mentioned methods consume much

time and they do not have sufficient accuracy, the applica-

tions of these methods have been restricted for large-scale

and complicated systems. Also, the population-based tech-

niques such as GA and PSO have been used to design the

PID controller parameters [17, 37, 38]. In these approaches,

the PID gains are searched in the feasible region of response

until a determined cost function is minimized. It should be

noted that to improve the transient and steady-state response

of controlled system, different cost functions have been

considered. The following cost function for i-th area con-

troller design is utilized for PSO:

cos t ¼
Xn
i¼1

ITAEi ; ITAEi ¼
Z tf

0

t ACEij jdt: ð11Þ

The PSO must minimize above cost function by finding

appropriate PID gains for each area. Since the same

parameters are considered for each area of power system

(for simplicity), the same PID gains are also obtained for

each area. It should be noted that when the operating points

of the power system change, it leads to change in the Tpi,

Tij, and Bi, and eventually, the PID gains must be adjusted.

The calculated PID gains for i-th area of the power system

corresponding to the 48 patterns of operating points are

listed in Table 1.

4 Online Type-2 Fuzzy Gain Scheduling
Technique

In this section, the online T2FG technique is proposed for

LFC. According to the Table 1, the operating points and

the related PID gains are considered as the inputs and

outputs of the T2FLS, respectively. The first step to

achieve the online T2FG is training process; then, the

trained T2FLS should be tested to guaranty the perfor-

mance of online T2FG approach.

4.1 Type-2 Fuzzy Logic Systems

There are two different approaches to FLSs design: Type-1

FLSs (T1FLSs) and type-2 FLSs (T2FLSs). In designing of

T1FLSs, expertise and knowledge are needed to make the

Membership Functions (MFs) and fuzzy rules. The lin-

guistic terms that are used in antecedents and consequents

have different meanings for different experts. Specialists

often provide different conclusions for the same rule base.

The T1FLSs are unable to directly handle rule uncertain-

ties. To deal with this problem, the concept of type-2 fuzzy

sets was introduced by Zadeh as an extension of T1FLSs

with the intention of being able to model the uncertainties

that invariably exist in the rule base of the system [18].

Compared with T1FLSs, T2FLSs can better handle the

vagueness inherent in linguistic words. The uncertainties

are modeled by membership functions. Therefore, T2FLSs

are more suitable under circumstances where it is difficult

to determine the exact MF for a fuzzy set [39, 40]. In type-

1, fuzzy sets membership functions are totally certain,

whereas in type-2 fuzzy sets membership functions are

themselves fuzzy. As the result, at the type-2 fuzzy sets, the

antecedents and the consequents of the rules are uncertain.

While a type-1 membership grade is a crisp number in [0,

1], a type-2 membership grade can be any subset in [0, 1]

which is called the primary membership. Additionally,

there is a secondary membership value corresponding to

each primary membership value that defines the possibility

for primary memberships [18]. Whereas the secondary

membership functions can take values in the interval of [0,

1] in generalized T2FLSs, they are uniform functions that

only take value of 1 in interval T2FLSs. As we know, the

computational burden of the general T2FLSs is very high.

Due to the fact that the computations are more easily

manageable, the use of interval T2FLSs is more commonly

seen in literatures. An interval type-2 fuzzy set, ~A, may be

represented as follows [18]:

~A ¼
Z

x2X

Z

u2Jx

l ~Aðx; uÞ
ðx; uÞ Jx 2 ½0; 1�; ð12Þ

where
RR
denotes union over all admissible x and u. Also, Jx

is called the primary membership function of x and l ~Aðx; uÞ
is the secondary membership function value corresponding

to each primary membership value that in the interval type-

2 fuzzy sets all l ~Aðx; uÞ are equal 1. It is well known that in

the type-1 fuzzy sets, the membership function does not

contain any uncertainty (Fig. 3a). In other words, there

exists a clear membership value for every input data point.

Therefore, for considering of uncertainty in the type-2

fuzzy sets at the antecedent and consequent membership

functions, if the points on the Gaussian function in Fig. 3a

are shifted either to the left or to the right, Fig. 3b can be
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obtained. In this figure, the membership function does not

have a single value for a specific value of x.

Figure 3b shows a type-2 Gaussian MF with an

adjustable uncertain mean in [m1; m2] and standard devi-

ation r. It can be described by

l ~AðxÞ ¼ exp � 1

2

x� m

r

� �2� �
; m 2 ½m1;m2�: ð13Þ

It can be seen from Fig. 3b, the type-2 fuzzy set has a

region called footprint of uncertainty (FOU) and bounded

by an upper MF and a lower MF, which are denoted as

l ~A
ðxÞ and �l ~AðxÞ, respectively. Also, the T2FLS rules and

inference engine section will remain the same as in

T1FLSs, but the antecedents and/or the consequents are

different.

Mamdani and Tagaki–Sugeno–Kang (TSK) systems are

the two most popular FLSs used today. Both are charac-

terized by IF–THEN rules and have the same antecedent

structures. They only differ in the structure of the conse-

quent part. The consequent of Mamdani is a fuzzy set,

whereas the consequent of TSK is a function.

4.2 TSK Type-2 Fuzzy Logic System for LFC

A TSK type-2 fuzzy logic system (TSK T2FLS) can be

classified into three groups [18].

(i) A2-C1 model: The antecedents are type-2 fuzzy

sets, and consequents are type-1 fuzzy sets;

(ii) A2-C0 model: The antecedents are type-2 fuzzy

sets, and consequents are crisp numbers;

(iii) A1-C1 model: The antecedents are type-1 fuzzy

sets, and consequents are type-1 fuzzy sets.

In this work, A2-C0 model described by fuzzy IF–

THEN rules is used. For instance, in a zero-order type-2

TSK model (A2-C0) and in MIMO form, the rule base is as

follows:

Rj : if x1 is ~Aj1 and x2 is ~Aj2 and . . . and xn is ~Ajn

THEN ykj ¼ Ck
0j

ð14Þ

where x1, x2, …, xn are the input variables, yj
k are the kth

output variables, and ~Aji are the type-2 MFs for jth rule and

ith input. The parameters of consequent part of the rules are

C0j
k .

The kth output of the fuzzy system in closed form is

obtained by [41]:

Yk
TSK=A2�C0

¼
PM

j¼1 f jC
k
0jPM

j¼1 f j þ
PM

j¼1
�fj
þ

PM
j¼1

�fjC
k
0jPM

j¼1 f j þ
PM

j¼1
�fj
;

ð15Þ

whereM is number of the rules. Also, �fj and f j are given by:

�fjðxÞ ¼ �lAj1ðx1Þ � . . . � �lAjnðxnÞ
f
j
ðxÞ ¼ l

Aj1
ðx1Þ � . . . � lAjnðxnÞ;

ð16Þ

where * shows the t-norm operation (which is considered

the product operator in this study). �lAjnðxiÞ and l
Ajn

ðxiÞ are
the upper and lower amount of MFs, respectively. The

structure of proposed MIMO TSK T2FLS is depicted in

Fig. 4.

5 10 15 20 25 30 35
0

0.5

1

x1
μ(

x1
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

x2

 μ
(x

2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

x3

μ(
x3

)

Fig. 5 The membership functions for inputs: x1 = Tpi, x2 = Tij, and x3 = Bi
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4.3 Training of TSK T2FLS using PSO

To achieve the gain scheduling technique, the operating

points and related PID gains of Table 1 are used for training

of the TSK T2FLS (Fig. 4). Over the years, a lot of opti-

mization methods have been employed to adjust the

parameters of type-1 and type-2 fuzzy models. These opti-

mization methods can basically be put in two categories:

derivative-based and derivative-free optimization methods.

GA [33] and PSO [32] can be addressed as some main

examples of derivative-free algorithms. On the other hand,

examples of derivative-based optimization methods are

gradient descent [42], simplex method [43], least square

[44], and Extended Kalman Filter (EKF) [45]. Derivative-

free methods are less likely to get entrapped in local minima.

They are also easier to implement because they do not need

derivatives which may be hard to calculate while they gen-

erally converge faster. In this paper, due to simple relations

and high convergence speed of PSO [46], this optimization

algorithm has been used to train the MIMO TSK T2FLS in

(15). The only parameters that must be tuned are the con-

sequent parameters C0j
k . Since the input ranges (x1 = Tpi,

x2 = Tij, and x3 = Bi) are known, thus the antecedent

parameters such as m1, m2, and r are considered fixed, and

their values are stated in Table 2. In addition, the related

MFs for each input are depicted in Fig. 5.

By taking three inputs and three MFs for each input, we

have 27 rules. Also, by defining Y1, Y2, and Y3 as the

outputs of T2FLS, the number of adjustable parameters is

27 9 3=81. The first 38 patterns of PSO-optimized PID

gains in Table 1 have been used for training the MIMO

TSK T2FLS to find a general mapping between the oper-

ating points and the related PID gains. Furthermore, the

remaining 10 patterns are used for testing process. As we

know, in industrial system such as LFC problem, we only

have access to noisy measurements. So, when noise and

uncertainty are considered, the test data are assumed to be

corrupted by uniformly distributed nonstationary additive

noise. The results of training and testing process for pro-

posed T2FLS and T1FLS for each output are shown in

Figs. 6, 7, and 8. The structure of used T1FLS is similar to

the T2FLS except that the MFs of antecedent part are type-

1. Additionally, the calculated consequent parameters

obtained by PSO (C0j
1 , C0j

2 , and C0j
3 ) are presented in

Table 2.

By considering these figures, since the noise and

uncertainties in the training process are nearly small, both

T2FLS and T1FLS have similar behavior and they can

successfully approximate the target data. Moreover, they

have the same number of adjustable parameters. On the

other hand, it is obvious from the testing process that the

T2FLS has a better performance in dealing with noise and

uncertainties.

5 Simulation Results

To demonstrate the efficiency of the proposed controller,

some simulations are performed. For this purpose, a two-

control area power system, shown in Fig. 9, is considered

as a test system. It is assumed that each control area

includes two Gencos, which use the same ACEi partici-

pation factor. The nominal parameters of the two-area

interconnected power system which are used in the simu-

lation are given in Tables 3 and 4. As illustrated in Fig. 10,

the linear model of the nonreheating turbine given in Fig. 2

is replaced by the nonlinear model that introduces a satu-

ration element with d = 0.02. This replacement has been

done in order to take the generation rate constraint (GRC)

limit on the response speed of a Turbine [13].
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Fig. 6 Training and testing process of T2FLS and T1FLS for proportional gain (KP)
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The considered system is controlled by using three

strategies:

(i) The proposed T2FG technique shown in Fig. 11,

(ii) The T1FG which is similar to the proposed

methods except that the MFs of antecedent part

are type 1,

(iii) And the PID controller. In this method to get the

PID gains, the characteristics of closest nominal

operating points are used.

Furthermore, for both cases, the Discos contract with the

available Gencos is assumed according to the following

GPM:

Case 1 Case 2

GPM ¼

0:25 0:25 0:25 0:25
0:25 0:25 0:25 0:0
0:0 0:25 0:5 0:5
0:5 0:25 0:0 0:25

2
664

3
775 GPM ¼

0:25 0:0 0:25 0:25
0:25 0:25 0:25 0:0
0:0 0:5 0:5 0:5
0:5 0:25 0:0 0:25

2
664

3
775

5.1 Case 1

In this case, the closed loop performance is tested in the

face of both step contracted load demand and changing in

power system operating points. It is assumed that a large

step load is demanded by Discos of areas 1 and 2 as
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Fig. 7 Training and testing process of T2FLS and T1FLS for integral gain (KI)
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follows: DPL1 = 0.2 pu, DPL2 = 0.2 pu, DPL3 = 0.1 pu,

DPL4 = 0.1 pu

The nominal values for the parameters of power system

are according to Tables 3 and 4. For considering noisy

inputs for trained T2FLSs which cause off-nominal oper-

ating point, we assume the variable parameters are

Tp1,2 = 20, T12 = 0.2, B1,2 = 0.2. In online application,

these parameters are measured and used as inputs to the

trained T2FLS (or T1FLS). Eventually, both T2FLS and

T1FLS are supposed to adjust the PID gains properly; the

inferred PID gains are given in Table 5.

The responses of Df1 and Df2 are shown in Fig. 12. The

simulation results indicate that the proposed T2FG con-

troller is superior to the other ones. In other words, the

trained T2FLS has better performance than type 1 coun-

terpart in obtaining PID gains when the inputs are cor-

rupted by noise. This leads to the facts that when the

system is equipped with the proposed controller (Fig. 11),

the frequency deviations are remarkably damped to zero.

5.2 Case 2

In this case, Discos may violate a contract by demanding

more power than that specified in the contract. This excess

power is reflected as a local load of the area (uncontracted

demand). It is assumed that in addition to specified con-

tracted load demands, the Disco 1 and Disco 2 demand 0.1

and 0.2 pu MW (DPd1 = 0.1 and DPd2 = 0.2) as a large

uncontracted load, respectively. The amount of these vio-

lated demands are distributed among the Gencos according

to values of the ACE participation factors aij. It is obvious
that based on these values each Genco must be increased its

generation. For example, we set the amount of a (for all

Gencos in each area) in the same value, aij = 0.5. The

uncontracted load of Discos is taken up by Gencos of their

areas according to ACE participation factors in the steady

state. For operating points, the off-nominal operation

condition parameters (Tp1,2 = 13, T12 = 0.3, B1,2 = 0.3)

are used for two areas. It is assumed that a large step load is

demanded by Discos of areas 1 and 2 as follows (con-

tracted demands): DPL1 = 0.1 pu, DPL2 = 0.1 pu, DPL3 =

0.1pu, DPL4 = 0.1 pu.

The responses of Df1 and Df2 are shown in Fig. 13. Due

to the fact that the proposed T2FG has adjusted the PID

gains properly, both overshoot and settling time has the

least amount compared to others. The deduced PID gains

for this case are shown in Table 5.

Genco1 Genco3 Genco4Genco2 Lo
ad
2

Lo
ad
1

Disco1,2 Disco3,4
∆Ptie

Fig. 9 Two-control area power system

Table 3 Applied data for Gencos

Ri (Hz/pu) Tti (s) Tgi ai

Genco i (for i = 1:4) 2.4 0.36 0.06 0.5

Table 4 Applied control area parameters

Kpi (Hz/pu) Tpi (s) Bi (pu/Hz) Tij (pu/Hz)

Area i (for i = 1,2) 120 20 0.5 0.545

tT
1 d

-d s
1

∑
-

+ΔPg ΔPv

Fig. 10 Nonlinear turbine model with GRC

Trained T2FLS

PID
∆PciACEi

BiTpi Tij

Kp KdKi

Ki(s)

Fig. 11 The proposed strategy for area i

Table 5 Inferred PID gains by three strategies

PID gains for case 1 PID gains for case 2

Controller type KP KI KD KP KI KD

Proposed T2FG 6.9 0.21 7.4 3.43 0.08 3.1

T1FG 6.3 0.2 6.4 2.95 0.13 3.2

PID 5.7 0.18 5.5 2.7 0.05 3.0
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6 Conclusion

In this paper, an adaptive controller has been proposed

based on T2FLS technique for LFC in the restructure

power system. First of all, PSO algorithm has employed to

obtain the PID gains at some nominal operating points (48

patterns). Afterward, these results have been used to train

and test MIMO T2FLS in order to obtain a general map-

ping between the operating condition and the PID con-

troller gains. Also, the same PSO is used for training the

T2FLS. In online applications, the trained T2FLS is able to

adjust the PID controller gains properly even at the off-

nominal operating points and in the presence of measure-

ment noise. In addition, a two-area power system has been

used as a test system to demonstrate the effectiveness of the

proposed methods under various operating conditions and

area load disturbances. The simulation results show that the

proposed T2FG controller has better performance com-

pared to the T1FG and the PID controllers even in the

presence of GRC.
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