
Stability Analysis and Fuzzy Control for Uncertain Delayed T–S
Nonlinear Systems

Jiali Yu1 • Zhang Yi2

Received: 22 January 2016 / Revised: 22 April 2016 / Accepted: 16 May 2016 / Published online: 3 June 2016

� Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Abstract This paper studies the global exponential sta-

bility and fuzzy control for Takagi–Sugeno (T–S) nonlin-

ear systems with bounded uncertain delays. Most existing

T–S methods represent global nonlinear systems by con-

necting local linear systems with linguistic description.

However, many complex systems cannot be represented by

linear systems. In this paper, some local nonlinear systems

having nice dynamic properties are employed to represent a

global complex system. Moreover, the delays are any

uncertain bounded continuous functions. Sufficient condi-

tions for global exponential stability of these delayed glo-

bal complex systems are derived. Criteria for design of

nonlinear fuzzy controllers to feedback control the stability

of global nonlinear fuzzy systems are given.

Keywords Global exponential stability � Fuzzy control �
Takagi–Sugeno (T–S) model � Nonlinear � Bounded

uncertain delays

1 Introduction

Since Tanaka and Sugeno proposed Takagi–Sugeno (T–S)

fuzzy model in 1985 [1], a great number of results have

been reported for T–S systems [2–4]. The T–S model gives

an effective method to combine some simple local systems

with their linguistic description to represent complex

nonlinear dynamic systems. Control design and stability

analysis for T–S fuzzy systems has received increasing

attention [5–7]. In [8], the T–S fuzzy model approach was

extended to the stability analysis and control design for

both continuous and discrete-time nonlinear systems with

time delay. Some excellent and important works have been

done in [9–11] for solving the control design problem for

interconnected nonlinear systems with unmeasured states.

Time delays in dynamic systems have been studied for

many years. It is well known that delays can affect

dynamics of some nonlinear systems, a stable system may

become unstable by introducing some delays [12]. In recent

years, some authors have paid their attention to control of

nonlinear systems with delays by T–S fuzzy models. There

exist two kinds of delays: one is continuous, see, for

example, [13, 14], and the other is discrete, see, for

example, [15, 16]. The non-delayed systems are described

by ordinary differential equations which are easy to ana-

lyze. Because of the characters of the delay, the time-de-

layed systems are represented by stochastic differential

equations which do form a nonMarkovian process. Gen-

erally, there is no method to obtain the explicit solution of

these stochastic differential equations. We can only use

different approximate methods to analyze them theoreti-

cally. Budini et al. use variable transformation method

[17], Frank use Novikov theorem [18], and perturbation

theory [19] to discuss the dynamics of delayed nonlinear

stochastic system. In control engineering, delays are diffi-

cult to be known exactly, so stability for systems with

uncertain delays is quite interesting [20]. In this paper, the

delays are assumed to be any uncertain bounded continu-

ous functions. We do not require the delays to be differ-

entiable, and it is also not necessary to know the bounds of
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the delays. By constructing a novel Lyapunov function and

supposing the delays to be bounded, a time partitioning

method has been developed to deal with the uncertain

delays. It provides a useful idea to deal with this kind of

future research.

Although the T–S fuzzy control design has achieved a

great progress, in most reported stability results of T–S

model, linear systems are used to form global nonlinear

fuzzy systems [21, 22]. However, there are many complex

nonlinear fuzzy systems cannot be connected by local

linear systems. In this paper, unlike using local linear

systems in previous study, a class of nonlinear systems

with delays having nice dynamical properties [23] will be

used as local systems to form some global complex non-

linear fuzzy systems by T–S method. Stability of T–S

model fuzzy systems is quite important for practical

applications. It has been widely studied by many authors,

see, for example, [7]. It is well known in control engi-

neering that the global exponential stability (GES) of

nonlinear systems is more interesting than asymptotic sta-

bility and other stability. Our stability conditions will

guarantee the global exponential stability of the global

complex nonlinear fuzzy delayed systems.

So there are two differences between this work and the

existing ones: one is that each local system in this paper is

nonlinear system but not linear system, and the other is that the

delay is uncertain in each local system. Many complex sys-

tems are described by the model in this paper. In the first

aspect, the nonlinear function will introduce a lot of obstacles

to the stability analysis. The existing Lyapunov function is not

useful, a novel Lyapunov function which include this non-

linear function should be constructed. We will derive stability

conditions: some of them will be represented in the form of

Linear Matrix Inequalities (LMIs), which could be solved by

numeric method efficiently, and others will be represented by

simple algebraic inequalities and are easy to check.

This paper is organized as follows: In Sect. 2, some

preliminaries for delayed fuzzy control systems are given.

In Sect. 3, conditions for global exponential stability of

fuzzy systems with delays are proposed and proved. In

Sect. 4, state feedback stabilization of delayed fuzzy con-

trol systems are discussed. In Sect. 5, simulations are

given. This paper is concluded in Sect. 6.

2 Preliminaries

Consider a T–S fuzzy time-delay model which is composed

of r plant rules. For each s ¼ 1; . . .; r, the sth plant rule can

be represented as follows:

Plant Rule s : IF a1ðtÞ is M1s AND � � � AND apðtÞ is

Mps; THEN

_xðtÞ ¼ �xðtÞ þWsgðxðtÞÞ þ Jsg
�
xðt � ssðtÞÞ

�
þ PsuðtÞ

ð1Þ

for t� 0, where xðtÞ ¼ x1ðtÞ; . . .; xnðtÞð ÞT is the state vec-

tor, a1ðtÞ; . . .; apðtÞ are the premise variables, and each

Misði ¼ 1; . . .; pÞ is the fuzzy set corresponding to aiðtÞ and

plant rule s. Ws ¼ Ws
ij

� �

n�n
, Js ¼ Jsij

� �

n�n
; and Ps ¼

Ps
ij

� �

n�m
are constant matrices. u(t) is the control input

vector, and ssðtÞ is the time delay which satisfies 0� ss
ðtÞ� s.

For any x 2 Rn, gðxÞ ¼ ðg
�
x1

�
; . . .; g

�
xnÞ
�T

, and the

function g is defined as follows:

gðsÞ ¼ jsþ 1j � js� 1j
2

; s 2 R:

The function g is continuous but nondifferentiable. So the

local system is nonlinear, which is the main feature of this

paper different from others.

Let MisðaiðtÞÞ be the membership function of the fuzzy

set Mis at the position aiðtÞ and denote

wsðaðtÞÞ ¼
Yp

i¼1

MisðaiðtÞÞ;

hsðaðtÞÞ ¼
wsðaðtÞÞPr
i¼1 wiðaðtÞÞ

� 0;
Xr

s¼1

hsðaðtÞÞ ¼ 1:

Then the overall delayed fuzzy control system is infer-

red as

_xðtÞ ¼ �xðtÞ þ
Xr

s¼1

hsðaðtÞÞ
h
WsgðxðtÞÞ þ Jsg

�
xðt � ssðtÞÞ

�

þ PsuðtÞ
i
:

ð2Þ

For each solution, the initial value is assumed to be

xðtÞ ¼ /ðtÞ; t 2 ½�s; 0�; where /ðtÞ ¼ /1ðtÞ; . . .;/nðtÞð ÞT
is a vector continuous function. We define

k/k ¼ sup
�s� h� 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1ðhÞ þ � � � þ /2
nðhÞ

q
:

In this paper, for a matrix S, we will use S[ 0 or S\0

to denote that S is a symmetric positive matrix or a sym-

metric negative matrix, respectively.

Lemma 1 [23] Let Q be any of a n� nmatrix, for all

x; y 2 Rn, we have for any constant k[ 0 and any sym-

metric positive matrix S[ 0 that

2xTQy� kxTQS�1QTxþ 1

k
yTSy:

Lemma 2 For above function g, we have
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g2ðsÞ� s � gðsÞ� 2

Z s

0

gðhÞdh� s2;

and

Z s

0

gðhÞdh\s � gðsÞ:

Proof Three cases will be considered to complete the

proof.

Case 1: s� 1. Then, gðsÞ ¼ 1; g2ðsÞ ¼ 1; s � gðsÞ ¼ s:

2
R s

0
gðhÞdh ¼ 2

R 1

0
hdhþ 2

R s
1
dh ¼ 2s� 1: Thus, 1� s�

2s� 1� s2; and s� 1
2
\s: So, g2ðsÞ� s � gðsÞ� 2

R s
0
gðhÞ

dh� s2; and
R s

0
gðhÞdh\s � gðsÞ.

Case 2: �1\s\1. Then, gðsÞ ¼ s; g2ðsÞ ¼ s2; s � gðsÞ ¼
s2: 2

R s
0
gðhÞdh ¼ 2

R s
0
hdh ¼ s2: Thus, s2

2
\s2: So,

g2ðsÞ� s � gðsÞ� 2
R s

0
gðhÞdh� s2, and

R s
0
gðhÞdh\s � gðsÞ.

Case 3: s� � 1. Then, gðsÞ ¼ �1; g2ðsÞ ¼ 1; s � gðsÞ ¼
�s: 2

R s
0
gðhÞdh ¼ �2

R 0

s
gðhÞdh ¼ 2

R�1

s
dh� 2

R 0

�1
hdh ¼

�2s� 1: Thus, 1� � s� � 2s� 1� s2, and �s� 1
2
\�

s: So, g2ðsÞ� s � gðsÞ� 2
R s

0
gðhÞdh� s2; and

R s
0
gðhÞdh\

s � gðsÞ.
The proof is complete. h

Then, from Lemma 1 and Lemma 2, it follows that

Lemma 3 For above function g and x ¼ x1; . . .; xnð ÞT2
Rn , it holds that

gTðxÞgðxÞ� gTðxÞx ¼ xTgðxÞ� 2
Xn

i¼1

Z xi

0

gðhÞdh� xTx

and

Xn

i¼1

Z xi

0

gðhÞdh� gTðxÞx:

Dþ is used to denote the upper right-hand Dini

derivative in this paper. For any continuous function g :
R ! R , the upper right-hand Dini derivative of g(t) is

defined as DþgðtÞ ¼ limh!0þ sup
gðtþhÞ�gðtÞ

h . It is easy to

see that if g(t) is locally Lipschitz then jDþgðtÞj\þ1.

3 Stability Analysis of Free Fuzzy Delayed
Systems

We first introduce a class of fuzzy system with time delays

_xðtÞ ¼ �xðtÞ þ
Xr

s¼1

hsðaðtÞÞ
h
WsgðxðtÞÞ þ Jsgðxðt� ssðtÞÞÞ

i
:

ð3Þ

It is a global nonlinear fuzzy system and its local

delayed systems are

_xðtÞ ¼ �xðtÞ þWsgðxðtÞÞ þ Jsgðxðt � ssðtÞÞÞ: ð4Þ

Lemma 4 [23] Fuzzy system (3)is globally exponentially

stable, if there exist constants �[ 0and P� 1such that

kxðtÞk�Pk/ke��t for all t� 0.

Theorem 1 For any s ¼ 1; . . .; r, if there exists a diag-

onal matrix C[ 0and some constants ks [ 0such that

�C þ CWs þ
ks

2
CJsC

�1JTs C þ 1

ks
C\0; ð5Þ

then the free fuzzy system (3) is globally exponentially

stable.

Proof Since 0� ssðtÞ� s, by (5), there exists a sufficient

small constant �[ 0 such that

�C � C þ CWs þ
ks

2
CJsC

�1JTs C þ e2�s

2ks
C\0:

For C ¼ diagðciÞ[ 0ði ¼ 1; . . .; nÞ, we choose a differ-

entiable function

VðtÞ ¼ e2�t
Xn

i¼1

ci

Z xiðtÞ

0

gðsÞds

The time derivative of V(t) along the trajectories of (3) is

given by

_VðtÞ ¼ 2�e2�t
Xn

i¼1

ci

Z xiðtÞ

0

gðsÞdsþ e2�t
Xn

i¼1

cigðxiðtÞÞ _xiðtÞ

¼ 2�VðtÞ þ e2�tgTðxðtÞÞC _xðtÞ

¼ 2�VðtÞ þ e2�t
Xr

s¼1

hsðaðtÞÞ
h
� gTðxðtÞÞCxðtÞ

þ gTðxðtÞÞCWsgðxðtÞÞ

þ gTðxðtÞÞCJsg
�
xðt � ssðtÞÞ

�i
:

From Lemma 1 in last section, we know that

_VðtÞ� 2�VðtÞ þ e2�t
Xr

s¼1

hsðaðtÞÞ
h
� gTðxðtÞÞCxðtÞ

þ gTðxðtÞÞCWsgðxðtÞÞ þ
1

2
ksg

TðxðtÞÞCJsC�1JTs CgðxðtÞÞ

þ 1

2ks
gT
�
xðt � ssðtÞÞ

�
Cg
�
xðt � ssðtÞÞ

�i
:

Since 0� ssðtÞ� s, we have

Vðt � ssðtÞÞ� e�2�s 1

2
e2�tgT

�
xðt � ssðtÞÞ

�
Cg
�
xðt � ssðtÞÞ

�
;

So using the Lemma 2 and Lemma 3 , it follows that

_VðtÞ�
Xr

s¼1

hsðaðtÞÞ
h
e2�tgTðxðtÞÞ

�
� C þ �C þ CWs

þ ks

2
CJsC

�1JTs C
�
gðxðtÞÞ þ e2�s

ks
Vðt � ssðtÞÞ

i
;
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From �C þ �C þ CWs þ ks
2
CJsC

�1JTs C\
e�s

2ks

�
� 1

2
C
�
; we

can get that

_VðtÞ� e2�s
Xr

s¼1

hsðaðtÞÞ
ks

h
� 1

2
gTðxðtÞÞCgðxðtÞÞe2�t þ Vðt � ssðtÞÞ

i

� e2�s
Xr

s¼1

hsðaðtÞÞ
ks

h
� VðtÞ þ Vðt � ssðtÞÞ

i
:

ð6Þ

Let cmax and cmin denote the largest and smallest ones of

ciði ¼ 1; . . .; nÞ, respectively. Obviously, cmax [ cmin [ 0.

For any a[ 1, by the Lemma 2 , we can see that for all

t 2 ½�s; 0�

VðtÞ ¼ 1

2
e2�t
Xn

i¼1

cig
2ðxiðtÞÞ\

1

2
acmax

Xn

i¼1

x2
i ðtÞ

� 1

2
acmax k / k2 :

ð7Þ

We will prove that VðtÞ\ 1
2
acmax k / k2 for all t� 0.

If this is not true, there must exist a t1 [ 0 such that

Vðt1Þ ¼
1

2
acmax k / k2 and VðtÞ\ 1

2
acmax k / k2, for all

t 2 ½�s; t1Þ. Hence, _Vðt1Þ� 0. However, from (7) we have

_Vðt1Þ�e2�s
Xr

s¼1

hsðaðt1ÞÞ
ks

1

2
acmaxk/k2�1

2
acmaxk/k2

� �
¼0:

This leads to a contradiction and it proves that

VðtÞ\ 1
2
acmax k / k2.

By the definition of V(t), we have

VðtÞ� 1

2
e2�t
Xn

i¼1

cig
2ðxiðtÞÞ�

1

2
cmine

2�tg2ðxiðtÞÞ:

Hence, jgðxiðtÞÞj �
ffiffiffiffiffiffiffiffi
2VðtÞ
cmin

q
e��t\

ffiffiffiffiffiffiffiffi
acmax

cmin

q
k / k e��t: Then

DþjxiðtÞj� jxiðtÞj þ
Xn

j¼1

�
jWs

ijj þ jJsijje�s
�
�
ffiffiffiffiffiffiffiffiffiffiffi
acmax

cmin

r
k/ke��t:

jxiðtÞj � k/k
" 

1 �

Pn
j¼1

�
jWs

ijj þ jJsijje�s
� ffiffiffiffiffiffiffiffi

acmax

cmin

q

1 � �

!

e�t

þ

Pn
j¼1

�
jWs

ijj þ jJsijje�s
� ffiffiffiffiffiffiffiffi

acmax

cmin

q

1 � �
e��t

#

:

The proof is complete. h

From Theorem 1, we can get the condition to guarantee

the exponential stability of the nonlinear time-delay fuzzy

systems of (3). To check the inequalities of (5), it needs to

find a common diagonal matrix C[ 0. Generally, it is not

easy to solve inequalities of (5) to find such a common

diagonal matrix C[ 0. However, we can rewrite the

inequalities in (5) in the form of linear matrix inequalities

(LMIs). LMIs can be numerically solved efficiently.

Corollary 1 If there exists a common matrix C[ 0and

constants ks [ 0ðs ¼ 1; . . .; rÞsuch that the following LMI’s

hold

�C þ CWs þ
1

2ks
C CJs

JTs C � 2

ks
C

2

64

3

75\0; ðs ¼ 1; . . .; rÞ;

then the fuzzy system (3) is globally exponentially stable.

Corollary 2 The free fuzzy system (3) is globally expo-

nentially stable if
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax JsJTs
� �q

� 1
�
I þWs\0; ðs ¼ 1; . . .; rÞ;

where I is the n� n identity matrix.

Proof Let C ¼ I, and choose ks ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax JsJTs

� �q ; if kmax JsJ
T
s

� �
6¼ 0

! þ1; otherwise :

8
><

>:
. We can derive the

above result from Theorem 1 directly. The proof is com-

plete. h

It is hard to check the above matrix inequalities if the

dimensions of the matrices are much high. In the following

Theorem, we will derive some global exponential stability

conditions which will be presented in some simple alge-

braic inequalities.

Theorem 2 If �1 þWs
ii þ

Pn
j¼1

h
jWs

ijjð1 � dijÞ þ jJsijj
i

\0, where

dij ¼
1; i ¼ j

0; i 6¼ j;

	
i ¼ 1; . . .; n; s ¼ 1; . . .; r;

then, the free fuzzy system (3) is globally exponentially

stable.

Proof For any delays ssðtÞðs ¼ 1; . . .; rÞ, since

0� ssðtÞ� s, the free fuzzy system of (3) can be rewritten

as

_xiðtÞ ¼ � xiðtÞ þ
Xr

s¼1

hsðaðtÞÞ

�
Xn

j¼1

�
Ws

ijgðxjðtÞÞ þ Jsijgðxjðt � ssðtÞÞÞ
�

" #

:

ð8Þ

Then, it follows that
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DþjxiðtÞj � � jxiðtÞj þ
Xr

s¼1

hsðaðtÞÞ
h
Ws

iijgðxiðtÞÞj

þ
Xn

j¼1

�
jWs

ijjð1 � dijÞjgðxjðtÞÞj

þ jJsijjjgðxjðt � ssðtÞÞÞj
�i
: ð9Þ

Denote gis ¼ �
"

�� 1 þWs
ii þ

Pn
j¼1

h
jWs

ijjð1 � dijÞ þ e�s

jJsijj
i
#

; and let r ¼ min1� i� n;1� s� r gisð Þ. Obviously,

r[ 0. Define ziðtÞ ¼ jxiðtÞje�t; for all t� � s; since

jgðxiðtÞÞj � jxiðtÞj, it follows from (9) that

DþziðtÞ�
Xr

s¼1

hsðaðtÞÞ
h�

� 1 þWs
ii þ �

�
ziðtÞ

þ
Xn

j¼1

�
jWs

ijjð1 � dijÞzjðtÞ þ e�sjJsijjzjðt � ssðtÞÞ
�i
:

ð10Þ

For any constant a[ 1, it is easy to see that

ziðtÞ ¼ j/iðtÞje�t � k / k \a k / k, for all t 2 ½�s; 0�. We

will prove that ziðtÞ\a k / k ði ¼ 1; . . .; nÞ for all t� 0.

Otherwise, then there must exist some i and a time t1 [ 0

such that ziðt1Þ ¼ a k / and

zjðtÞ
\a k / k; j ¼ i; for t 2 ½�s; t1Þ

� a k / k; j 6¼ i; for t 2 ½�s; t1�:

8
<

:

Then, we have Dþziðt1Þ� 0. But on the other hand, it

follows from (10) that

Dþziðt1Þ�
Xr

s¼1

hsðaðt1ÞÞ
"
�
� 1 þWs

ii þ �
�
a k / k

þ a k / k
Xn

j¼1

�
jWs

ijjð1 � dijÞ þ e�sjJsijj
�
#

¼� a k / k
Xr

s¼1

hsðaðt1ÞÞ � gis

� � ra k / k
\0:

This is a contradiction and then ziðtÞ\a k / k ði ¼
1; . . .; nÞ for all t� 0.

Letting a ! 1, we have ziðtÞ� k / k for all t� 0. Then,

it follows that jxiðtÞj � k / k e��t for all t� 0. The proof is

complete. h

The above theorems provide some conditions to guar-

antee the exponential stability of the free fuzzy systems of

(3) subject to any uncertain continuous bounded delays.

4 Fuzzy Feedback Controller Design

In this section, we will design a fuzzy state feedback

controller for system (2) based on the results of the pre-

vious section. For each l ¼ 1; . . .; r, consider the following

fuzzy control law:

Regulator Rule l: IF a1ðtÞ is M1l AND � � � AND apðtÞ is

Mpl; THEN

uðtÞ ¼ �KlgðxðtÞÞ

where each Kl ¼ klij

� �
is a m� n matrix.

The overall state feedback fuzzy controller can be

inferred as

uðtÞ ¼ �
Xr

l¼1

hlðaðtÞÞKlgðxðtÞÞ: ð11Þ

Using the above fuzzy feedback controller, from (2), we

get the closed loop delayed fuzzy system

_xðtÞ ¼
Xr

s;l¼1

hsðaðtÞÞhlðaðtÞÞ
"

� xðtÞ þ
�
Ws � PsKl

�
gðxðtÞÞ

þ Jsgðxðt � ssðtÞÞÞ
#

: ð12Þ

Similar to the analysis of the last section, we have the

following theorems which will provide some criteria for

the selection of the matrices of Klðl ¼ 1; . . .; rÞ such that

the fuzzy system (12) is globally exponentially stable.

Theorem 3 If there exists a diagonal matrix C[ 0and

some constants cs [ 0such that

�C þ C Ws � PsKlð Þ þ cs
2
CJsC

�1JTs C þ 1

2cs
C\0 ð13Þ

or the LMI’s

�C þ C Ws � PsKlð Þ þ 1

2cs
C CJs

JTs C � 2

cs
C

2

664

3

775\0

for s; l ¼ 1; . . .; r, then the fuzzy system (2)can be globally

exponentially stabilized by the fuzzy controller (11).

Corollary 3 If
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax JsJTs
� �q

� 1
�
I þ

�
Ws� PsKl

�
\0,

for s; l ¼ 1; . . .; r, where I is the n� n identity matrix. Then

the fuzzy system (2) can be globally exponentially stabi-

lized by the fuzzy controller (11).

Theorem 4 Suppose that

� 1 þWs
ii �

Xm

p¼1

Ps
ipk

l
pi þ

Xn

j¼1

�






Ws

ij �
Xm

p¼1

Ps
ipk

l
pj







� ð1 � dijÞ þ Jsij










" #

\0

J. Yu and Z.Yi: Stability Analysis and Fuzzy Control for Uncertain 1035

123



for all i ¼ 1; . . .; n and s; l ¼ 1; . . .; r , where dij ¼
1; i ¼ j

0; i 6¼ j

	
then, the fuzzy system (2) can be globally

exponentially stabilized by the fuzzy controller (11).

Since
Pr

s;l¼1 hsðaðtÞÞhlðaðtÞÞ ¼
Pr

s¼1 hsðaðtÞÞ
Pr

l¼1 hl
�

ðaðtÞÞÞ ¼ 1, the proofs of the above theorems can be

derived by some slight modifications to the proofs of the

theorems in last section. The details are omitted.

By solving the inequalities in the above theorems, the

controllers can be obtained directly .

5 Simulations

In this section, we will give an example to illustrate the

above theory. Consider the following T–S fuzzy time-delay

system:

_x1ðtÞ¼� x1ðtÞ�g
�
x1ðtÞ

�
�
�
1þ sin2 x2ðtÞ

�
�g
�
x2ðtÞ

�

� sin2 x2ðtÞþg
�
x1ðt� sðtÞÞ

�
�cos2 x2ðtÞ

þg
�
x2ðt� sðtÞÞ

�
� ð3sin2 x2ðtÞ�1Þ�3uðtÞ

_x2ðtÞ¼� x2ðtÞ�g
�
x1ðtÞ

�
�
�
1�6sin2 x2ðtÞ

�
�g
�
x2ðtÞ

�

�
�
7þ sin2 x2ðtÞ

�
þg
�
x1ðt� sðtÞÞ

�

�
�
�1þ2cos2 x2ðtÞ

�
þg
�
x2ðt� sðtÞÞ

�

�2cos2 x2ðtÞ�4uðtÞ

::

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð14Þ

The delay sðtÞ ¼ 1=ð1 þ jtjÞ is bounded, continuous but

not differentiable.

Define some matrices

W1 ¼ �5 � 5

1 � 8

� �
; J1 ¼ 0 2

�1 0

� �
; P1 ¼ �2

�1

� �

W2 ¼ �4 0

�5 � 7

� �
; J2 ¼ 1 � 1

1 2

� �
; P2 ¼ �1

�3

� �

and some functions M11ðx2ðtÞÞ ¼ sin2 x2ðtÞ, M22ðx2ðtÞÞ ¼
cos2 x2ðtÞ: We can interpret M11ðx2ðtÞÞ and M22ðx2ðtÞÞ as

membership functions of some fuzzy sets M11 and M22,

respectively. Using these fuzzy sets, the above nonlinear

system (14) can be presented by the following T–S fuzzy

model

Plant Rule 1: IF x2ðtÞ is M11; THEN

_xðtÞ ¼ �xðtÞ þW1g
�
xðtÞ
�
þ J1g

�
xðt � sðtÞÞ

�
þ P1uðtÞ:

ð15Þ

Plant Rule 2: IF x2ðtÞ is M22; THEN

_xðtÞ ¼ �xðtÞ þW2g
�
xðtÞ
�
þ J2g

�
xðt � sðtÞÞ

�
þ P2uðtÞ:

ð16Þ

According to the controller designing method of Theo-

rem 4, letK1 ¼ ð1; 3Þ,K2 ¼ ð2; 1Þ, it is easy to check that the
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Fig. 2 Global exponential stability of (14)
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Fig. 1 Global exponential stability of (15) (left) and (16) (right)
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two local systems (15) and (16) are global exponential

stable in Fig. 1. Moreover, the T–S fuzzy time-delay system

(14) is also globally exponentially stable. Fig. 2 shows the

global exponential stability of the nonlinear system (14).

To further show the superiority of our results with some

existing works such as [8]. Consider the following simple

one-dimensional nonlinear T–S system

_xðtÞ ¼ �xðtÞ þ gðxðtÞÞ þ g x t � 4 cos2ðtÞ
5

� �� �

for all t� 0. Using Theorem 2, this system is globally

exponentially stable. While, it is easy to see that the sta-

bility of this system cannot be checked by the results of the

model with local linear systems [8].

6 Conclusions

In this paper, the global exponential stability analysis for a

class of fuzzy systems with uncertain time delays has been

studied. First, some global exponential stability conditions

for free delayed fuzzy systems have been proposed. Then

we have given some criteria for feedback fuzzy controller

design. Finally, an example has been used to illustrate the

results. We believe that all of the results obtained in this

paper can be extended to the fuzzy systems with multiple

time delays or with time-varying delay only by changing

another Lyapunov function.
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