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Abstract An autonomous robot with an omni-vision

camera and omni-moving platform is designed to satisfy

the requirement of the Federation of International Robot-

soccer Association and RoboCup robot soccer competi-

tions. To obtain the robot’s location on the field, we use a

white-line pattern match localization algorithm. However,

when the white-line information is incomplete during the

matching process, the observed data differ significantly

from a pre-built database. Thus, the localization result

causes errors. In this study, we introduce an encoder

localization algorithm to obtain a robot’s moving direction

and distance. We propose an algorithm that integrates

white-line pattern match localization and encoder local-

ization. In the integration process, we use a fuzzy system to

search the surrounding points to localize the robot. The

results demonstrate that integration localization outper-

forms localization with only white-line pattern match

localization or encoder localization. With the proposed

algorithm, we can obtain the robot’s location within 30 ms

at an error of less than 10 cm. The integration localization

algorithm is compared to other methods to demonstrate its

performance.

Keywords Omni-vision � White-line pattern match

localization � Encoder localization � Gyroscope � FIRA �
Fuzzy system

1 Introduction

Two famous mid-sized robot soccer competitions, the

Federation of International Robot-soccer Association

(FIRA) and RoboCup, have certain robot behavior

requirements. In these competitions, the robots must make

decisions and move autonomously. To meet these

requirements, self-localization has become increasingly

important recently. Self-localization faces the challenges of

the localization times, but also spots on the result’s pre-

ciseness. In this study, we use the FIRA competition as our

design goal. The size of the FIRA RoboSot competition

field is 6 m 9 4 m (width 9 length) surrounded by a

75-cm border. The field is marked with 5-cm-wide white

lines, as shown in Fig. 1a. The robot, with dimensions of

40 cm 9 40 cm 9 70 cm (width 9 length 9 height), is

equipped with an omni-vision camera and a high-perfor-

mance computer. The robot is also equipped with an omni-

moving platform that has four high-power motors, a ball-

holding mechanism, a ball-kicking mechanism, and FPGA

controllers, as shown in Fig. 1b.

Some studies [1–5] have used the field geometry, such

as goal posts or white lines, to calculate the position of a

robot. White-line information has been used with the

Monte Carlo method [2, 6, 7] and particle filters [8, 9] to

localize a robot’s position. However, the computation time

is greater than 10–200 ms due to the number of iterations.

Chiang [3] proposed a white-line pattern match localization

method. The white-line data of each image of the soccer

field obtained by a robot were matched with simulated
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models pre-built in a database to obtain localization results.

However, if the white lines on the field are incomplete or

there are many points in the database that have the same

compared error as that of the white-line pattern extracted

from the image, localization will be incorrect. These lim-

itations and poor reliability make robot localization with

white-line patterns ineffective in real competition.

Therefore, some studies have employed encoders to

localize the mobile robot [10–12]. However, encoder

localization may cause errors if the wheels skid on the

surface. Therefore, avoiding the effects of light on the vision

system and skidding on the surface by the motion system are

the goals of this study. In this study, we look for a reliable

algorithm to accommodate white-line pattern match local-

ization [3] and avoid significant error when white-line data

in the field interfere with the environment. Both vision and

motion can be integrated into an algorithm to support the

effective localization of the robot. How to integrate vision

and motion system, the fuzzy system is applied in the

decision making system. The fuzzy system is a rule-based

system that can rely on the practical experience and it has

been applied in mobile robot to perform navigation [13, 14],

target tracking [15], and trajectory tracking [16], etc. Thus,

we propose a self-localization system that uses vision and

motion information and a fuzzy system to search sur-

rounding points to localize the robot in the integration pro-

cess. The proposed scheme can operate within 30 ms with

an accuracy of 6- to 10-cm deviation in a 6 m 9 4 m field.

The remainder of this paper is organized as follows. The

algorithm is proposed in Sect. 2, experimental results are

presented in Sect. 3, and conclusions are given in Sect. 4.

2 The Proposed Algorithm

In this section, we introduce the self-localization system

that uses vision and motion information and a fuzzy system

to search surrounding points to localize the robot in the

integration process. The system diagram is shown in Fig. 2,

the system use the image localization method to find the

location of the robot. If the position error is greater than the

threshold value, then the encoder localization method is

employed. Both method provide the location for robot, the

fuzzy system uses the moving speed of the robot to output

the search range for image localization. More details of the

system will be discussed in the following section.

2.1 White-Line Pattern Match Localization

The field in Fig. 1a is divided into a 75 9 55 grid points.

On each grid in the system model, we calculate the dis-

tances between the first four white-line pixels from all

360-degree directions and the center of the grid point. For

example, in Fig. 3, 360 scan lines were measured to cal-

culate the distance (pixel) of the first four white pixels. The

feature vector of this grid point is defined in (1):

PMðXi; YjÞ ¼ Pi;jðD0; D1; D2 ; . . .; D359Þ; ð1Þ

where PM is the position from the simulation system

model, is the ith column and jth row of the grid point, and

D0; D1; D2 ; . . .; D359½ � are the vector distances of the first

four white pixels from 0, 1, …, 359� to the center of the

grid, respectively.

Dk ¼ D1
k ;D

2
k ;D

3
k ;D

4
k

� �
; k ¼ 0; . . .; 359: ð2Þ

Here, Dn
k ; n ¼ 1; . . .; 4 are the first, second, third, and fourth

white pixels in line Dk.

In the next step, we obtain an omni-directional image of

the soccer field and attempt to match it to the simulated

models in the database. Here, assume that the image of the

field from the omni-directional camera is taken at location

PO. Then, the distances between the center of the image

and the first four white-line pixels in all directions are

expressed as follows (3):

Fig. 1 a FIRA Robosot competition field, b robot
Fig. 2 System diagram

Fig. 3 First four white-line pixels vector
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POðX; YÞ ¼ Pðd0; d1; d2 ; . . .; d359Þ; ð3Þ

where d0, d1,. . ., d359 are the distances (pixel) of the first

four white pixels from 0, 1, � � �, 359 degrees to the center of

the robot and defined in (4).

dk ¼ ½d1
k ; d

2
k ; d

3
k ; d

4
k �; k ¼ 0; . . .; 359; ð4Þ

where dnk ; n ¼ 1; � � � ; 4 are the first, second, third, and

fourth white pixels in line dk. The omni-vision of the robot

is shown in Fig. 4a, the corresponding scan lines to find the

first four white pixels of the robot are shown in Fig. 4b, and

the simulated system model pre-built in the database is

shown in Fig. 4c. Then, the error between image positions

and PMðXi; YjÞ for all grid point ðXi; YjÞ is defined by (5).

Ei;j ¼ Pi;j D0; D1; D2 ; . . .;D359ð Þ � P d0; d1; d2 ; . . .; d359ð Þ
�� ��

¼
X359

k¼0

X4

n¼1

Dn
k � dnk

�� ��
 !

:

ð5Þ

The white-line data of each image of the soccer field

obtained by the robot are extracted and matched to the

simulated models in the database to obtain localization

results. The location with minimum error Ei,j between the

simulated model and the true field markings is the image

location result PI X; Yð Þ in (6).

PI X; Yð Þ ¼ minEi;j; i 2 A; j 2 A; ð6Þ

where i and j are the ith column and jth row of the grid

point in the search range A, respectively (Figs. 3, 4).

2.2 Encoder Feedback Circuit

In this study, we use a quad two-channel motor encoder with

500 counts per turn equipped at the back of each motor.

When the motor rotates, the wheel inside the encoder turns

and generates two digital pulses, as shown in Fig. 5. We

employ a feedback circuit on an FPGA development board

(myRio, National Instruments). The FPGA has four feed-

back circuits, each with a frequency divider, trigger module,

the encoder’s two-channel counter, encoder direction

detection, and a data register. The frequency divider reduces

the myRio oscillator from 40 MHz to 100 Hz. The trigger

module works on this 100-Hz clock to generate enable and

clear signals to the two-channel counter and data registers in

a period of 10 ms. The two-channel counters of the encoder

are calculated at the end of the period.

2.3 Mathematical Model Review

According to the mathematical model of the four-wheel

omni-moving platform, the speed of each wheel is defined

by (7) and is shown in Fig. 6. Here, Vi is the rotation speed

of the ith wheel, r is the radius of the wheel, and xi is

angular velocity.

Vi ¼ rxi; i ¼ 1; . . .4; ð7Þ

From Figs. 7 and 8, we decompose the speed of wheel 2,

V2, to the X-axis and Y-axis, as expressed by (8):

V2 ¼ rx2 ¼ � sinðhmÞVx þ cosðhmÞVy þ RxR; ð8Þ

where Vx and Vy represent two axes of the robot’s center to

the field moving velocity, xR is the angular velocity of the

robot, hm is the angle of the motor equipped on the robot’s

base board (45� on our robot), and R is the distance

between the robot’s center and the wheel. The velocities of

wheels 1–4 are expressed by (9).

V1

V2

V3

V4

2

664

3

775 ¼

rx1

rx2

rx3

rx4

2

664

3

775

¼

� sinðhmÞ � cosðhmÞ R

� sinðhmÞ cosðhmÞ R

sinðhmÞ � cosðhmÞ R

sinðhmÞ cosðhmÞ R

2

664

3

775

Vx

Vy

xR

2

4

3

5: ð9Þ

Fig. 4 a White line of the field captured by camera; b white-line

pattern transferred from pixels to distance; c white-line pattern of a

point in pre-built database

Fig. 5 Encoder signal chart

Fig. 6 Wheel variables
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2.4 Localization Calculation

The FPGA circuit returns each motor encoder’s signal

count Ci in a sample period T seconds. Thus, the rotation

distance of each wheel Di can be calculated by (10) using

the ratio of count Ci to the resolution of the encoder res.

Then, it multiplies the circumference 2pr and time interval

T.

DiðTÞ ¼
1

N
� Ci

res � 0:01
� ð2prTÞ; i ¼ 1; . . .; 4; ð10Þ

where N is the reduction ratio defined in the motor speci-

fications. This constant shows the difference between the

motor feedback and the real wheel rotation speed. To

obtain the direction of the robot, we use a gyroscope to

calculate the angle difference between times Tj and Tj-1.

Therefore, the angular velocity vector distance can be

represented by the arc length in (11).

d ¼ hg �
p

180
� R

2
; ð11Þ

where d is the angular velocity-distance or arc length we

wish to obtain and hg is the difference between the current

and previous gyroscope reported yaw, as shown in Fig. 9.

Next, we subtract the angular velocity-distance from the

wheel’s distance calculated by the motor rotation speed to

obtain linear velocity-distance Si in (12).

SiðTÞ ¼ DiðTÞ � d; i ¼ 1; ::; 4: ð12Þ

Then, we can obtain each motor’s two axes distance

using trigonometric function operations in (13). This is

illustrated in Fig. 10.

S1xðTÞ ¼ � cosðhmÞS1ðTÞ
S1yðTÞ ¼ � sinðhmÞS1ðTÞ
S2xðTÞ ¼ � cosðhmÞS2ðTÞ
S2yðTÞ ¼ � sinðhmÞS2ðTÞ
S3xðTÞ ¼ � cosðhmÞS3ðTÞ
S3yðTÞ ¼ � sinðhmÞS3ðTÞ
S4xðTÞ ¼ � cosðhmÞS4ðTÞ
S4yðTÞ ¼ � sinðhmÞS4ðTÞ

ð13Þ

Finally, by combining the four wheel’s two axes dis-

tances in (14), we can obtain the moving distance of the

robot in sample time T for both X- and Y-axes. Thus, the

total moving distance of the robot within sample duration t

is summarized in (15). Here, Px and Py are the localization

result, and he indicates the moving direction of the robot

obtained by encoder localization.

Sx ¼
1

2

X4

i¼1

SixðTÞ

Sy ¼
1

2

X4

i¼1

SiyðTÞ:
ð14Þ

he ¼ tan�1 SyðTjÞ
SxðTjÞ

� �
þ hg

Px ¼
Xt

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxðTjÞ2 þ SyðTjÞ2

q
� cosðheÞ

� 	
:

Py ¼
Xt

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxðTjÞ2 þ SyðTjÞ2

q
� sinðheÞ

� 	

ð15Þ

2.5 Integration Algorithm with Fuzzy System

In this section, we introduce the integration algorithm that

combines white-line pattern match localization and encoder

localization. Initially, the system uses white-line pattern

match localization to search the pre-built database for the

Fig. 7 Velocity of four-wheel omni-moving platform

Fig. 8 Vector analysis of wheel 2

Fig. 9 Yaw rotation of the robot Fig. 10 Vector analysis of wheels distance
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current robot location on the field to obtain the image local-

ization result PI X; Yð Þ that minimizes the matching error.

After obtaining the result with error E(PI(X, Y)) less than

ETH (assume ETH is 20), the system will set this location as

the point of origin for the encoder localization system and

will accumulate the robot’s moving distance. In this pro-

cess, the encoder localization system will return results for

each period to the white-line pattern match localization

system. If E(PI(X, Y)) is greater than ETH, the system will

adjust the robot’s location given by the encoder localiza-

tion system and limit the local search area in the next

period (Fig. 11).

Next, we define a fuzzy system for local search to

localize the robot’s position. The fuzzy system uses the

robot’s moving speed as input and the search range as

output as shown in Fig. 11. The system’s membership

function for moving speed is illustrated in Fig. 12, where

VL, L, H, and VH denote very low, low, high, and very

high, respectively. The membership function of search

range A is shown in Fig. 13. From the if-then rule, we can

obtain the output, search range A. The rules are as follows:

Rule1 If v is VL, then A is VL

Rule2 If v is L, then A is L

Rule3 If v is H, then A is H

Rule4 If v is VH, then A is VH

Hence, it is evident that there are four search ranges (0,

10, 20, and 30). The corresponding ranges and search

points are plotted in Fig. 14. The black circle indicates the

localization result and a red square in the database for those

points marked in the white circle are the areas to calculate

the white-line pattern match. The result is the location with

the smallest error in the range. The computation times for

each search area are summarized in Fig. 14. The fuzzy

system can determine the local search area and obtain a

search result in 0.1–1.2 ms. These results are used to

compare the efficiency of the proposed system to other

methods (Sect. 3).

However, the encoder’s feedback has accumulated error

and the encoder localization system will reset its point of

origin in 125 ms. The integration algorithm is shown in

Fig. 15.

In Fig. 15, the system uses global white-line pattern

search to find the position PIG(X, Y). If the pattern match

error is less than the threshold ETH, the fuzzy system will

perform a local search and obtain the result PIL(X, Y). If the

search result error is greater than the threshold ETH, the

system will use the localization result from the encoder,

i.e., PIL(X, Y) / PE(X, Y). Similarly, if the reset time is up

and the error for image localization result is less than the

threshold ETH, then the system will use the localization

result from the image, i.e., PE(X, Y) / PIL(X, Y). With the

integration algorithm, the system can reduce the effect of

light on the vision system and the ground effect of the field

on the motion system. The fuzzy system provides a

dynamic search area relative to the speed of the robot; the

higher the speed, the larger the search area and vice versa.

The fuzzy system can reduce the computation time from

1.2 to 0.1 ms.

Next, the time required for localization is calculated.

Assume the image capture rate is approximately 60 frames

per second, and the image processing and white-line pat-

tern match times are 12.9 and 0.4 ms (20 cm search range),

respectively. The timeline of the localization process is

shown in Fig. 16. If the pattern match error from the image

localization is greater than the threshold, then the integra-

tion localization will modify the result using encoder

localization. For example, in Fig. 16, the image localiza-

tion result is less than the threshold in the 1st image and

3rd image; therefore, the integration scheme retains the

image localization. However, the error in the 5th image is

greater than the threshold. Therefore, the position obtained

by the encoder is updated by the integration algorithm.

3 Performance Analysis

We chose 19 points from the FIRA field as test points to

analyze the performance of integration localization. The

test points were divided into two categories, i.e., positions

inside the field and special points on the field. Figures 17

and 18 indicate the locations of the test points.

We evaluated the white-line pattern match localization

and encoder localization separately. Then, we evaluated the

performance of the integration localization algorithm. The

results for white-line pattern match localization for general

cases (Fig. 17) and boundary cases (Fig. 18) are listed in

Tables 1 and 2, respectively. The results for encoder

FUZZY SYSTEM

moving speed 
v

search range   
A

Fig. 11 Fuzzy system block diagram

100  200     400  600 v cm/s

VL        L      H          VHμ
1

0

Fig. 12 Membership function for the robot’s moving speed
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localization for general cases (Fig. 17) and boundary cases

(Fig. 18) are listed in Tables 3 and 4, respectively. Finally,

the results for integration localization for general cases

(Fig. 17) and boundary cases (Fig. 18) are listed in

Tables 5 and 6, respectively.

3.1 Image Localization

Initially, the white-line pattern match localization algo-

rithm is used. From Tables 1 and 2, the results show that

the average error is approximately 9 cm for general cases

and 212 cm for boundary cases.

3.2 Encoder Localization

Next, we tested the encoder localization. For each test

point, we moved the robot to the center of the field to reset

the point of origin. The results are presented in Tables 3

and 4. The average error is approximately 10 cm for gen-

eral cases (Fig. 17) and 18 cm for boundary cases. It is

evident that encoder localization is better than image

localization for test points on the field boundary (Fig. 18).

3.3 Integration Localization with Image

and Encoder

In integration localization, the system uses the algorithm

shown in Fig. 12 to obtain the robot’s position. As shown

in Table 5, the average error of integration localization for

general cases is 6 cm. The average error of integration

0      10     20    30                               A    cm

VL     L      H      VH  1

0

Fig. 13 Membership function for search range A

0.1 ms 0.4 ms 1.2ms

Fig. 14 Comparison range for local search and computation time
Fig. 15 Integration algorithm flowchart, (*The white-line pattern

match localization omitted as image localization)

Fig. 16 Integration algorithm timeline

Table 1 Test results with image localization (general cases; Fig. 17)

Test point Real (X, Y) Estimated (X, Y) Error (cm)

1 (225, 173) (230, 180) 9

2 (375, 188) (370, 190) 5

3 (521, 170) (530, 170) 9

4 (156, 273) (180, 270) 24

5 (375, 280) (370, 280) 5

6 (594, 281) (600, 280) 6

7 (225, 366) (230, 370) 6

8 (375, 382) (370, 380) 5

9 (513, 375) (500, 370) 14

Average error (cm) 9
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localization in Table 6 for boundary cases is 4–22 cm, and

the average error is 13 cm. Thus, it is evident that inte-

gration localization can eliminate the effect of light on the

Fig. 17 Nine test points from general cases

Fig. 18 Ten test points for boundary cases

Table 2 Test results with image localization (boundary cases;

Fig. 18)

Test point Real (X, Y) Estimated (X, Y) Error (cm)

1 (75, 75) (70, 80) 7

2 (225, 73) (220, 80) 9

3 (380, 74) (530, 320) 288

4 (678, 71) (540, 100) 141

5 (722, 82) (140, 260) 609

6 (90, 466) (590, 270) 537

7 (250, 475) (240, 470) 11

8 (375, 475) (570, 240) 305

9 (520, 476) (520, 480) 4

10 (662, 467) (140, 270) 558

Average error (cm) 212

Table 3 Test results with encoder localization (general cases;

Fig. 17)

Test point Real (X, Y) Estimated (X, Y) Error (cm)

1 (255, 174) (257, 175) 2

2 (382, 171) (378, 180) 10

3 (508, 166) (508, 179) 13

4 (155, 271) (167, 272) 12

5 (375, 275) (375, 275) 0

6 (596, 268) (580, 265) 16

7 (240, 366) (246, 355) 13

8 (382, 387) (379, 375) 12

9 (519, 368) (512, 362) 9

Average error (cm) 10

Table 4 Test results with encoder localization (boundary cases;

Fig. 18)

Test point Real (X, Y) Estimated (X, Y) Error (cm)

1 (82, 72) (95, 79) 15

2 (251, 70) (255, 81) 12

3 (379, 71) (374, 87) 17

4 (507, 72) (493, 76) 15

5 (670, 65) (660, 89) 26

6 (83, 478) (92, 453) 27

7 (237, 480) (237, 463) 17

8 (385, 475) (377, 464) 14

9 (520, 486) (518, 465) 21

10 (667, 482) (661, 468) 15

Average error (cm) 18

Table 5 Test Results with integration localization (general cases;

Fig. 17)

Test point Real (X, Y) Estimated (X, Y) Error (cm)

1 (225, 170) (220, 170) 5

2 (375, 173) (370, 170) 6

3 (517, 166) (520, 170) 5

4 (157, 278) (150, 280) 7

5 (375, 275) (370, 270) 7

6 (595, 274) (600, 270) 6

7 (225, 385) (230, 380) 7

8 (368, 371) (370, 370) 2

9 (507, 380) (520, 380) 13

Average error (cm) 6

Table 6 Test results with integration localization (boundary cases;

Fig. 18)

Test point Real (X, Y) Estimated (X, Y) Error (cm)

1 (81, 82) (76, 83) 5

2 (225, 73) (230, 70) 6

3 (386, 78) (370, 82) 16

4 (525, 80) (515, 100) 22

5 (661, 76) (660, 80) 4

6 (89, 479) (73, 468) 19

7 (245, 479) (230, 470) 17

8 (386, 479) (370, 476) 16

9 (509, 475) (520, 470) 12

10 (649, 479) (662, 480) 13

Average error (cm) 13
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vision system and does not accumulate errors due to

encoder distance calculations.

3.4 Comparison with Other Work

To demonstrate that the proposed scheme has higher

accuracy and higher efficiency than other systems, we

compared the proposed algorithm to adaptive Monte-Carle

localization (MCL) [6, 7], localization with enhanced

particle filter (EPF) [8], and pattern matching algorithms

[4, 5, 9]. For fair comparison, we neglected the frame rate

and image processing time, and defined the computation

time as the pattern match time using the fuzzy system. In

Monte-Carle localization and localization with enhanced

particle filter, the system chooses two hundred sample

points in the simulation. The results are shown in Tables 7

and 8. The mean error of the proposed scheme was

approximately 6 cm; however, the errors for the pattern

matching and MCL algorithms were 20–88 cm. Similarly,

we also compared the computation time for localization of

the proposed algorithm to the MCL and pattern matching

algorithms. The computation time for the proposed

scheme was approximately 0.4 ms; however, the compu-

tation time for the pattern matching and MCL algorithms

was 1.76–195 ms. Thus, the proposed integration local-

ization has higher accuracy and efficiency than MCL or

pattern matching schemes.

4 Conclusions

In this study, we have proposed a localization algorithm

that can integrate the vision and motion systems of a robot.

In the vision system, white-line pattern match localization

is used to determine the initial location of the robot. Then,

the distance and moving direction are calculated by enco-

der localization. Integration localization using a fuzzy

system is proposed to reduce the effect of light on the

vision system and the ground effect of the field on the

motion system. Our experimental results show that a more

reliable and precise location can be obtained by combining

vision localization and motion localization. The results

indicate that performance errors are less than 10 cm with

30-ms positioning time. The main contribution of this study

is real-time computation of the localization scheme and

accurate results. The proposed scheme can localize the

robot and help design strategies for the robot in mid-sized

FIRA and RoboCup competitions.
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