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Abstract This paper investigates the output feedback
robust stabilization problem for a class of switched non-
linear fuzzy systems, in which the premise variables
depend on the state variables and do not measured directly.
A switched state observer is designed to obtain the esti-
mation of the immeasurable states. By using the parallel
distributed compensation (PDC) design method and the
multiple Lyapunov function approach, an output feedback
controller and the switching laws are developed. To obtain
the feasible solutions of the control and observer gain
matrixes, a novel decoupled method is proposed, and the
sufficient conditions of guaranteeing the stability of the
control system conditions can be transformed into some
linear matrix inequalities (LMIs), which can be easily
solved. Two simulation examples are provided to show the
effectiveness of the suggested theoretical results.

Keywords Switched fuzzy observer - Switched fuzzy
controller - Switched systems - Linear matrix inequality
(LMI)

1 Introduction

Since Takagi and Sugeno put forward the Takagi—Sugeno
(T-S) fuzzy model [1], there has been a growing interest in
the control design for nonlinear systems based on the T-S
fuzzy model, because the T-S fuzzy model can provide an
effective way to present the complex nonlinear systems
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[2—4]. In recent years, many important researching results
have been obtained, for example see [5—12]. Among them,
[5] proposed a novel polynomial event-triggered scheme to
determine the transmission of the signal and designed a
fault detection filter to guarantee that the control system is
asymptotically stable. The works in [6, 7] proposed an
unknown input observer design approach for the T-S sys-
tems and an output feedback controller was developed for
stabilizing the uncertain nonlinear systems. [8] investigated
the problem of the fuzzy control for a class of nonlinear
networked control systems via T-S fuzzy models, and [9]
proposed LMI formulations to analyze the local stability
and local stabilization of discrete-time nonlinear T-S fuzzy
systems. A stability and tracking control of nonlinear sys-
tems via T-S fuzzy modeling is developed in [10], and [11]
provided a fuzzy state feedback controller approach to
guarantee systems stability based on nonlinear discrete-
time T-S fuzzy system. [12] designed a new adaptive
sliding mode controller to guarantee that the closed-loop
system is uniformly ultimately bounded. In addition, the
Lyapunov stability theory is a powerful approach to deal
with the stability analysis for T-S fuzzy models. Various
Lyapunov functions have been used to solve stability
analysis problem. Based on the PDC design method, the
papers in [13—15] proposed some relaxed stability condi-
tions, and [16] studied an analysis for local stability and
designed controllers for T-S fuzzy nonlinear systems,
where the corresponding conditions are given in form of
LMI. By using fuzzy and non-fuzzy multiple Lyapunov
function, [17] discussed the method of controller synthesis
for T-S fuzzy singularly perturbed systems. [18] consid-
ered the robust stabilization for T-S fuzzy systems. How-
ever, the aforementioned fuzzy controller design and
stability analysis theories are only for nonswitched fuzzy
systems, not the switched fuzzy systems.
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Switched systems are a special class of hybrid systems,
which consist of a family of continuous or discrete sub-
systems called modes and rules orchestrating the switching
among the modes [19- 21]. In fact, many practical physical
and engineering [22-26] can be described as the switched
systems, such as the automotive industry, chemical indus-
try process control systems, the plane control systems,
vehicle speed change systems, air traffic control, naviga-
tion systems. Recently, various results about the stability
analysis and control design have been reported for swit-
ched fuzzy systems [25-32]. The works in [27-29] inves-
tigated the stabilization problems for a class of discrete and
continuous switched T-S fuzzy systems. To guarantee the
stabilization of the control systems, [30, 31] designed a
robust controller and a switching control law for a class of
switched fuzzy systems. [32, 33] proposed the stability
conditions of the switched stochastic systems with time-
varying delay. By using a common Lyapunov function and
the average dwell time method, [34] developed a controller
for a class of fuzzy systems with asynchronous switching.
However, the aforementioned results are only limited to the
fuzzy systems with measurable premise variables, and to
the best of our knowledge, there are no results on the
switched nonlinear fuzzy systems with the immeasurable
premise variables. Because the premise variables are usu-
ally the functions of the state variables, they are estimated
by a state observer; this makes it difficult to guarantee the
stability of the switched fuzzy system.

Motivated by the aforementioned analysis, this paper
studies the output feedback robust stabilization problem for
a class of switched fuzzy nonlinear systems, where the
premise variables and the state variables are not available
for feedback control design. By using PDC design and the
Multiple Lyapunov function methods, an output feedback
state controller and the sufficient conditions of ensuring the
control system stability are developed. To obtain the fea-
sible solutions of the control and observer gain matrixes, a
novel decoupled method is proposed to transform the non-
LMI conditions into some LMI forms. Compared with the
existing literature, the main contributions of this paper can
be summarized as follows:

(1) This paper first studied the observer-based fuzzy
control design problem for a class of switched fuzzy
systems. The addressed control plants contain the
immeasurable premise variables and the state vari-
ables. Note that the literatures [35, 36] also studied
the same problem; however, the considered switched
plants in [35, 36] are simple fuzzy system, instead of
switched fuzzy systems with the immeasurable
premise variables. To the best of our knowledge, to
date, there are not any results reported on the
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immeasurable state
systems.

(2) This paper first investigated a decoupled method for
a class of switched nonlinear fuzzy systems.
Although the previous literatures [34, 37] also
studied the decoupled methods, these control meth-
ods are suitable for the nonswitching fuzzy systems.
It should be mentioned that the switched control
design has a major difference from non-switched
control design. The former is much more difficult
and challenging than the latter.

switched fuzzy nonlinear

2 System Description

Consider the following switched nonlinear fuzzy system,
which is composed of [ fuzzy subsystems as follows:

R IfziisFLy, isFly, ..\ 2 Ffrp, then
x:Amx+Bm~u0
{y:CJlx ) 71’25"'7N(77 (1)

where z=[z1,2,---2,]" are the immeasurable premise
variables, and Ffrj are the fuzzy sets; 0 € M = {1,2,...,1}
is a switching signal, which is a piecewise constant func-
tion; Ay;, By; and C,; are known real constant matrices
with appropriate dimensions; i, is the control input vector;
X € R" is the immeasurable state variable vector; y is the
output of the switched system.

Using the center-average defuzzification, product infer-
ence, and singleton fuzzifier, the input—output relation in
the /th switched system (1) is represented as

No
X = 1yi(2) [Aaix + Bai”‘o]
i=1
No
Y= Hei(2)Coix
i=1

where the /th switched system (2) is equivalent to

{ X = Ag(pg)x + Bo(pis)us
y = CU(H’J)X
N, q
Hei(2) = wgi(2)/ ;woi(z)a wei(z) = 1:[1 Fop(2p).
F4,(zp) is the fuzzy membership grade of z, in F),, N, is

the number of If-Then rules, y;(z) satisfies the following
conditions:

N(r
0<Mai(z)<1a Zlulfi(z) = 17
i=1

Lemma 1 [36] For any real matrices X;,Y;(1 <i<n),
and D > 0 with appropriate dimensions, we have,
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Z Z Z Z hibihh X5DY < Vs

i=1 j=1 k=1 I=1

) Z ity (XEDX;; + Y] DY; )

i=1 j=
where 0<h;<1, >"  h; =1, (1<i<n).

Lemma 2 [38] Given constant matrices X and Y, for
arbitrary w > 0, the following inequality holds:

XY+ V"X <oX"X + o 'Y"Y (4)

The control objective of this paper is to design an output
feedback fuzzy controller for the fuzzy system (2) and a
switching law o such that the switched fuzzy nonlinear
system is robustly asymptotically stable.

3 Fuzzy Controller Design and Stability Analysis

This section will give the output feedback control design
for the switched fuzzy system, and the stability of the
closed-loop switched fuzzy system will be proved by using
multiple Lyapunov function method.

Since the states in (2) are unavailable for the control
design, a fuzzy state observer is first established for esti-
mating the immeasurable states.

Design the switched fuzzy observer for switched fuzzy
system (2) as

. NU’
X = Z :utri(ZA)(Aai)2 + Bsits + Lai(y - )A/))
i=1
A~ Nﬁ A A
= Z :uo'i(z)co'ix
i=1
The switched fuzzy observer (5) is equivalent to

{f=ANMf+&ma%+um»@—ﬂ
¥ = Co(fis)x
where x € R" is the estimate of x, Z is the estimate of

immeasurable premise variables z, fi, is the estimate of
membership functions p,, Ls; is the observer gain matrix

for the oth switched fuzzy subsystem; L;(fi,) =
Ns
> Hgi(2)Loi
i=1
Next, we consider the switching signal in the state-de-

pendent form ¢ = g(x) [39], suppose that QLD Q1

~ l ~
and €, is a segmentation of R", i.e., U Q; = R"\{0}, and
i=1

QN Qj = ¢, i # j, the switching signal is chosen as ¢ =
Q, 1 and Ql
When % € Q;, the switching signal ¢(%) can be described by
function v, ().

o() =r , which depends on Q,Q,,...,

() = 1 i€Q,
' O )2 ¢ Qh
That is, if and only if ¢ = ¢(x) = r, v,.(x) = 1. We will
show how to construct Ql,Qz, .. .,Ql,l and Ql, thus the
switching law ¢ will be designed later.

The overall switched fuzzy observer (5) can be rewritten
as

reM={1,2,...,1} (6)

=z

R
I
MN

V(%) 1 (2) [Avi® + Britty + Lyi(y — )]

‘
Il

-

A

=z

(7)

N
I
MN

V() (2) Crit

‘
I
[

The equivalent form of (7) is

><>
I
M~

v ()[A ()% + B (& )ur + Ly (4,)(y — )]

‘,
Il
=

(3)

.\<>
Il
M~

Vr ()2) Cr(ﬂr))E

N,
Z:ur]( ) Tj> Br(lar) = ZIMU(ZA)BVJ and
Jj=

C (i) = Z ﬂr,() i are known matrices;v,(x) is the

‘
Il
-

where ( . =

membershlp function of switching signal ¢(%).
Based on the PDC scheme, the fuzzy control law for the
switched fuzzy systems (2) is

[ Ny
= Z Z Vr ()e)luri(ir)l(”i')2 (9)
or
1

where K, is the control gain matrix of the ¢ th switching

N, )
= ; Ky (2r)Kis

Substituting (9) into (2), the closed-loop switched fuzzy
system is represented as follows:

0(8) 35 0(2) 3 () Ak + B
1 i=1 s=1

B (1)
)35 )

mode; K,(,)

=
I
M~

‘
Il

M~

y =
1

\
Il

The equivalent form of (11) is

= 3 vl ()x + B, Ko ()5
! (12)
y = ;Vr()e)cr(ﬂr)x
where A, (1) = %uri(Z)Am B.(u,) = éﬂri(Z)Bri’ and

(
N, i=1

C.(1,) = > u,;(z)C,; are known matrices.
['_
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Let e =x—x. From (7), (9) and (11), we get the
dynamic equation of estimation error e.

S i@ k)
i=1 =1

x§jmxawmrw%>+wn—ﬂﬁ

1

X = Z Vr()e)

r=1

X Krs - Lrj(cri - Crv)))2 + (Ari - Lrjcri)e]

Eq. (13) can be expressed as follows:

l

¢= Zvr(f)[((Ar(,ur) = Ar(f,) + (Br(py)

r=1

- Br(lar))Kr(ﬂr) - Lr(ﬂf)(cr(ur) -G (Mr)))'x + (Ar(lur)
— L(3)Cr(1))e)
(14)
where

N, N,
Ar(u, = Z iz Z 1,i(2)As;
i=1 j=1
N, N,
B, (u, = Z,u,,- ri Z:urj( 75
=1 =
N, N,
Cr(,ur = Z .uri( Z .urj Cyj;
i=1 j=1
N,
Ar(lur) L ) = Z Hyi
i=1

N, N,
- Z :urj(ZA) Z ﬂri(Z)L’f/C”
j=1 i=1

The sufficient stabilization conditions of the closed-loop
switched fuzzy systems are provided in the following
theorem.

Theorem 1 For the switched fuzzy system (12), if there
exist non-positive (non-negative) 7,, €ER (r, A=1, 2,

-+, ¥ # 1), positive definite matrices P,, Q, and P with
appropriate dimensions and 6 > o > 0, > 0, satisfying
the following conditions

1, + 70,0, <0
1

Ar+ Z Vr)v(Pl

J=1, Jtr

—P,)<0
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with

M, = ATQ, — CELEQ, + QA — QrLyCri+ (o' — 6711

Ay = (AL + KLBY + (Ch = chLE)P,
+ Pr(Ai + ByKys + Li(Cri — Cry))
+ aP,L;CiCLLLP, + ﬁ(AT AL+ K (BI,- - BT,»))
X (Ari = Ajj + (Bri — By) - 8(Cy =€)
X LEQrQrLrj(Cri — Cy)

X er)

Then the output feedback controller (9) with the switching
law o = o(X) can guarantee the closed-loop switched fuzzy
system (12) to be asymptotical stable.

Proof Consider the Lyapunov function candidate
V=3"Pi+e'Qe (17)

where P, and Q, are two positive definite matrices. For any
e # 0, it follows from (15) that

m,+p'0,0.<0 (18)

(15) means that under designing switching law, the
observer error e asymptotically converges to zero.

Without loss of generality, we assume 7,; > 0. Obvi-
ously, for every x € R"\{0}, there exists a r such that
£T(P; — P,)% > 0, V. € M, then from the matrix inequality
(16), we have

!
A+ Z 72 (P;

J=1tr

P,)<0 (19)
For an arbitrary r € M = {1,2,...,

]
> 9Py = P,)E<0,¥ # 0}

I=1#r

I}, let

Q, = {x e R"|&"[A, +

Then  Q, = R"\{0}. Constructing the  sets
Q. =\ :911 Q,, it is easy to see that E)ll Q; = R"\{0}, and
QNQ=¢,i#j

Therefore, the switching law is
o(x) = r when i € Q, (20)
Let V; = £TP,% and V, = €T Q,e.

(i) The time derivative of V| satisfies
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1
Vi =P i+ 5P i =Y v (&

r=1

)Zm(z)_z:jﬂ,j(f)

XZ/‘m T(ARP, +P,A)R+ (u] Bl + (y—)?)TL;-)P,)E

+x P,4(A,,~x+Brju,+L,j(y—)5))]
I N, N, N,
=D 00D w2 D (2 Y e (B)ET (A + KEBY;
=1 i=1 =1 s=1
+(Cl = CRLY)Pr+ Pr(Ari+ ByiKys + Lyj(Cri — Cr)))%
+eTC”LrTj X+ 2P, L,;C e

(21)
According to Lemma 2, we have
" CRLEP% + X' P,LyiCrie < ox' P,L,;CiCiLy P %
+ o “leTe
(22)

Applying (22) to (21) yields
) ! N, N,
EICHIHCIITIC
r= i=1 j=1

X Zum )& (A} + KB+ (Ch— CRILY) X P,

rsrj

+Pr<Ari +Bijrs +LFJ(C i — Crs))
+ocP,L,,C,,C£LIj )Xo 1eTe]
(23)

(ii))  The time derivative of V, is

1 N,
Vz:éTQre-l-eTQré:Zv,(j)z‘uri
=1 i—1
N, N,
x (Z) Z‘u”j(z) Zﬂrs(é)[(((Ari _Arj) + (Bri —B,j)
Jj=1 s=1

X Krs 7Lrj X (Cri - Crs))i‘i' (Ari 7Lrjcri)€)TQre
+eTQ,(((A,, —Ayj) + (Bri — Bjj)Kys
- rj(Cri_Crs))i“F( _Lrjcri)e]

N,

:Z Zun )Y (3
—1 i—1

Jj=1

N,

Z &) (AT, — AT + KT (BT, — BY)) 0,
xe+e"Q, (A, — A+ (B — Bj)Ky)x
—e Qr rj(Cri - Crs))e_)eT(C;[; - C};)
XL;;Qre + eT[(Afi - C;[;L;I;)QV + Qr(Arl - Lerri)}e

(24)

By using the Lemma 2 and (24), we can obtain

!
Va<> v (®)[e" (A% — CELY) Qs + Or(Ari — LyCr)
r=1
=07+ B X 0,0, ) + 5T (B(AT; — Ay + KX (B); — BY)

X (Ari *Arj + (Brl 7Bi’j)KKY) - 5(C;I; - CrT;)
X L}}QrQrLrj (Cri — Cis))A]
(25)

In view of (23), (25), and (17), we have
V=V+W< Zv,

4 Z.urt Znurj(i) Z#rs(z)

x [ (A}, + K5B), + (Cy — CRLLY)P, + Po(Ayi + BjiKys

s
+ L;j(Ci = Cry)) + 0P, Ly CiCiLLP,
+ AL — AT+ KL(BL — BI))(An — A,
+ (Bri — Byj)Kis) = 0(Cl; = CRLyQ:Q,Lyj(Cri — Cr) )
+el x (A = CuLy) Qs + Or(Ari — LyjCyi)
+ =0 I+ F7'0:0,)e]
(26)

Further, we have

VS R (AT i)+ K7 Gi)BE () + (CF )

—CT(E)LT(R,)) % Pr+Po(Ar(,) + B, (3K (i)
+L () (Cr (1) — Cr (/) + Py
X Ly(f1,) Cr (1) CF (1)L (f1,) Pr + B(A
+K; (&,
+ (B (1,
LY (4,)0.Q,L
x (A7 (1) —
=L (f,)Cr(fi,) + (o™

» (1) = A (i)
) X (B (1) — By (1)) (A (1) — Ar(f.)
) =By ()Kr (i) = 0(Cy (1) — G (i)
Le () (Cr (1) = Co (i) %+ e
CT(u»LT( ,)>Qr+Qr< ()
DI+ 5710,0,)e]
(27)
According to Lemma 1, there exists a symmetric matrix

Y,;;; and a matrix Y, such that the following inequalities
are satisfied [36]:

(Ay + KB+ (C) —

CT.)LT.)P + P,(A;i + ByK,;

+Ly(Cyi — Cy))  +oPLyCiCLLEP, + B(AT, — AL
+Kj(B; — B))) (A — Ay + (Bi  — By)Ky)
- 5(C;«[; - CE)L;F,QVQrLrj(Cn - er)

!
+ Z yr/(P) Pr)<Yri]j

J=1,tr
(28)
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2[(AT +KTBT + CTLT ) r +Pr(Ari +Bijrx +Lrscri)

rsry rers
+oP,L;CyCiLy, X Pr+B(Ay — AL+ KL (B}, —B)))

rery

X (Ayi—Ay+ (B, —By) x Ky)]— (CT x LT 4+ CTLT)

rs™rj

XP,—P (LrYCrJ+Lerrv)75(C};7C;5)L—rrsQ’Qr ”(C’"iic'j)

]
+ D P

A=1,A#r

< erjs + Y

(29)

By using Lemma 1 again, there exist a symmetric matrix
Z,j; and a matrix Zg; such that the following inequalities
are satisfied for the estimation error:

(A;l; - C};L};)Qr + Qr(Ari - Lerri) +
+ ﬁilQrQr<Z”:/Aj

[( T C;I;L;I;)Qr + Qr( i Lrijri) =+ (a_l - 571)1

£ 50,0, <Zys+Z,

risj

CT )
(30)

(31)
Similar to [40], the time derivative of (26) is expressed
by

vy

M\.

V(%
r=1 i=1
T - A~ -
And Yin * « 7| Al
fiod (Yin)" (Yom)" .. * fiod
N Y, T * . Z: R
fu sl (Yrirr) Nl
9T o
s Zin * . 7 Al
fosl (Zinn)" (Zuina)" e * fig ]
* : <0
(i Zii ! * U Zyigy | ~
'u,f[ ( lf) iff _‘urf[_
(32)

From (15) and (16), we know that under the switching
law (20), for arbitrary £ # 0 and e # 0, i.e.,x # 0, V<0
holds.

Therefore, the closed-loop switched fuzzy system is
asymptotically stable, and the observer error e asymptoti-
cally converges to zero.

!
Note that matrix inequalities *, = A4, + > 7,,(P; —

J=1)#r
P,)<0 are not linear matrix inequalities. Therefore, we
should transform ¥,<O0 into LMI and obtain positive
definite matrices P,, control gain matrices K,; and observer
gain matrices L,;.
Now, using Schur’s complement, and letting M,; =
P.L; and W, = K,;P,, we obtain the following LMIs

@ Springer

Er + Tr l//r N)j(cri - Crs) M)jC
~1

* —p1 0 0

* * o 0 <0 (33)

* * * —a~ 11
with
B, = (A} + K\BL)P: + P(Ayi + ByKy)

]
+ Z yr) P - P
A=1,A#r

l//r = Ari - Arj + (Bri - Brj)Krs
T

= (€= COLIP, + P,Ly(Cs — C.))
Crs))

Since three parameters P,, K,, and L, for system R
should be determined from (30), there is no effective
method for solving them simultaneously. In the following,
a decoupled method is provided to solve P,, K, and L,;
simultaneously. To this end, the following useful theorem
is first introduced.

= (Cii = oMy + My (Cri —

Theorem 2 [34] If two symmetric matrices are satisfied
_6111 dap a
¥ ap axpn|<0 (34)
L * * ass
and
[bi bio
v by <0 (35)
Then we will get
fann 0 apn ai by b2 0 0
0 0 0 * b22 0 0
* ap axp + * * 0 0 <0 (36)
i * ok ds3 * * % 0
Proof
For any [g1 & &3 ] # 0, if (34) and (35) hold
then
1T [ [ 0 apn ap by b 0 0 81
g; * 0 0 0 n x by 0 0 2
83 ES *  d)) an * * O 0 83
84 X % % das x % % 0 g4
81 ! a ap ass 81
=182 * o dyp dxs 82
83 * * ass 83
T
+[81} |:bll blz}[81]<0
&2 * bn||g&
(37)
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This implies that (37) holds. Therefore, the proof is
completed.
Note that (33) can be decoupled as (38), then, we have

Er + Tr l//r Nrj(cri - Crs) Merri
* —p7'r 0 0
* * o1 0
* * * —a 7

Tr 0 Nrj (Cri Crs) Merrl
s+ o0 0 0
I 67l 0
* % * —o~ 7
g ¥, 00
T A e Y (38)
* * * 0

The equivalent expressions of the two decoupled
matrices are

Tr 0 Nrj(Cri - Crs) Mrjcrz

* 0 0 0

* % o1 0

* ok * —o~ I
Tr Nrj ( Cri Crs) Mrj Crl

= | * o' 0 |<o0 (39)
* * —a~

E W, 00

A N AR

* * * 0

Pre-and post-multiplying both side of (40) by matrix
diag {P;',I} and by using Schur’s complement, then we
have

r. X - X H,
* —yr‘llX] 0 0
: : : o <0 (41)
* * -1 X 0
* * * * —[371[
with X, =P;', I', = X,Al + WIBJ + AiX, + B;jWy

l
- Z yrixr, X;L:P/Tl’i: 1727"'15 Hr:(Ari_Arj)
A=1,A#r

Xr + (Bri - Brj)Wm-
We need to transform the inequality (18) into LMI.

Now, by wusing Schur’s complement, and letting
N,; = O,L,;, we obtain the following LMI

I, QO

{ . ﬁ] <0 (42)

Solving the LMIs (39), (41), and (42), we can obtain the
positive definite matrices Q, and X, (thus X, = Pr’l), the

control gain matrices W,y (thus K,; = W,X,), the observer
gain matrices N,; (thus L,; = O.N,;).

4 Simulation Study
In order to illustrate the effectiveness of the proposed
method, two simulation examples are given as follows:

Example 1 Consider a switched fuzzy system with
immeasurable premise variables.

: 2

. X

X = |: .1:| = ,U(”'(Zl)[Aaixl + Boiua]
X2 i=1

1 2
y— [ } = 3 (1) Gt
Y2 i=1

[-032 0 A, - |02
0.1 0087?26 -077]

-09 —1 027 1
Az = [—0.05 —0.5}’ Az = {—0.1 —0.5]’ Bu =
—039] [0.58 e _|013] o _ 1.87 ]
) 12 — ) 21 — 121 ) 22 — 143

0.78 1.67
Cy; =[-0.01 0.25], C;=[-0.39 0.01], C;; =[0.21
0.13], C»» =[-0.01 0.14].

Then the corresponding fuzzy membership functions are
as  follows:  py (%) =1—1/(1+e307) 1, (%)
= 1 11 e300 oy (51) = 1= 1/(1 4+ e73070),
pop (1) = 1= 1/(1 + e,

The design parameters are chosen as
a=1.13, =1, 6 =295, y;, =22, y,, =2.

Let
Q, = {x € R*<"(P, — P)%>0,% # 0},

Q, = {x € R*<"(P, — P,)%<0,% # 0}.

—0.8 ]

where A=

Then Q, U Q, = R?\{0}, the switching law is con-
structed as

. 1, )EEQ]
g\X) =
ol

Design the output feedback control law as

)26.(22

Ny

Uy = Z Z vi’()2):uﬁ(2)1{”i}2

r=1 i=1

By solving (39), (41), and (42), we can obtain the positive
definite matrices Q, and P,, the control gains K,; and the

. 0.2022 0.0941
observer gains L,; as follows, Q) = {0.0941 0.2289}’
0, — 1.5271 0.0595 P — 7.3211 —-3.6157
2710.0595 0.0638|" "' | =3.6157 12.2310 |’
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0.9988 0.7584 12 :

Py = [0.7584 2.9803]’ Kir = [7.6671 —4.3036], A —

K1 =[2.5059 —6.3410] N 5!]

Ky =[-07170 —13986], Ky = [~0.5202 —0.7937],
2.039 75155 8.922
L= [3.1558}’ Lo = { 1.9520 } Lo = {—16.5491}’
L [-89935
27 19.1108 |

In the simulation, the initial condition is chosen as

[0.70 0.82 0.13 1.11]". Then, the simulation results
are shown in Figs. 1, 2, 3, and 4, where Fig. 1 and Fig. 2
show the trajectories of x;(i =1,2) and their estimates
x;(i = 1,2), respectively; Fig. 3 expresses the trajectories
of control input u,(r = 1,2); Fig. 4 shows the trajectory of
switching signal ¢. From the simulation results, it is clear
that the proposed output feedback control method can
guarantee the stability of the closed-loop switched fuzzy
system.

Example 2 Consider the mass-spring-damping system
[41] shown in Fig. 5 and according to Newton’s law, it
follows as

X+ Fr+F,=u

where ¢ stands for the mass of the spring, Fy and F; are the
friction force and the restoring force of the spring, where
the variables are the nonlinear or uncertain terms. u denotes
the external control input. Assume that the friction force
Fr = t;%° with #; > 0 and the hardening spring force Fy =
trx + t3x° with constants 7, and f3.

Then, the dynamic equation can be written as

_U i 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

seconds

Fig. 1 The trajectories of x| (solid line) and x, (dotted line)

@ Springer

_02 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

seconds

Fig. 2 The trajectories of x, (solid line) and x, (dotted line)

——-u2|

D2F .

04p -

06 4
0 5 10 15 20 25 30 35 40 45 50
seconds

Fig. 3 The trajectories of control input u; (solid line) and u, (dotted
line)

F=—(t;/0% — (t2/0)x — (t3/0)x° + (1/0)u

where x stands for the displacement from a reference point.

Define x(1) = [xl (t)] = [x‘|’ then

x(1) X
o [ XD
0= Lﬁz(t)]

- [—(tl/f)x3 — (02 0)x — (1/0)x> + (1/0)u

The nonlinear terms are —(¢;/£)x* and —(t3/¢)x>. The
nonlinear terms satisfies the following conditions for
xe[-17,17], xe[-1.7,1.7], then we can
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25

151 B

08 5 10 15 20 25 30 35 40 45 50

seconds

Fig. 4 The trajectory of switching signal

7
7
% .
7
f
F;
2
%
7
7
— N\ — .
7 : .
% ?— - ——
D777, LSS IS S S 7 7z LS 7

Fig. 5 Mass—Spring—Damping system

28913
-——x
]
0 B
-x<—zx <
2.89 . ¢
Si i< ~18 205 20

. 5] .3 2.89 . I3
0-x< ——x"< —
2 4
Note that the nonlinear terms can be represented by the

upper bound and the lower bound.
—(t3/€)x3 =H;;-0-x— (1 —HU) . (289 . l3/€) * X
—(t1/0% =Hy -0-%— (1 —Hyy) - (2.89-1,/0) - %

t
< —??x3§0~x x>0

2.89 ¢ ’
2By x<0

obtain

x x<0

By solving the above equations, H;; and Hj; are
obtained as follows:

Hy(x) =1 —x*/2.89, Hpy(x) = x*/2.89,
Hy (%) = 1 — %%/2.89, Hp(x) = %/2.89.

When the nonlinear terms reach the upper bound or
lower bound, the system will be switched, and the corre-
sponding fuzzy membership functions are represented by
Hyy, Hyy, Hy and Hj,, then, the switched fuzzy system
with unknown premise variables is constructed by the
following four-rule fuzzy model:

R% : IfxisH”, X 18 I‘Iz]7 then
X=Anx+Bpu, y=Cpx.
R} : If xis Hyy, X is Hy, then
X =Apx+ Bpui, y(t) = Cpx.
R} : If xis Hya, % is Hyy, then
X =Anx+ Bouz, y = Corx.
R3: If xis Hya, ¥ is Hy, then
X =Anx+ Bpuy, y = Cxpx.

where £/ =2, = 0.1, , = 0.2, t3 = 0.05.
Then, we obtain

o0 1 0 1
Ay = | —0.1 0]’ A = {0,1 0.1445}7 Azl
— [ () 1
~ [ -02445 0]
0 1 0
A2 =1 0245 —0.1445]’3”_ 05| B2
_ 0 B, = 0 By = 0
“los] M T os]T TR |os )
Cii=[-201 0.15], Cx =[-034 034], Cyy

=031 023], Cp=[-135 0.14].

Then the corresponding fuzzy membership functions are

pp(xn) =1=1/(1 4%, pa(x)

=1-1/(1+e*™),
par (1) = 1= 1/ (14 e7>%), gy (x1)
=1-1/(14+e*).
The design parameters are chosen

asao =1, f=1,0=32,y,=12, y,, =12.
Let

Q) = {x € R*x"(P, — P)x>0,x # 0},
Q, = {x € R*x" (P, — P)x<0,x # 0}.

Then Q; U Q, = R?\{0}, the switching law is con-
structed as
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25 T 25
*11
=a=rziy]
2
b 15+ B
1 L 4
'05 L 1 L L L L L L L D 5 1 1 1 1 1 1 1 1
0 10 20 30 40 50 B0 70 80 90 100 -

seconds

Fig. 6 The trajectories of x| (solid line) and x| (dotted line)

%21
E=E=RE ¥

05 E

1
50 60 70 80 90 100
seconds

Fig. 7 The trajectories of x, (solid line) and X, (dotted line)

Design the output feedback controller as

N,
1 (8) 4 (£) Ko

By solving (39), (41) and (42), we can obtain the
positive definite matrices O, and P,, the control gains
K, and the observer gain L, as follows:Q; =

0.6568 0.0636 ~10.8923 0.1358 P —

0.0636 04710 " €27 [0.1358 04745 | 717

23811 2.7511 p, — [0-8038 118197 .
2.7511 9.1005 |’ 27111819 8.7461 |0 "M T
[—13.0053 —31.5743], Kj = [—12.5231 —31.0993],

Ky =[—4.2717 —26.6101], K», =[—5.4128 —29.6035],

@ Springer

10 20 30 40 50 60 70 80 90 100
seconds

Fig. 8 The trajectory of switching signal

—1.0780 —0.0185 1.3036
Ln= [—0.0661 } Lia= [ 0.3067 } Lor= [—0.2177] L=

—1.6668
{ 0.3529 }

The initial condition is chosen as
[2.08 1.62 1.67 1.71]". Then, the simulation results
are shown in Figs. 6, 7, and 8, where Figs. 6 and 7 show
the trajectories of x;(i=1,2) and their estimates
X;(i = 1,2), respectively; Fig. 8 shows the trajectory of
switching signal. From the simulation results, it is clear that
even though the state variables are immeasurable, the fuzzy
output feedback controller and the switching law guarantee
the stability of mass—spring—damping system.

5 Conclusions

In this paper, the output feedback robust stabilization
problem has been investigated for a class of switched fuzzy
systems, which contain the immeasurable premise vari-
ables and the state variables. By using the parallel dis-
tributed compensation (PDC) design method, a switched
state observer has been designed and estimations of the
immeasurable states can be obtained. Based on the
designed state observer and the multiple Lyapunov func-
tion approach, an output feedback controller and the
switching laws have been developed. It has been proved
that the proposed output feedback control scheme can
guarantee the control system to be asymptotical stable.
Compared with the existing results, the main contributions
of this paper are as follows. One is that the proposed
control method has first solved non-measurable premise
variable problem for the switched fuzzy systems. The other
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is that a novel decoupled method has been proposed to
obtain the feasible solutions of the control and observer
gain matrixes, instead of the two-step method adopted in
the previous literatures.
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