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Abstract The purpose of this paper is to develop a general

framework of group decision making with hesitant fuzzy

preference relations based on the multiplicative consis-

tency. First, we define a consistency index to measure

whether or not a hesitant fuzzy preference relation is of

acceptably multiplicative consistency. A consistency

improving process is developed to improve the consistency

level of a hesitant fuzzy preference relation with unac-

ceptably multiplicative consistency until it is acceptably

multiplicative. Then, we present a group consensus index

to measure the deviation measure between the individual

hesitant fuzzy preference relations and their collective

hesitant fuzzy preference relation. A consensus reaching

process is developed to help the decision makers improve

the consensus level among hesitant fuzzy preference rela-

tions until they meet a predefined consensus level. Subse-

quently, we establish a complete framework of group

decision making with hesitant fuzzy preference relations.

In this framework, individual multiplicative consistency

and group consensus are simultaneously highlighted and

the acceptably multiplicative consistency of each hesitant

fuzzy preference relation is still maintained in the

achievement of the predefined consensus level. Finally, an

illustrative numerical example is given to verify the

effectiveness and practicality of the developed method.

Keywords Hesitant fuzzy set � Hesitant fuzzy preference

relation � Group decision making � Multiplicative

consistency � Consensus

1 Introduction

Owing to the fact that when defining the membership

degree of an element to a set in some fuzzy decision set-

tings, the difficulty of establishing the membership degree

is not because we have a margin of error (as in intuitionistic

fuzzy sets [4] and interval-valued fuzzy sets [38]) or some

possibility distribution (as in type-2 fuzzy sets [10]) on the

possible values, but because we have a set of possible

values [20], Torra [20] developed the concept of hesitant

fuzzy sets (HFSs) which permit the membership degree of

an element to a set to be presented as several possible

values between 0 and 1. For example, assume a group of

DMs are required to assess the membership of x to the set

A and they are hesitant about three possible values as 0.6,

0.7 and 0.8. This case differs from the situations of using

Zadeh’s fuzzy sets [37], interval-valued fuzzy sets [38],

intuitionistic fuzzy sets [4], type-2 fuzzy sets [10], or fuzzy

multisets [16]. In such cases, the membership of x to A can

be modeled by a HFS h = {0.6, 0.7, 0.8} rather than a

single exact value, an interval number, or an intuitionistic

fuzzy number. In a short period of time since its first

appearance, HFSs have attracted more and more attention

in different areas, mainly in decision making

[8, 18, 31, 35, 39], because of its suitability to deal with

hesitant situations that are quite usual in real-world deci-

sion-making problems.

As one of the most common activities in the real-world,

group decision making (GDM) consists in finding the best

alternative(s) from a set of feasible ones according to the

preference information provided by a group of experts. In

the practical process of GDM, sometimes, because of the

time pressure and lack of knowledge or data, or because the

decision makers (DMs) have limited attention and infor-

mation processing capacities, the DMs cannot provide their
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preference with single exact value, a margin of error or

some possibility distribution on the possible values, but

several possible values, which is a common situation in

our daily life. To circumvent this issue and motivated by

HFSs, Zhu and Xu [42] introduced hesitant fuzzy pref-

erence relations (HFPRs) to deal with a hesitant situation

that the decision group is hesitant about some possible

values for the preference degrees over paired comparisons

of alternatives. Then, they [42] proposed a regression

method to transform HFPRs into fuzzy preference rela-

tions (FPRs) [17]. Xia and Xu [32] used the known

hesitant fuzzy aggregation operators to develop an

approach to GDM with HFPRs. Zhu [41] studied the

additive consistency measure of HFPRs and proposed a

regression method to transform the HFPR into a FPR,

called a reduced HFPR, with the highest consistency

level. Owing to the importance of consistency and con-

sensus in GDM with preference relations, Zhu et al. [43]

developed the consistency measures of HFPRs, estab-

lished the consistency thresholds to measure whether or

not an HFPR is of acceptable consistency, and built an

optimization model to improve the consistency of incon-

sistent HFPRs until they are acceptable. Liao et al. [13]

introduced the concepts of multiplicative consistency,

perfect multiplicative consistency and acceptable multi-

plicative consistency for a HFPR, based on which two

algorithms were given to improve the inconsistency level

of a HFPR. Furthermore, the consensus of group decision

making was studied based on the HFPRs. Zhang et al.

[40] developed a consistency- and consensus-based deci-

sion support model for GDM with HFPRs.

Generally, GDM with hesitant fuzzy preference infor-

mation is faced with three processes [14]:

1. The consistency checking and improving process of

each HFPR. This process guarantees that the experts’

preferences yield no contradiction;

2. The consensus checking and reaching process of the

group. Consensus makes it possible for a group to

reach a final decision that all group members can

support despite their differing opinions;

3. The selection process. The selection process is to find

the final result that is accepted by most individuals.

It is noticed that the aforementioned work

[13, 32, 40–43] about HFPRs has some limitations, which

are shown as follows:

1. The additive consistency proposed by Zhu [41] and

Zhu and Xu [42] is sometimes in conflict with the [0,1]

scale used for providing the preference values, whereas

the multiplicative consistency does not have this

limitation [9, 36]. Additionally, Zhu [41] and Zhu

and Xu [42] did not consider the consistency checking

and improving process, the consensus checking and

reaching process and the selection process.

2. The drawback of Xia and Xu [32]’s approach was that

they did not consider the consistency and consensus

checking processes; that is, they only considered the

third step but ignore Step 1 and Step 2 in GDM with

HFPRs.

3. Zhu et al. [43] proposed an optimization model for

improving the multiplicative consistency of HFPRs in

a group, but they did not pay much attention to the

consensus process, which means that they did not

consider Step 2 and consequently made the final result

might not be supported by all the members in the

group. In addition, the optimization model developed

by Zhu et al. [43] is time-consuming, inconvenient,

and complex to resolve (See a further analysis in

Subsection 6.2.1).

4. The multiplicative consistency definition proposed by

Liao et al. [13] holds only for the upper (or lower)

triangular of the preference relation and does not hold

in general cases (See a further analysis in Subsection

6.2.2). In addition, the multiplicative consistency of

the collective HFPR did not been taken into account.

Moreover, Liao et al. [13] did not organically combine

the consistency with the consensus. That is to say, they

did not discuss how to manage individual consistency

in a consensus reaching process for GDM with HFPRs.

5. Although the decision support model developed by

Zhang et al. [40] simultaneously considered Step 1,

Step 2 and Step 3, this model was constructed based on

the additive consistency. The drawback of the additive

consistency has been pointed out in the above

discussions.

It is noted that there exists lots of literature on multi-

plicative consistency property for additive reciprocal

preference relations, interval-valued preference relations,

intuitionistic preference relations and triangular fuzzy

membership preference value relations. For example,

Chiclana et al. [9] developed a characterization transitivity

of multiplicative of reciprocal preference relation. Alonso

et al. [3] presented a web consensus support system to deal

with group decision-making problems with different kinds

of incomplete preference relations (fuzzy, linguistic and

multigranular linguistic preference relations) in which the

consistency is modeled via the multiplicative consistency

property used to estimate the unknown values of incom-

plete preference relations as well as to compute the needed

consistency measures. Alonso et al. [2] proposed a con-

sistency-based procedure to estimate missing pairwise

preference values when dealing with pairwise comparison

and heterogeneous information. Alonso et al. [1] developed

an interactive decision support system based on
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consistency criteria. Xia et al. [33] investigated the con-

sistency and consensus of fuzzy preference relations based

on the multiplicative consistency property. Wu and Chi-

clana [25] investigated the multiplicative consistency

property of interval-valued fuzzy reciprocal preference

relations (IFRPRs) and defined the consistency indexes for

the three different levels of an IFRPR. Xu and Chen [34]

employed the feasible-region-based multiplicative transi-

tivity condition to present the multiplicative consistency

definition for interval fuzzy preference relations. Wang and

Li [23] used the interval-arithmetic-based multiplicative

transitivity condition to propose the multiplicative consis-

tency definition for interval fuzzy preference relations. Wu

and Chiclana [26] defined the multiplicative consistency

property of intuitionistic reciprocal preference relations

and applied it to missing values estimation and consensus

building for intuitionistic reciprocal preference relations.

Liao and Xu [12] gave a general definition of multiplicative

consistent intuitionistic fuzzy preference relation (IFPR)

and built some fractional programming models to generate

the intuitionistic fuzzy priority weighting vector of the

IFPR. Wu and Chiclana [27] presented a visual information

feedback mechanism for GDM problems with triangular

fuzzy complementary preference relations (TFCPRs). Xia

and Xu [30] proposed a new method to construct the

complete fuzzy complementary preference relation from

n-1 preference values base on multiplicative consistency.

Wang and Tong [24] introduced a cross-ratio-expressed

triangular fuzzy multiplication-based transitivity equation

to define multiplicatively consistent triangular fuzzy addi-

tive reciprocal preference relations (TFARPRs). Wu et al.

[29] proposed uninorm trust propagation and aggregation

methods for group decision making in social network with

four tuple information: trust, distrust, hesitancy and

inconsistency. Ureña et al. [21] used the multiplicative

consistency property to drive decision-making approach

with confidence and consistency properties and incomplete

reciprocal intuitionistic preference relations. Wu and Chi-

clana [28] developed a risk attitudinal ranking method for

interval-valued intuitionistic fuzzy numbers based on novel

score and accuracy expected functions. In addition, there

are a lot of references about consensus. For example, Mata

et al. [15] proposed a new approach of a consensus

reaching process based on the T1OWA operator to deal

with GDM problems in multigranular linguistic contexts.

Cabrerizo et al. [7] developed a method based on an allo-

cation of information granularity as an important asset to

increase the consensus achieved within the group of deci-

sion makers in GDM situations. Cabrerizo et al. [6] ana-

lyzed the different consensus approaches to compute soft

consensus measures in fuzzy group decision-making

problems and discussed their advantages and drawbacks.

Cabrerizo et al. [5] presented some challenges and open

questions about the software tools developed to carry out

the consensus in a fuzzy group decision-making problem.

Herrera-Viedma et al. [11] presented an overview of con-

sensus models based on soft consensus measures, showing

the pioneering and prominent papers, the main existing

approaches and the new trends and challenges. However,

the multiplicative consistency and consensus in the above

studies [1–3, 5–7, 9, 11, 12, 15, 23–30, 33, 34] do not

contain hesitant fuzzy information and thus fail to deal with

hesitant fuzzy preference relations.

To circumvent all the above drawbacks, this paper

presents a multiplicative consistency- and consensus-based

framework for GDM with hesitant fuzzy preference

information. All the three steps, i.e., the consistency

checking and improving process, the consensus checking

and reaching process and the selection process, are sys-

tematically discussed in this framework. The contributions

of this paper are highlighted as follows.

1. We define amultiplicative consistency index tomeasure

the multiplicative consistency degree of a HFPR, based

on which we apply a new consistency checking method

to check the multiplicative consistency of HFPRs. As to

those HFPRs which are not of acceptably multiplicative

consistency, we develop a consistency improving

method to help the experts to repair them until the

consistency is reached or accepted.

2. We introduce a group consensus index to measure the

consensus of a group and propose a consensus reaching

process to assist the group in achieving a predefined

consensus level while keeping an acceptable multi-

plicative consistency for each HFPR.

3. After conducting the above two processes, a selection

process is applied to achieve a higher level of

multiplicative consistency and consensus solutions

for a GDM with HFPRs.

4. We give a complete algorithm for GDM with HFPRs.

Comparative analysis with the other methods in the

existing literature shows that the developed algorithm

is quite flexible, interactive and convenient and can

match the practical GDM situation perfectly.

To do this, the paper is organized as follows. In Sect. 2,

we briefly introduce the related work on HFSs and HFPRs.

Section 3 defines a consistency index for HFPRs which can

measure the consistency degree of a HFPR, based on which

a convergent method is proposed to improve the consis-

tency of a HFPR so as to ensure that the HFPR is of

acceptably multiplicative consistency. Section 4 proposes a

consensus index to measure the consensus level and

develops a convergent iterative procedure to improve the

consensus levels of the individual HFPRs so as to help

experts achieve a predefined consensus level. Section 5 is

devoted to presenting a complete framework which
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simultaneously addresses the individual consistency and

group consensus for GDM with HFPRs. In Sect. 6, a

numerical example is provided to demonstrate the appli-

cation of the proposed method and to verify the theoretical

results. Comparison analyses with some existing approa-

ches in the literature are conducted to illustrate the

advantages of the developed methods. Section 7 ends this

paper with some concluding remarks.

2 Preliminaries

This section introduces the basic knowledge regarding

hesitant fuzzy sets and hesitant fuzzy preference relations,

which provide a basis for this study.

2.1 Hesitant Fuzzy Sets

Torra [20] originally proposed the concept of hesitant fuzzy

sets to manage the situations in which several values are

possible for the definition of the membership of an element.

Definition 2.1 [20] Let X be a reference set, a hesitant

fuzzy set (HFS) on X is in terms of a function that when

applied to X returns a subset of [0,1], which can be rep-

resented as the following mathematical symbol [15]:

E ¼ x; hE xð Þh ijx 2 Xf g ð1Þ

where hE xð Þ is a set of some values in [0,1], denoting the

possible membership degrees of the element x 2 X to the

set E. For convenience, Xia and Xu [31] called h ¼ hE xð Þ a
hesitant fuzzy element (HFE). Let lh denote the number of

elements in the HFE h, and let X be the set of all hesitant

fuzzy elements (HFEs).

To compare HFEs, Xia and Xu [31] defined the fol-

lowing comparison laws.

Definition 2.2 [31] For a HFE h, s hð Þ ¼
P

c2h c

lh
is called

the score function of h, where lh is the number of elements

in h. Assume two HFEs, h1 and h2, if s h1ð Þ[ s h2ð Þ, then
h1[ h2; if s h1ð Þ ¼ s h2ð Þ, then h1 = h2.

In most situations, it is noted that the numbers of ele-

ments in two different HFEs hi (i = 1,2) are different. In

order to more accurately operation on h1 and h2, Zhu et al.

[43] introduced a method to add some elements to HFEs.

Definition 2.3 [43] Assume a HFE h, let h? and h- be the

maximum and minimum elements in h, respectively, and 1
(0� 1� 1) be an optimized parameter, which can be cho-

sen by the decision makers according to their own risk

preferences, then we call �h ¼ 1hþ þ 1� 1ð Þh� an added

element.

Especially, �h ¼ hþ and �h ¼ h� can be, respectively,

derived from the conditions that 1 ¼ 1 and 1 ¼ 0, which

correspond with the optimism and pessimism rules intro-

duced by Xu and Xia [35], respectively.

2.2 Hesitant Fuzzy Preference Relations

Let X ¼ x1; x2; . . .; xnf g be a fixed set of alternatives.

Assume that the DMs hesitate between some possible

preferences to provide paired comparison judgments of

alternatives, and these preferences are collected into HFEs.

To address such situations, Zhu and Xu [42] developed a

concept of hesitant fuzzy preference relations (HFPRs) as

follows.

Definition 2.4 [42] Let X ¼ x1; x2; . . .; xnf g be a fixed set.
A hesitant fuzzy preference relation (HFPR) H on X is

denoted by a matrix H ¼ hij
� �

n�n
� X � X, where hij ¼

h
q sð Þ
ij s ¼ 1; 2; . . .;j lhij

n o
is a HFE, indicating hesitant

degrees to which xi is preferred to xj. For all i; j ¼
1; 2; . . .; n, hij should satisfy the following conditions:

h
q sð Þ
ij þ h

q lhij�sþ1ð Þ
ji ¼ 1; hii ¼ 0:5f g; lhij ¼ lhji ð2Þ

where h
q sð Þ
ij is the sth largest element in hij.

Based on Definition 2.3, Zhu et al. [43] used the opti-

mized parameter 1 to add some elements to a HFPR and

obtained a normalized hesitant fuzzy preference relation

(NHFPR) defined as follows.

Definition 2.5 [43] Assume a HFPR, H ¼ hij
� �

n�n
, and

an optimized parameter 1 (0� 1� 1), where 1 is used to

add some elements to hij (i\j), and 1� 1 is used to add

some elements to hji (i\j) to obtain a HFPR H ¼ hij
� �

n�n
.

And for all i; j ¼ 1; 2; . . .; n, this preference relation should

satisfy the following conditions:

l�hij ¼ max lhij
�
�i; j ¼ 1; 2; . . .; n; i 6¼ j

� �
¼ l

�h
r sð Þ
ij þ �h

r sð Þ
ji ¼ 1; �hii ¼ 0:5f g

�h
r sð Þ
ij � �h

r sþ1ð Þ
ij ; �h

r sþ1ð Þ
ji � �h

r sð Þ
ji ; i\j

8
>><

>>:
ð3Þ

where �h
r sð Þ
ij and �h

r sð Þ
ji are the sth elements in �hij and �hji,

respectively. Then, we call �H ¼ �hij
� �

n�n
a NHFPR with the

optimized parameter 1, and �hij is a normalized hesitant

fuzzy element (NHFE).

We define the distance between two HFPRs as follows.

Definition 2.6 Assume two HFPRs H1 ¼ hij;1
� �

n�n
¼

h
r sð Þ
ij;1

�
�
�s ¼ 1; 2; . . .; lhij;1

n o� �

n�n
and H2 ¼ hij;2

� �
n�n

¼

h
r sð Þ
ij;2

�
�
�s ¼

n�
1; 2; . . .; lhij;2gÞn�n, and 1 (0� 1� 1), we get
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their normalized HFPRs as �H1 ¼ �hij;1
� �

n�n
¼ �h

r sð Þ
ij;1

�
�
�s ¼

n�

1; 2; . . .; l
o�

n�n
and �H2 ¼ �hij;2

� �
n�n

¼ �h
r sð Þ
ij;2

�
�
�s ¼ 1; 2;

n�

. . .; l
o�

n�n
satisfying l ¼ l�hij;1 ¼ l�hij;2 (i; j ¼ 1; 2; . . .; n,

i 6¼ j). Then

d H1;H2ð Þ ¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln �h
r sð Þ
ij;1

� �
� ln �h

r sð Þ
ji;1

� ��

� ln �h
r sð Þ
ij;2

� �
þ ln �h

r sð Þ
ji;2

� ��2

ð4Þ

is called the distance between H1 and H2 with 1.

Theorem 2.1 The distance d H1;H2ð Þ between two

HFPRs H1 and H2 satisfies the following properties:

1. d H1;H2ð Þ� 0;

2. d H1;H2ð Þ ¼ 0 if and only if H1 = H2;

3. d H1;H2ð Þ ¼ d H2;H1ð Þ.

3 Multiplicative Consistency Checking
and Improving Process for a HFPR

Zhu et al. [43] defined the multiplicative consistent HFPR

as follows.

Definition 3.1 [43] Given a HFPR H ¼ hij
� �

n�n
and its

NHFPR �H ¼ �hij
� �

n�n
with 1, if for any i; j; k ¼ 1; 2; . . .; n,

i 6¼ j 6¼ k,

�h
r sð Þ
ik

�h
r sð Þ
kj

�h
r sð Þ
ji ¼ �h

r sð Þ
ki

�h
r sð Þ
jk

�h
r sð Þ
ij ð5Þ

where �h
r sð Þ
ij is the sth element in �hij, then H is called a

multiplicative consistent HFPR with 1.

The test of consistency measures is a critical step in

decision making using preference relations. Consistent

information which does not imply any kind of contra-

diction is more relevant or important than information

containing some contradictions. When a HFPR fails to

satisfy the consistency requirement, it is necessary to

make revisions. In this section, we focus our discussion

on the multiplicative consistency of HFPRs. We inves-

tigate the characterizations of multiplicative consistency

property for HFPRs and propose some methods to

measure and improve the multiplicative consistency level

of a HFPR.

Based on a HFPR H ¼ hij
� �

n�n
and its NHFPR �H ¼

�hij
� �

n�n
with 1, Zhu et al. [43] constructed a multiplicative

consistent HFPR ~H ¼ ~hij
� �

n�n
with 1, where

~h
r sð Þ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qn

k¼1

�h
r sð Þ
ik

�h
r sð Þ
kj

n

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qn

k¼1

�h
r sð Þ
ik

�h
r sð Þ
kj

n

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qn

k¼1

1� �h
r sð Þ
ik

� �
1� �h

r sð Þ
kj

� �
n

s ;

i; j ¼ 1; 2; . . .; n; i 6¼ j 6¼ k; s ¼ 1; 2; . . .; l

ð6Þ

Based on the distance measure of HFPRs proposed in

Definition 2.6, we can define the multiplicative consistency

index as follows.

Definition 3.2 Assume a HFPR H ¼ hij
� �

n�n
¼

h
r sð Þ
ij

�
�
�s ¼ 1; 2; . . .; lhij

n o� �

n�n
, an optimized parameter 1

(0� 1� 1), its NHFPR �H ¼ �hij
� �

n�n
¼ �h

r sð Þ
ij

�
�
�s ¼ 1; 2;

n�

. . .; l
o
Þn�n with 1, and its multiplicative consistent HFPR

~H ¼ ~hij
� �

n�n
¼ ~h

r sð Þ
ij

�
�
�s ¼ 1; 2; . . .; l

n o� �

n�n
with 1, to

make H approximate ~H as much as possible, we define

d �H; ~H
� �

as a consistency index (CI) with 1 of the HFPR H

as follows.

CI Hð Þ ¼ d �H; ~H
� �

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln �h
r sð Þ
ij

� �
� ln �h

r sð Þ
ji

� ��

� ln ~h
r sð Þ
ij

� �
þ ln ~h

r sð Þ
ji

� ��2

ð7Þ

According to Definition 3.2, the CI Hð Þ can be used to

measure the distance between H and ~H. The smaller value

the CI Hð Þ, the more consistent the H. Especially, CI Hð Þ ¼
0 if and only if H is a multiplicative consistent HFPR.

In most cases, it is unrealistic to expect a HFPR to be

perfectly multiplicative consistent due to the reason that the

DMs would be affected by many uncertainties. Conse-

quently, a definition of acceptably multiplicative consistent

HFPR will be further developed to allow a certain of level

of acceptable deviation.

Definition 3.3 Let H ¼ hij
� �

n�n
be a HFPR. Given a

threshold value CI, if the multiplicative consistency index

satisfies the following,

CI Hð Þ�CI ð8Þ

then we call H a HFPR with acceptably multiplicative

consistency.

The value of CI can be determined according to the

decision makers’ preferences and the practical situations,

which is an interesting topic and is worthy to be further

studied in the future. Both Saaty [19] and Wang [22]
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suggested that the admissible bounds for checking the

multiplicative consistency of H can be set at CI ¼ 0:1.

Owing to the lack of knowledge or the hardness of

discriminating the degree to which some alternatives are

better than the others, the HFPR H constructed by the

decision maker is often always with unacceptably multi-

plicative consistency, i.e., CI Hð Þ[CI. To obtain a rea-

sonable solution, H needs to be returned to the decision

maker to reconstruct a new HFPR. To help the decision

maker to obtain a multiplicative consistent HFPR, we

provide the following formula to adjust or repair the

inconsistent HFPR H tð Þ ¼ h
tð Þ
ij

� �

n�n
¼ h

tð Þ
ij

� �r sð Þ
�
�
�
�s ¼


�

1; 2; . . .; l

�

n�n

until it has acceptably multiplicative

consistency.

h
tþ1ð Þ
ij

� �r sð Þ
¼

h
tð Þ
ij

� �r sð Þ
� 1�d

� ~h
tð Þ
ij

� �r sð Þ
� d

h
tð Þ
ij

� �r sð Þ
� 1�d

� ~h
tð Þ
ij

� �r sð Þ
� d

þ 1� h
tð Þ
ij

� �r sð Þ
� 1�d

� 1� ~h
tð Þ
ij

� �r sð Þ
� d

ð9Þ

Theorem 3.1 Let H tþ1ð Þ ¼ h
tþ1ð Þ
ij

� �

n�n
¼

h
tþ1ð Þ
ij

� �r sð Þ
�
�
�
�


�

s ¼ 1; 2; . . .; l

�

n�n

be a HFPR defined by

Eq. (9). Then, we have CI H tþ1ð Þ� �
\CI H tð Þ� �

.

The proof of Theorem 3.1 is provided in the Appendix.

From Theorem 3.1, we can find that Eq. (9) can improve

the multiplicative consistency level of a HFPR by pro-

ducing a series of revised HFPRs with the monotonically

decreasing multiplicative consistency levels.

Now let us consider a GDM problem with a finite set of

alternatives X ¼ x1; x2; . . .; xnf g. Assume that D ¼
d1; d2; . . .; dmf g are the group decision makers and the

corresponding weight vector is k ¼ k1; k2; . . .; kmð ÞT with
Pm

k¼1 kk ¼ 1, kk � 0. The kth DM compares each pair of

the alternatives xi (i ¼ 1; 2; . . .; n) and gives his/her pref-

erence information as a HFPR Hk ¼ hij;k
� �

n�n
¼

h
r sð Þ
ij;k

�
�
�s ¼

n�
1; 2; . . .; lhij;k

o�

n�n
, where hij;k

(i; j ¼ 1; 2; . . .; n, i\j) is a HFE, which indicates hesitant

degrees to which xi is preferred to xj, and satisfies

h
r sð Þ
ij;k þ h

r sð Þ
ji;k ¼ 1;

lhij;k ¼ lhji;k ;

hii;k ¼ 0:5f g; hr sð Þ
ij;k \h

r sþ1ð Þ
ij;k ; h

r sþ1ð Þ
ji;k \h

r sð Þ
ji;k

ð10Þ

where h
r sð Þ
ij;k and h

r sð Þ
ji;k are the sth elements in hij;k and hji;k,

respectively.

A collective matrix Hc ¼ hij;c
� �

n�n
¼ h

r sð Þ
ij;c

�
�
�s ¼ 1; 2;

n�

. . .; l
o�

n�n
can be derived from all of the individual HFPRs

Hk ¼ hij;k
� �

n�n
¼ h

r sð Þ
ij;k

�
�
�s ¼ 1; 2; . . .; lhij;k

n o� �

n�n

(k ¼ 1; 2; . . .;m) by the following fusion method:

h
r sð Þ
ij;c ¼

Qm

k¼1

�h
r sð Þ
ij;k

� �kk

Qm

k¼1

�h
r sð Þ
ij;k

� �kk
þ
Qm

k¼1

1� �h
r sð Þ
ij;k

� �kk ;

i; j ¼ 1; 2; . . .; n; s ¼ 1; 2; . . .; l

ð11Þ

where �Hk ¼ �hij;k
� �

n�n
¼ �h

r sð Þ
ij;k

�
�
�s ¼ 1; 2; . . .; l

n o� �

n�n
are

the corresponding normalized HFPRs of Hk (k ¼ 1; 2;

. . .;m) with 1k (1k 2 0; 1½ �, k ¼ 1; 2; . . .;m).

Theorem 3.2 Let Hk ¼ hij;k
� �

n�n
(k ¼ 1; 2. . .;m) be a

collection of m individual HFPRs associated with the

weight vector k ¼ k1; k2; . . .; kmð ÞT, and let Hc ¼ hij;c
� �

n�n

be a matrix defined by Eq. (11); then we have

1. Hc is a HFPR.

2. CI Hcð Þ� max
1� k�m

CI Hkð Þf g.

3. CI Hkð Þ� a; k ¼ 1; 2. . .;m ) CI Hcð Þ� a.

The proof of Theorem 3.2 is provided in the Appendix.

Theorem 3.2 (2) shows that the consistency levels of the

collective HFPR are better than any individual HFPRs.

Theorem 3.2 (3) implies that if the multiplicative consis-

tency indexes of individual HFPRs are smaller than a

value, then the multiplicative consistency index of the

collective HFPR is always smaller than this value. From

Theorem 3.2, it can be easily observed that if Hk

(k ¼ 1; 2; . . .;m) are of acceptably multiplicative consis-

tency, then Hc is acceptably multiplicative consistent; if Hk

(k ¼ 1; 2; . . .;m) are of multiplicative consistency, then Hc

is multiplicative consistent.

4 Consensus Checking and Reaching Process
for a Group of HFPRs

In the context of GDM, consensus decision making is often

considered a desirable outcome. When consensus schemes

are utilized, the DMs involved are supposed to participate

in the discussions toward a consensus solution. In this

section, we introduce a consensus index to measure the

consensus level between the group members and develop a

convergence method to help the decision makers reach a

predefined consensus level.

Based on the distance measure of HFPRs, we next define

a consensus index to measure the agreement between the

individual HFPRs and the collective HFPR.

Definition 4.1 Assume m HFPRs Hk ¼ hij;k
� �

n�n

(k ¼ 1; 2; . . .;m), an optimized parameter 1k (1k 2 0; 1½ �,
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k ¼ 1; 2; . . .;m), their NHFPRs �Hk ¼ �hij;k
� �

n�n
(k ¼ 1; 2;

. . .;m), and their collective HFPR Hc ¼ hij;c
� �

n�n
, a group

consensus index of Hk can be defined to measure the dis-

tance between �Hk and Hc, denoted as:

GCI Hkð Þ ¼ d �Hk;Hcð Þ

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln �h
r sð Þ
ij;k

� �
� ln �h

r sð Þ
ji;k

� ��

� ln h
r sð Þ
ij;c

� �
þ ln h

r sð Þ
ji;c

� ��2

ð12Þ

From Definition 4.1, a group consensus index can be

used to measure the closeness between the individual

HFPRs and the collective HFPR. If GCI Hkð Þ ¼ 0, then the

kth decision maker has full consensus with the group

preference. Otherwise, the smaller the value of GCI Hkð Þ,
the closer that decision maker is to the group. In particular,

if GCI Hkð Þ ¼ 0, k ¼ 1; 2; . . .;m, then all the individual

HFPRs Hk (k ¼ 1; 2; . . .;m) reach consensus, which seldom

happens in the practical problems.

Definition 4.2 Assume m HFPRs Hk ¼ hij;k
� �

n�n

(k ¼ 1; 2; . . .;m), an optimized parameter 1 (1k 2 0; 1½ �,
k ¼ 1; 2; . . .;m), their NHFPRs �Hk ¼ �hij;k

� �
n�n

(k ¼ 1; 2;

. . .;m), their collective HFPR Hc ¼ hij;c
� �

n�n
, and a con-

sensus index GCI Hkð Þ, then Hk and Hc are called to be of

acceptable consensus, if

GCI Hkð Þ�GCI ð13Þ

where GCI is the threshold of acceptable consensus, which

can be determined by the DMs in advance in practical

applications.

In a GDM problem, if GCI Hkð Þ[GCI, then Hk and Hc

are of unacceptable consensus. In this case, Hk needs to be

returned to the decision maker dk to reconstruct a new

HFPR that is closer to the collective HFPR. This process

will be repeated until the predefine consensus level is

achieved, which we call the consensus reaching process. In

the following, an automatic iterative equation is developed

to improve the consensus levels of individual HFPRs.

h
tþ1ð Þ
ij;k

� �r sð Þ
¼

h
tð Þ
ij;k

� �r sð Þ
� 1�g

� h
tð Þ
ij;c

� �r sð Þ
� g

h
tð Þ
ij;k

� �r sð Þ
� 1�g

� h
tð Þ
ij;c

� �r sð Þ
� g

þ 1� h
tð Þ
ij;k

� �r sð Þ
� 1�g

� 1� h
tð Þ
ij;c

� �r sð Þ
� g

ð14Þ

Theorem 4.1 Let H
tð Þ
k ¼ h

tð Þ
ij;k

� �

n�n
(k ¼ 1; 2; . . .;m) be a

collection of individual HFPRs associated with the weight

vector k ¼ k1; k2; . . .; kmð ÞT, and let H
tþ1ð Þ
k ¼ h

tþ1ð Þ
ij;k

� �

n�n

(k ¼ 1; 2; . . .;m) be the adjusted HFPRs by Eq. (14), then

we have

1. GCI H
tþ1ð Þ
k

� �
\GCI H

tð Þ
k

� �
;

2. max
1� k�m

CI H
tþ1ð Þ
k

� �n o
� max

1� k�m
CI H

tð Þ
k

� �n o
.

The proof of Theorem 4.1 is provided in the Appendix.

Theorem 4.1 (1) indicates that the consensus levels of

the original HFPRs are improved by Eq. (14). Theorem 4.1

(2) tells us that the multiplicative consistency index of the

original HFPR is bigger than that of the revised individual

HFPR obtained by Eq. (14). Theorem 4.1 implies that

Eq. (14) not only makes the revised HFPRs reach the

predefined consensus level but also maintains the multi-

plicative consistency and the acceptably multiplicative

consistency of the original HFPRs.

5 A Complete Framework for GDM with HFPRs

Through Sects. 3 and 4, in a rational GDM process, both

consensus and consistency have be pursued and sought

after. A solution with a high level of consensus is desirable,

but additionally, a solution can be derived from informa-

tion that is consistent enough. Once the consensus level

among the DMs has been achieved, we can obtain a group

decision matrix that represents the centralized opinions of

the DMs. A selection process is applied to supply a

selection set of alternatives. The selection process obtains

the final solution according to the preferences that are

given by the DMs; it involves two different steps: the

aggregation of individual preferences and exploitation of

the collective preference. We aggregate all of the prefer-

ence information in the each row of the group HFPR and

then obtain the overall preference degree of each alterna-

tive xi (i ¼ 1; 2; . . .; n). We rank all of the alternatives xi
(i ¼ 1; 2; . . .; n) and then select the optimal one(s).

From the above analysis, we can design a complete

framework of GDM with HFPRs. This framework accounts

for the consistency and consensus simultaneously into

account, and it is composed of the following steps:

5.1 Algorithm

Step 1: Input: m HFPRs Hk ¼ hij;k
� �

n�n
(k ¼ 1; 2; . . .;m);

the weight vector k ¼ k1; k2; . . .; kmð ÞT; the threshold of

acceptably multiplicative consistency CI; the threshold of

acceptable consensus GCI; the maximum number of iter-

ative times tmax � 1; the controlling parameter dk; g 2 0; 1ð Þ
(k ¼ 1; 2; . . .;m).

Step 2: Utilize the following equation
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min d �Hk; ~Hk

� �

s:t: d �Hk; ~Hk

� �
¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln �h
r sð Þ
ij;k

� �
� ln �h

r sð Þ
ji;k

� ��

� ln ~h
r sð Þ
ij;k

� �
þ ln ~h

r sð Þ
ji;k

� ��2

0� 1k � 1

8
>>>>>>>><

>>>>>>>>:

ð15Þ

to obtain the value of 1k (k ¼ 1; 2; . . .;m); then, determine

�Hk ¼ �hij;k
� �

n�n
and ~Hk ¼ ~hij;k

� �
n�n

by Eqs. (3) and (6),

respectively.

Let H
0ð Þ
k ¼ h

0ð Þ
ij;k

� �

n�n
¼ �Hk ¼ �hij;k

� �
n�n

, ~H
0ð Þ
k ¼

~h
0ð Þ
ij;k

� �

n�n
¼ ~Hk ¼ ~hij;k

� �
n�n

, and t ¼ 0.

Step 3: Compute the multiplicative consistent HFPRs ~H
tð Þ
k

¼ ~h
tð Þ
ij;k

� �

n�n
(k ¼ 1; 2; . . .;m) by Eq. (6) and the multiplica-

tive consistency index CI H
tð Þ
k

� �
(k ¼ 1; 2; . . .;m) by Eq. (7).

Step 4: If CI H
tð Þ
k

� �
�CI for all k ¼ 1; 2; . . .;m, then go

to Step 6; otherwise, go to the next step.

Step 5: Let K tð Þ ¼ k 2 1; 2; . . .;mf g CI H
tð Þ
k

� �
[CI

�
�
�

n o
.

For k 2 K tð Þ, construct the modified HFPRs H
tþ1ð Þ
k ¼

h
tþ1ð Þ
ij;k

� �

n�n
¼ h

tþ1ð Þ
ij;k

� �r sð Þ
�
�
�
�s ¼ 1; 2; . . .; l


 �� 

n�n

by

Eq. (9). For k 62 K tð Þ, let H
tþ1ð Þ
k ¼ H

tð Þ
k .

Let t ¼ t þ 1, and return to Step 3.

Step 6: Aggregate all of the individual HFPRs H
tð Þ
k ¼

h
tð Þ
ij;k

� �

n�n
(k ¼ 1; 2; . . .;m) into the collective HFPR H

tð Þ
c ¼

h
tð Þ
ij;c

� �

n�n
by Eq. (11).

Step 7: Calculate the group consensus index GCI H
tð Þ
k

� �

(k ¼ 1; 2; . . .;m) by Eq. (12).

If GCI H
tð Þ
k

� �
�GCI for all k ¼ 1; 2; . . .;m, or if t� tmax,

then go to Step 9; otherwise, go to Step 8.

Step 8: Construct the modified HFPR H
tþ1ð Þ
k ¼

h
tþ1ð Þ
ij;k

� �

n�n
(k ¼ 1; 2; . . .;m) by Eq. (14).

Set t ¼ t þ 1 and go to Step 6.

Step 9: Utilize the following equation

h
tð Þ
i;c

� �r sð Þ
¼

Qn

j¼1

h
tð Þ
ij;c

� �r sð Þ
� 1

n

Qn

j¼1

h
tð Þ
ij;c

� �r sð Þ
� 1

n

þ
Qn

j¼1

1� h
tð Þ
ij;c

� �r sð Þ
� 1

n

;

i ¼ 1; 2; . . .; n; s ¼ 1; 2; . . .; l ð16Þ

to aggregate the ith line of preferences h
tð Þ
ij;c (j ¼ 1; 2; . . .; n)

in H
tð Þ
c ¼ h

tð Þ
ij;c

� �

n�n
and obtain the overall performance

values h
tð Þ
i;c (i ¼ 1; 2; . . .; n) corresponding to the alterna-

tives xi (i ¼ 1; 2; . . .; n).

Step 10: Rank all of the alternatives xi (i ¼ 1; 2; . . .; n)
by Definition 2.2.

The proposed algorithm can also be described by using

Fig. 1. To help the readers to understand our algorithm

thoroughly, let us give more explanation step by step. In

the above algorithm, the first step is to establish the input

data of a GDM problem with HFPRs. Step 2 is the nor-

malization and initialization process. Steps 3–5 make up of

the consistency checking process and the consistency

improving process. After Step 5, we would derive HFPRs

which have the acceptably multiplicative consistency

within the consistency threshold CI. Steps 6–8 compose the

consensus checking process and the consensus reaching

process. After Step 8, all of the HFPRs are acceptably

multiplicative consistent and the group consensus is also

attained. The selection process consists of Steps 9 and 10.

After Step 10, we can find out the final solution with suf-

ficient consistency and consensus and then the algorithm

ends.

6 Illustrative Example and Comparative Analysis

In this section, we consider a practical example involving

the investment selection problem to illustrate the imple-

mentation details of the proposed method. A comparative

study is subsequently conducted to validate the results of

the proposed method with the results from other

approaches.

6.1 An illustrative Example

In this subsection, a practical example is provided to

demonstrate how the proposed approach works in practice.

An investment company wants to invest a sum of money in

the best option. To reduce the risks involved in making

decisions in this uncertain and highly competitive envi-

ronment, the leader of the company invites a group of

experts to participate in the decision and hopes to achieve a

consensus solution. A panel with four alternatives is given

as follows: x1 is a car industry, x2 is a food company, x3 is a

computer company and x4 is an arms manufacturer. There

are three experts, {d1, d2, d3} from three consultancy

departments: the risk analysis department, the growth

analysis department and the environmental impact analysis

department. The weight vector of these three experts is
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k ¼ 0:2; 0:5; 0:3ð Þ. These experts provide their hesitant

preferences over paired comparisons of these four decision

alternatives and construct three HFPRs Hk (k ¼ 1; 2; 3) as

follows.

H1 ¼

0:5f g 0:3f g 0:5; 0:7f g 0:4f g
0:7f g 0:5f g 0:7; 0:9f g 0:8f g

0:5; 0:3f g 0:3; 0:1f g 0:5f g 0:6; 0:7f g
0:6f g 0:2f g 0:4; 0:3f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H2 ¼

0:5f g 0:3; 0:5f g 0:1; 0:2f g 0:6f g
0:7; 0:5f g 0:5f g 0:7; 0:8f g 0:1; 0:3; 0:5f g
0:9; 0:8f g 0:3; 0:2f g 0:5f g 0:5; 0:6; 0:7f g
0:4f g 0:9; 0:7; 0:5f g 0:5; 0:4; 0:3f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H3 ¼

0:5f g 0:3; 0:5f g 0:7f g 0:7; 0:8f g
0:7; 0:5f g 0:5f g 0:2; 0:3; 0:4f g 0:5; 0:6f g
0:3f g 0:8; 0:7; 0:6f g 0:5f g 0:7; 0:8; 0:9f g

0:3; 0:2f g 0:5; 0:4f g 0:3; 0:2; 0:1f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

In the following, we use the proposed algorithm to

derive a ranking among four alternatives, which includes

the following steps:

Step 1: Utilize Eq. (15) to get the value of 1k
(k ¼ 1; 2; 3): 11 ¼ 0, 12 ¼ 0:5174, 13 ¼ 1. Then determine

H
0ð Þ
k (k ¼ 1; 2; 3) and ~H

0ð Þ
k (k ¼ 1; 2; 3) as follows:

H
0ð Þ
1 ¼

0:5f g 0:3; 0:3; 0:3f g 0:5; 0:5; 0:7f g 0:4; 0:4; 0:4f g
0:7; 0:7; 0:7f g 0:5f g 0:7; 0:7; 0:9f g 0:8; 0:8; 0:8f g
0:5; 0:5; 0:3f g 0:3; 0:3; 0:1f g 0:5f g 0:6; 0:6; 0:7f g
0:6; 0:6; 0:6f g 0:2; 0:2; 0:2f g 0:4; 0:4; 0:3f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H
0ð Þ
2 ¼

0:5f g 0:3; 0:4035; 0:5f g 0:1; 0:1517; 0:2f g 0:6; 0:6; 0:6f g
0:7; 0:5965; 0:5f g 0:5f g 0:7; 0:7517; 0:8f g 0:1; 0:3; 0:5f g
0:9; 0:8483; 0:8f g 0:3; 0:2483; 0:2f g 0:5f g 0:5; 0:6; 0:7f g
0:4; 0:4; 0:4f g 0:9; 0:7; 0:5f g 0:5; 0:4; 0:3f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H
0ð Þ
3 ¼

0:5f g 0:3; 0:5; 0:5f g 0:7; 0:7; 0:7f g 0:7; 0:8; 0:8f g
0:7; 0:5; 0:5f g 0:5f g 0:2; 0:3; 0:4f g 0:5; 0:6; 0:6f g
0:3; 0:3; 0:3f g 0:8; 0:7; 0:6f g 0:5f g 0:7; 0:8; 0:9f g
0:3; 0:2; 0:2f g 0:5; 0:4; 0:4f g 0:3; 0:2; 0:1f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

~H
0ð Þ
1 ¼

0:5f g 0:2529; 0:2529; 0:2299f g 0:4495; 0:4495; 0:6101f g 0:5083; 0:5083; 0:5880f g
0:7471; 0:7471; 0:7701f g 0:5f g 0:7070; 0:7070; 0:8398f g 0:7534; 0:7534; 0:8270f g
0:5505; 0:5505; 0:3899f g 0:2930; 0:2930; 0:1602f g 0:5f g 0:5588; 0:5588; 0:4769f g
0:4917; 0:4917; 0:4120f g 0:2466; 0:2466; 0:1730f g 0:4412; 0:4412; 0:5231f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

~H
0ð Þ
2 ¼

0:5f g 0:3696; 0:3567; 0:3562f g 0:2695; 0:3360; 0:3877f g 0:2483; 0:3928; 0:5170f g
0:6304; 0:6433; 0:6438f g 0:5f g 0:3862; 0:4771; 0:5336f g 0:3604; 0:5384; 0:6592f g
0:7305; 0:6640; 0:6123f g 0:6138; 0:5229; 0:4664f g 0:5f g 0:4724; 0:5611; 0:6283f g
0:7517; 0:6072; 0:4830f g 0:6396; 0:4616; 0:3408f g 0:5276; 0:4389; 0:3717f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

~H
0ð Þ
3 ¼

0:5f g 0:5858; 0:6612; 0:6361f g 0:4664; 0:5528; 0:5299f g 0:6537; 0:7946; 0:8257f g
0:4142; 0:3388; 0:3639f g 0:5f g 0:3819; 0:3877; 0:3920f g 0:5717; 0:6646; 0:7305f g
0:5336; 0:4472; 0:4701f g 0:6181; 0:6123; 0:6080f g 0:5f g 0:6836; 0:7579; 0:8078f g
0:3463; 0:2054; 0:1743f g 0:4283; 0:3354; 0:2695f g 0:3164; 0:2421; 0:1922f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

Step 2: Use Eq. (7) to compute the multiplicative con-

sistency index CI H
0ð Þ
k

� �
(k ¼ 1; 2; 3): CI H

0ð Þ
1

� �
¼

0:1589; CI H
0ð Þ
2

� �
¼ 0:8845; CI H

0ð Þ
3

� �
¼ 0:3492.

Step 3: Set CI ¼ 0:1. Consider CI H
0ð Þ
k

� �
[ 0:1 for all

k ¼ 1; 2; 3; therefore, we use Eq. (9) (suppose that

d1 ¼ 0:1, d2 ¼ 0:2, and d3 ¼ 0:8) to construct the accept-

ably multiplicative consistent HFPRs H
5ð Þ
k (k ¼ 1; 2; 3)

(after 5 iterations) follows:

H
5ð Þ
1 ¼

0:5 0:2896; 0:2896; 0:2842f g 0:4890; 0:4890; 0:6819f g 0:4225; 0:4225; 0:4394f g
0:7138; 0:7138; 0:7210f g 0:5 0:7015; 0:7015; 0:8898f g 0:7912; 0:7912; 0:8061f g
0:5137; 0:5137; 0:3209f g 0:2983; 0:2983; 0:1108f g 0:5 0:5916; 0:5916; 0:6581f g
0:5711; 0:5711; 0:5497f g 0:2096; 0:2096; 0:1933f g 0:4100; 0:4100; 0:3486f g 0:5

8
>>><

>>>:

9
>>>=

>>>;

H
5ð Þ
2 ¼

0:5f g 0:3558; 0:3666; 0:3856f g 0:2154; 0:2828; 0:3368f g 0:3268; 0:4447; 0:5386f g
0:6405; 0:6356; 0:6207f g 0:5f g 0:4650; 0:5573; 0:6192f g 0:2639; 0:4794; 0:6262f g
0:7734; 0:7065; 0:6534f g 0:5473; 0:4515; 0:3882f g 0:5f g 0:4805; 0:5718; 0:6481f g
0:6882; 0:5630; 0:4640f g 0:7202; 0:5112; 0:3696f g 0:5208; 0:4295; 0:3538f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H
5ð Þ
3 ¼

0:5f g 0:5269; 0:3666; 0:6099f g 0:5154; 0:2828; 0:5659f g 0:6633; 0:4447; 0:8208f g
0:4240; 0:6356; 0:3742f g 0:5f g 0:3402; 0:5573; 0:3936f g 0:5575; 0:4794; 0:7066f g
0:5012; 0:7065; 0:4499f g 0:6444; 0:4515; 0:6290f g 0:5f g 0:6869; 0:5718; 0:8304f g
0:3369; 0:5630; 0:1783f g 0:4451; 0:5112; 0:2884f g 0:3127; 0:4295; 0:1683f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

Moreover, we use Eq. (7) to calculate the multiplicative

consistency index CI H
5ð Þ
k

� �
(k ¼ 1; 2; 3) as follows:

CI H
5ð Þ
1

� �
¼ 0:0979; CI H

5ð Þ
2

� �
¼ 0:0559; CI H

5ð Þ
3

� �
¼

0:0341.

Because CI H
5ð Þ
k

� �
\0:1 for all k ¼ 1; 2; 3, H

5ð Þ
k

(k ¼ 1; 2; 3) are of acceptably multiplicative consistency.

Step 4: Utilize Eq. (11) to aggregate all of the accept-

ably multiplicative consistent HFPRs H
5ð Þ
k (k ¼ 1; 2; 3) into

the collective HFPR H
5ð Þ
c ¼ h

5ð Þ
ij;c

� �

4�4
, which is shown as

follows:

H 5ð Þ
c ¼

0:5f g 0:3991; 0:4304; 0:4310f g 0:3451; 0:4075; 0:4721f g 0:4429; 0:5572; 0:6196f g
0:6009; 0:5696; 0:5690f g 0:5f g 0:4745; 0:5289; 0:6247f g 0:4579; 0:6041; 0:6938f g
0:6549; 0:5925; 0:5279f g 0:5255; 0:4711; 0:3753f g 0:5f g 0:5669; 0:6397; 0:7127f g
0:5571; 0:4428; 0:3804f g 0:5421; 0:3959; 0:3062f g 0:4331; 0:3603; 0:2873f g 0:5f g

8
>><

>>:

9
>>=

>>;
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Fig. 1 A complete framework of GDM with HFPRs
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Step 5: Calculate the group consensus index GCI H
5ð Þ
k

� �

(k ¼ 1; 2; 3) by Eq. (12): GCI H
5ð Þ
1

� �
¼ 0:5865;

GCI H
5ð Þ
2

� �
¼ 0:1708; GCI H

5ð Þ
3

� �
¼ 0:4964.

Step 6: Assume that GCI ¼ 0:1 and g ¼ 0:7. Because

GCI H
5ð Þ
k

� �
[ 0:1 for all k ¼ 1; 2; 3, we utilize Eq. (14) to

construct the modified HFPRs H
6ð Þ
k (k ¼ 1; 2; 3) as below:

H
6ð Þ
1 ¼

0:5f g 0:3642; 0:3854; 0:3838f g 0:3862; 0:4312; 0:5369f g 0:4376; 0:5176; 0:5681f g
0:6161; 0:5902; 0:5917f g 0:5f g 0:5461; 0:5836; 0:7275f g 0:5696; 0:6669; 0:7313f g
0:6260; 0:5745; 0:4776f g 0:4699; 0:4281; 0:2813f g 0:5f g 0:5740; 0:6252; 0:6956f g
0:5564; 0:4630; 0:4099f g 0:4457; 0:3424; 0:2739f g 0:4271; 0:3700; 0:3002f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H
6ð Þ
2 ¼

0:5f g 0:3863; 0:4106; 0:4165f g 0:3033; 0:3690; 0:4312f g 0:4052; 0:5225; 0:5954f g
0:6042; 0:5772; 0:5748f g 0:5f g 0:4699; 0:5360; 0:6217f g 0:3967; 0:5687; 0:6750f g
0:6705; 0:6089; 0:5472f g 0:5267; 0:4651; 0:3741f g 0:5f g 0:5410; 0:6195; 0:6937f g
0:5758; 0:4613; 0:3943f g 0:5648; 0:4165; 0:3194f g 0:4491; 0:3739; 0:3013f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

H
6ð Þ
3 ¼

0:5f g 0:4449; 0:4947; 0:4881f g 0:3918; 0:4579; 0:4976f g 0:5107; 0:6385; 0:6899f g
0:5639; 0:5194; 0:5255f g 0:5f g 0:4346; 0:4801; 0:5538f g 0:4874; 0:6188; 0:6988f g
0:6233; 0:5566; 0:5086f g 0:5447; 0:4985; 0:4170f g 0:5f g 0:6045; 0:6812; 0:7530f g
0:5055; 0:3729; 0:3186f g 0:5137; 0:3826; 0:3013f g 0:4036; 0:3257; 0:2519f g 0:5f g

8
>>><

>>>:

9
>>>=

>>>;

Then, utilize Eq. (11) to aggregate all of the HFPRs H
6ð Þ
k

(k ¼ 1; 2; 3) into the collective HFPR H
6ð Þ
c :

H 6ð Þ
c ¼

0:5f g 0:4078; 0:4404; 0:4388f g 0:3546; 0:4160; 0:4813f g 0:4518; 0:5708; 0:6312f g
0:5987; 0:5671; 0:5670f g 0:5f g 0:4817; 0:5344; 0:6396f g 0:4823; 0:6125; 0:6969f g
0:6531; 0:5906; 0:5255f g 0:5236; 0:4696; 0:3707f g 0:5f g 0:5705; 0:6433; 0:7159f g
0:5550; 0:4388; 0:3768f g 0:5358; 0:3933; 0:3051f g 0:4321; 0:3592; 0:2863f g 0:5f g

8
>><

>>:

9
>>=

>>;

Calculate the group consensus index GCI H
6ð Þ
k

� �

(k ¼ 1; 2; 3) by Eq. (12): GCI H
6ð Þ
1

� �
¼ 0:0368; GCI

H
6ð Þ
2

� �
¼ 0:0141; GCI H

3ð Þ
3

� �
¼ 0:0293.

Because GCI H
6ð Þ
k

� �
\0:1 for all k ¼ 1; 2; 3, H

6ð Þ
k

(k ¼ 1; 2; 3) are of acceptable consensus.

Step 7: Use Eq. (16) to aggregate the ith line of pref-

erences h
6ð Þ
ij;c (j ¼ 1; 2; 3; 4) in H

6ð Þ
c and derive the overall

performance values h
6ð Þ
i;c (i ¼ 1; 2; 3; 4) corresponding to

the alternatives xi (i ¼ 1; 2; 3; 4), which are shown as

follows:

h
6ð Þ
1;c ¼ 0:4255; 0:4787; 0:5107f g;

h
6ð Þ
2;c ¼ 0:5122; 0:5514; 0:6003f g;

h
6ð Þ
3;c ¼ 0:5605; 0:5501; 0:5287f g;

h
6ð Þ
4;c ¼ 0:5021; 0:4202; 0:3625f g

Step 8: Calculate the score functions s h
6ð Þ
i;c

� �

(i ¼ 1; 2; 3; 4) of the alternatives xi (i ¼ 1; 2; 3; 4) as fol-

lows: s h
6ð Þ
1;c

� �
¼ 0:4717; s h

6ð Þ
2;c

� �
¼ 0:5546; s h

6ð Þ
3;c

� �
¼

0:5464; s h
6ð Þ
4;c

� �
¼ 0:4282

According to Definition2.2, the ranking order of the four

alternatives is determined as x2 	 x3 	 x1 	 x4. Therefore,

the optimal alternative is x2.

6.2 Comparative Analysis and Discussions

In the following, we perform a comparison analysis

between the developed algorithm and the previous methods

in the existing literature and then highlight the main

characteristics and advantages of the developed algorithm.

6.2.1 Comparison with Zhu et al. [43]’ Method

Zhu et al. [43] defined the multiplicative consistency of

HFPRs and developed an optimization method to improve

the consistency of inconsistent HFPRs until they are

acceptably consistent. Zhu et al.’ method is briefly

reviewed as follows: Assume an HFPR H ¼ hij
� �

n�n
¼

h
r sð Þ
ij

�
�
�s ¼ 1; 2; . . .; lhij

n o� �

n�n
with the unacceptable con-

sistency, according to Eq. (15), we can obtain its NHFPR

�H ¼ �hij
� �

n�n
¼ �h

r sð Þ
ij

�
�
�s ¼ 1; 2; . . .; l

n o� �

n�n

(l ¼ max lhij
�
�i; j ¼ 1; 2; . . .; n; i 6¼ j

� �
) and the optimal

optimized parameter 1. Let Ĥ ¼ ĥij
� �

n�n
¼ ĥ

r sð Þ
ij

�
�
�s

n�
¼

1; 2; . . .; lgÞn�n be the modified HFPR, where ĥ
r sð Þ
ij ¼

�h
r sð Þ
ij þ x

r sð Þ
ij (i; j ¼ 1; 2; . . .; n, i\j, s ¼ 1; 2; . . .; l), xij ¼

x
r sð Þ
ij

�
�
�s ¼ 1; 2; . . .; l

n o
(i; j ¼ 1; 2; . . .; n, i\j) is the set of

adjusted valuables represented by a HFE, then we build the

model as follows:

min
x

2

n n� 1ð Þ
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

x
r sð Þ
ij

� �2
 !

ð17Þ

with the conditions that

x
r sð Þ
ij þ x

r sð Þ
ji ¼ 0

CI Ĥ
� �

�CI

(

ð18Þ

Therefore, Zhu et al. [43] built an optimization model as

below:

min
x

2

n n� 1ð Þ
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

x
r sð Þ
ij

� �2
 !

s:t: x
r sð Þ
ij þ x

r sð Þ
ji ¼ 0

CI Ĥ
� �

�CI

8
>>>>><

>>>>>:

ð19Þ

By solving this optimization model, we can obtain the

adjusted HFPR Ĥ ¼ ĥij
� �

n�n
¼ ĥ

r sð Þ
ij

�
�
�s ¼ 1; 2;

n�
. . .; l

o�

n�n
,

where ĥ
r sð Þ
ij ¼ �h

r sð Þ
ij þ x

r sð Þ
ij .

Compared to the developed algorithm in this paper, Zhu

et al. [43]’ optimization model needs to calculate all the
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adjusted valuables. The number of all the adjusted valuables

(¼ n n�1ð Þl
2

) is very large, especially when the number of

alternatives (=n) and the number of elements in each HFE of

a HFPR (=l) are very large. For example, suppose that the

number of alternatives (n = 10) and the number of elements

in each HFE of a HFPR (l = 5), then the number of all the

adjusted valuables needed in Zhu et al.’ optimization model

is 225. Thus, to input and output all these adjusted valuables

is a very complex task in using the MATLAB optimization

toolbox to resolve the model. In contrast, no the adjusted

variables are needed in our developed algorithm. In addition,

based on the adjusted valuables and the original NHFPR, the

modifiedHFPR can be constructed. Because the values of the

adjusted valuables are unconstrained, they can take the form

of any real numbers. As a result, the number of the modified

HFPRs Ĥ in Zhu et al.’ optimization model is very large.

Zhu et al.’ optimization model needs to calculate the cor-

responding consistent HFPRs
~̂
H of all of the modified

HFPRs Ĥ and then calculate the consistency indexes CI Ĥ
� �

of all of the modified HFPRs Ĥ, which is a considerably

time-consuming and inconvenient process. However, our

algorithm only needs to consider a modified HFPR in

Eq. (9) and then calculates the consistent HFPR and the

consistency index of this modified HFPR; thus, this process

is time-saving and very convenient. The computational

complexity of Zhu et al.’ optimization is much higher than

that of our algorithm. A high computational complexity

means a large amount of costs and time, which may not be

preferred in the practical GDM process. Furthermore, Zhu

et al.’ optimization model is a nonlinear programming

model and it is not easy to be solved. On the contrary, our

algorithm is not a nonlinear programming problem and we

can directly obtain a HFPR with acceptably multiplicative

consistency within several iterations by the developed

algorithm without intermediate valuables and the con-

struction process. Thus, our model is easier to solve than the

Zhu et al.’ method. Finally, the number of iterations and the

accuracy of modification can also be controlled by the

adjusted parameter d, where d is determined by the decision

makers in accordance with their knowledge and require-

ment over the specific decision-making problem. That is,

our algorithm is interactive with the decision makers and

thus is flexible and can match the practical group decision-

making situation perfectly. In contrast, Zhu et al.’ opti-

mization model has no any interactive action with the

decision makers.

6.2.2 Comparison with Liao et al. [13]’ Method

Liao et al. [13] investigated the multiplicative consistency

and consensus of hesitant fuzzy preference relations. First,

Liao et al. defined the concept of multiplicative consistent

HFPR as follows: Let H ¼ hij
� �

n�n
be a HFPR, then H ¼

hij
� �

n�n
is multiplicative consistent if

h
q sð Þ
ij ¼

0; hik; hkj
� �

2 0f g; 1f gð Þ; 1f g; 0f gð Þf g;

h
q sð Þ
ik h

q sð Þ
kj

h
q sð Þ
ik h

q sð Þ
kj þ 1� h

q sð Þ
ik

� �
1� h

q sð Þ
kj

� � ; otherwise, for all i� k� j:

8
>><

>>:

ð20Þ

where h
q sð Þ
ik and h

q sð Þ
kj are the sth smallest values in hik and

hkj, respectively.

However, in Eq. (20), the transitivity of a HFPR is

restricted by the condition: i� k� j; that is, Eq. (20) holds

only for the upper triangular of the HFPR, while the transi-

tivity of a HFPR in Definition 3.1 is unconstrained which

satisfies for all i; k; j ¼ 1; 2; . . .; n and is more general. If

Eq. (20) is used to check the consistency of a HFPR for all

i; k; j ¼ 1; 2; . . .; n, the transitivity and the consistency

properties sometimes do not hold. This is because that when

k comes from the rowof lower triangularmatrix, the equation

does not hold. For example (see Example 2 in [13]):

H ¼

0:5f g 0:1; 0:4f g 0:046; 0:727f g 0:036; 0:434f g
0:6; 0:9f g 0:5f g 0:3; 0:8f g 0:097; 0:903f g

0:273; 0:954f g 0:2; 0:7f g 0:5f g 0:2; 0:7f g
0:566; 0:964f g 0:097; 0:903f g 0:3; 0:8f g 0:5f g

8
>><

>>:

9
>>=

>>;

is a consistent HFPR in [13], and h23¼ 0:3;0:8f g. If we

relax the condition i�k�j, it follows that h23¼

h
qð1Þ
21

h
qð1Þ
13

h
qð1Þ
21

h
qð1Þ
13

þ 1�h
qð1Þ
21ð Þ 1�h

qð1Þ
13ð Þ;

h
qð2Þ
21

h
qð2Þ
13

h
qð2Þ
21

h
qð2Þ
13

þ 1�h
qð2Þ
21ð Þ 1�h

qð2Þ
13ð Þ


 �

¼

0:0674;0:9599f g. But 0:3;0:8f g6¼ 0:0674;0:9599f g, and

thenh236¼



h
q 1ð Þ
21

h
q 1ð Þ
13

h
q 1ð Þ
21

h
q 1ð Þ
13

þ 1�h
q 1ð Þ
21ð Þ 1�h

q 1ð Þ
13ð Þ;

h
q 2ð Þ
21

h
q 2ð Þ
13

h
q 2ð Þ
21

h
q 2ð Þ
13

þ 1�h
q 2ð Þ
21ð Þ 1�h

q 2ð Þ
13ð Þ

�

.

From Eq. (20), we generally cannot derive the rela-

tionship h
q sð Þ
ij ¼ h

q sð Þ
ik

h
q sð Þ
kj

h
q sð Þ
ik

h
q sð Þ
kj

þ 1�h
q sð Þ
ikð Þ 1�h

q sð Þ
kjð Þ (for all i; k; j ¼ 1;

2; . . .; n) any more, and thus Eq. (20) loses the original

foundation of multiplicative consistency. In other words,

the multiplicative consistency conditions given in Eq. (20)

may be too strict for a HFPR.

Second, in Liao et al.’s method, the adjusted hesitant

fuzzy weighted averaging (AHFWA) operator or the

adjusted hesitant fuzzy weighted geometric (AHFWG)

operator is used to fuse all of the individual HFPRs into the

collective HFPR. It is noticed that such collective HFPR

derived by the AHFWA or AHFWG operator may not keep

the consistency and the acceptable consistency. In contrast,

our method uses Eq. (11) to fuse all of the individual

HFPRs into the collective HFPR. Theorem 3.2 shows that

such collective HFPR still keeps the consistency and the

acceptable consistency.
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Third, Liao et al. [13] developed some iterative algo-

rithms to improve the consistency and consensus levels of

individual HFPRs. However, the convergence of these

algorithms is not been clearly stated and strictly proved. In

contrast, the convergence of the proposed algorithm in this

study is illustrated by several theorems. These results lay a

solid theoretical foundation for the effectiveness and

practicality of the developed method.

Finally, Liao et al. [13] only separately discussed the

consistency and the consensus, and did not integrate them

together. Liao et al. [13] did not argue that whether the

consistency of the adjusted HFPRs is still been kept in a

consensus reaching process. However, in this study, the

consistency model and the consensus model are organically

combined together. Theorem 4.1 ensures that each indi-

vidual HFPR is of multiplicative consistency or acceptably

multiplicative consistency when the predefined consensus

level is achieved.

In conclusion, we develop a more flexible and reliable

decision support model for solving GDM problems with

HFPRs while accounting for the consistency and con-

sensus. The numerical examples and comparison with

other approaches in the literature illustrate the effective-

ness, reasonableness and feasibility of the developed

method.

7 Conclusions

In this paper, we have investigated the hesitant fuzzy

group decision-making problem in which all the experts’

preference information is represented by HFPRs. First, an

individual consistency index, which is based on the

multiplicative consistency, has been developed to mea-

sure the consistency degree of each HFPR furnished by

the group of experts. A consistency improving process

has been designed to convert an unacceptably consistent

HFPR to an acceptably consistent one. Then, we have

defined a group consensus index to measure the con-

sensus level among individual HFPRs. A consensus

reaching process has been proposed to help the group

reach a predefined consensus level. Furthermore, in order

to make our approaches, more applicable, a complete

framework, which simultaneously addresses the individ-

ual consistency and group consensus, has been presented

to aid the whole GDM process based on HFPRs. Finally,

we have given a numerical example to demonstrate the

application of the proposed models and to verify the

theoretical results. Additionally, a comparative analysis

has been conducted to validate the solution results yiel-

ded by the proposed method with those by other

methods.

Based on the comparative analysis between our

approach and the existing hesitant fuzzy group decision-

making methodologies in the literature, we can find that

our method is the most comprehensive and convincing

one among them as it takes the integral framework of

hesitant fuzzy group decision making into account,

including the consistency checking and improving pro-

cess, the consensus checking and reaching process, and

the selection process, while all the existing methods

only focus on one or two process(es). Moreover, our

approach is very flexible, convenient, and time-saving,

and thus can fit well to the practical decision-making

process.
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Appendix

The proof of Theorem 3.1

CI H tþ1ð Þ
� �

¼ d H tþ1ð Þ; ~H tþ1ð Þ
� �

� d H tþ1ð Þ; ~H tð Þ
� �

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln h
tþ1ð Þ
ij

� �r sð Þ
� 

� ln h
tþ1ð Þ
ji

� �r sð Þ
� 

� ln ~h
tð Þ
ij

� �r sð Þ
� 

þ ln ~h
tð Þ
ji

� �r sð Þ
� 

2

6
6
6
4

3

7
7
7
5

2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

1� dð Þ ln h
tð Þ
ij

� �r sð Þ
� 

þ d ln ~h
tð Þ
ij

� �r sð Þ
� 

� 1� dð Þ ln h
tð Þ
ji

� �r sð Þ
� 

� d ln ~h
tð Þ
ji

� �r sð Þ
� 

� ln ~h
tð Þ
ij

� �r sð Þ
� 

þ ln ~h
tð Þ
ji

� �r sð Þ
� 

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

1� dð Þ ln h
tð Þ
ij

� �r sð Þ
� 

� 1� dð Þ ln h
tð Þ
ji

� �r sð Þ
� 

� 1� dð Þ ln ~h
tð Þ
ij

� �r sð Þ
� 

þ 1� dð Þ ln ~h
tð Þ
ji

� �r sð Þ
� 

2

6
6
6
4

3

7
7
7
5

2

¼ 2 1� dð Þ2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln h
tð Þ
ij

� �r sð Þ
� 

� ln h
tð Þ
ji

� �r sð Þ
� 

� ln ~h
tð Þ
ij

� �r sð Þ
� 

þ ln ~h
tð Þ
ji

� �r sð Þ
� 

2

6
6
6
4

3

7
7
7
5

2

¼ 1� dð Þ2d H tð Þ; ~H tð Þ
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� �

which completes the proof. Moreover, CI H tð Þ� �
� 0, for

each t. Thus, the sequence CI H tð Þ� �� �
is monotonically

decreasing and has lower bounds.

The proof of Theorem 3.2 (1) According to Eq. (11), for

all i; j ¼ 1; 2; . . .; n, we have
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According to Definition 2.4, Hc is a HFPR.
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� �

n�n
¼ ~h

r sð Þ
ij;c

�
�
�s ¼ 1; 2; . . .; l

n o� �
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the multiplicative consistent HFPR of Hc ¼ hij;c
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, then we have

CI Hcð Þ ¼ d Hc; ~Hc

� �
¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln h
r sð Þ
ij;c

� �
� ln h

r sð Þ
ji;c

� ��

� ln ~h
r sð Þ
ij;c

� �
þ ln ~h

r sð Þ
ji;c

� ��2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

ln
Ym

k¼1

�h
r sð Þ
ij;k

� �kk
 !

� ln
Ym

k¼1

�h
r sð Þ
ji;k

� �kk
 ! 

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

t¼1

h
r sð Þ
it;c � hr sð Þ

tj;c
n

s !

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

t¼1

h
r sð Þ
jt;c � hr sð Þ

ti;c
n

s !!2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

Xm

k¼1

kk ln �h
r sð Þ
ij;k

� �
�
Xm

k¼1

kk ln �h
r sð Þ
ji;k

� �
 

�
Xm

k¼1

kk ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

t¼1

�h
r sð Þ
it;k � �hr sð Þ

tj;k
n

s !

þ
Xm

k¼1

kk ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

t¼1

�h
r sð Þ
jt;k � �hr sð Þ

ti;k
n

s !!2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

Xm

k¼1

kk ln �h
r sð Þ
ij;k

� �
�
Xm

k¼1

kk ln �h
r sð Þ
ji;k

� �
 

�
Xm

k¼1

kk ln ~h
r sð Þ
ij;k

� �
þ
Xm

k¼1

kk ln ~h
r sð Þ
ji;k

� �
!2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

Xm

k¼1

kke
r sð Þ
ij;k

 !2

¼ 2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

Xm

k¼1

k2k er sð Þ
ij;k

� �2
þ2
Xm�1

p¼1

Xm

q¼pþ1

kpkqe
r sð Þ
ij;p e

r sð Þ
ij;q

 !

¼
Xm

k¼1

k2k
2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;k

� �2
" #

þ 2
Xm�1

p¼1

Xm

q¼pþ1

kpkq
2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;p e

r sð Þ
ij;q

" #

�
Xm

k¼1

k2k
2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;k

� �2
" #

þ 2
Xm�1

p¼1

Xm

q¼pþ1

kpkqmax
2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;p

� �2
;

(

2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;q

� �2
)

�
Xm

k¼1

kk

 !2

max
1� k�m

2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;k

� �2
( )

¼ max
1� k�m

2

n n� 1ð Þl
Xn�1

i¼1

Xn

j¼iþ1

Xl

s¼1

er sð Þ
ij;k

� �2
( )

¼ max
1� k�m

CI Hkð Þf g

(3) can be directly derived from (2).

The proof of Theorem 4.1 (1) According to Eqs. (11),

(12) and (14), for all k ¼ 1; 2; . . .;m, we have
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n o
(k ¼ 1; 2; . . .;m) be the

HFPR sequence in the iteration t?1 derived by Eq. (14).

From Eq. (14), we know that H
tþ1ð Þ
k is the combination of

H
tð Þ
k and H
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c . According to Theorem 3.2, we have
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. Consequently, max
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.
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