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Abstract This paper investigates the output feedback

robust stabilization problem for a class of switched non-

linear fuzzy systems, in which the premise variables

depend on the state variables and do not measured directly.

A switched state observer is designed to obtain the esti-

mation of the immeasurable states. By using the parallel

distributed compensation (PDC) design method and the

multiple Lyapunov function approach, an output feedback

controller and the switching laws are developed. To obtain

the feasible solutions of the control and observer gain

matrixes, a novel decoupled method is proposed, and the

sufficient conditions of guaranteeing the stability of the

control system conditions can be transformed into some

linear matrix inequalities (LMIs), which can be easily

solved. Two simulation examples are provided to show the

effectiveness of the suggested theoretical results.

Keywords Switched fuzzy observer � Switched fuzzy

controller � Switched systems � Linear matrix inequality

(LMI)

1 Introduction

Since Takagi and Sugeno put forward the Takagi–Sugeno

(T–S) fuzzy model [1], there has been a growing interest in

the control design for nonlinear systems based on the T–S

fuzzy model, because the T–S fuzzy model can provide an

effective way to present the complex nonlinear systems

[2–4]. In recent years, many important researching results

have been obtained, for example see [5–12]. Among them,

[5] proposed a novel polynomial event-triggered scheme to

determine the transmission of the signal and designed a

fault detection filter to guarantee that the control system is

asymptotically stable. The works in [6, 7] proposed an

unknown input observer design approach for the T–S sys-

tems and an output feedback controller was developed for

stabilizing the uncertain nonlinear systems. [8] investigated

the problem of the fuzzy control for a class of nonlinear

networked control systems via T–S fuzzy models, and [9]

proposed LMI formulations to analyze the local stability

and local stabilization of discrete-time nonlinear T–S fuzzy

systems. A stability and tracking control of nonlinear sys-

tems via T–S fuzzy modeling is developed in [10], and [11]

provided a fuzzy state feedback controller approach to

guarantee systems stability based on nonlinear discrete-

time T–S fuzzy system. [12] designed a new adaptive

sliding mode controller to guarantee that the closed-loop

system is uniformly ultimately bounded. In addition, the

Lyapunov stability theory is a powerful approach to deal

with the stability analysis for T–S fuzzy models. Various

Lyapunov functions have been used to solve stability

analysis problem. Based on the PDC design method, the

papers in [13–15] proposed some relaxed stability condi-

tions, and [16] studied an analysis for local stability and

designed controllers for T–S fuzzy nonlinear systems,

where the corresponding conditions are given in form of

LMI. By using fuzzy and non-fuzzy multiple Lyapunov

function, [17] discussed the method of controller synthesis

for T–S fuzzy singularly perturbed systems. [18] consid-

ered the robust stabilization for T–S fuzzy systems. How-

ever, the aforementioned fuzzy controller design and

stability analysis theories are only for nonswitched fuzzy

systems, not the switched fuzzy systems.
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Switched systems are a special class of hybrid systems,

which consist of a family of continuous or discrete sub-

systems called modes and rules orchestrating the switching

among the modes [19– 21]. In fact, many practical physical

and engineering [22–26] can be described as the switched

systems, such as the automotive industry, chemical indus-

try process control systems, the plane control systems,

vehicle speed change systems, air traffic control, naviga-

tion systems. Recently, various results about the stability

analysis and control design have been reported for swit-

ched fuzzy systems [25–32]. The works in [27–29] inves-

tigated the stabilization problems for a class of discrete and

continuous switched T–S fuzzy systems. To guarantee the

stabilization of the control systems, [30, 31] designed a

robust controller and a switching control law for a class of

switched fuzzy systems. [32, 33] proposed the stability

conditions of the switched stochastic systems with time-

varying delay. By using a common Lyapunov function and

the average dwell time method, [34] developed a controller

for a class of fuzzy systems with asynchronous switching.

However, the aforementioned results are only limited to the

fuzzy systems with measurable premise variables, and to

the best of our knowledge, there are no results on the

switched nonlinear fuzzy systems with the immeasurable

premise variables. Because the premise variables are usu-

ally the functions of the state variables, they are estimated

by a state observer; this makes it difficult to guarantee the

stability of the switched fuzzy system.

Motivated by the aforementioned analysis, this paper

studies the output feedback robust stabilization problem for

a class of switched fuzzy nonlinear systems, where the

premise variables and the state variables are not available

for feedback control design. By using PDC design and the

Multiple Lyapunov function methods, an output feedback

state controller and the sufficient conditions of ensuring the

control system stability are developed. To obtain the fea-

sible solutions of the control and observer gain matrixes, a

novel decoupled method is proposed to transform the non-

LMI conditions into some LMI forms. Compared with the

existing literature, the main contributions of this paper can

be summarized as follows:

(1) This paper first studied the observer-based fuzzy

control design problem for a class of switched fuzzy

systems. The addressed control plants contain the

immeasurable premise variables and the state vari-

ables. Note that the literatures [35, 36] also studied

the same problem; however, the considered switched

plants in [35, 36] are simple fuzzy system, instead of

switched fuzzy systems with the immeasurable

premise variables. To the best of our knowledge, to

date, there are not any results reported on the

immeasurable state switched fuzzy nonlinear

systems.

(2) This paper first investigated a decoupled method for

a class of switched nonlinear fuzzy systems.

Although the previous literatures [34, 37] also

studied the decoupled methods, these control meth-

ods are suitable for the nonswitching fuzzy systems.

It should be mentioned that the switched control

design has a major difference from non-switched

control design. The former is much more difficult

and challenging than the latter.

2 System Description

Consider the following switched nonlinear fuzzy system,

which is composed of l fuzzy subsystems as follows:

Ri
r : If z1 is F

i
r1; z2 is F

i
r2; . . .; zp F

i
rp; then

_x ¼ Ar ixþ Br iur
y ¼ Cr ix

�
; i ¼ 1; 2; . . .;Nr; ð1Þ

where z ¼ ½z1; z2 � � � zp�T are the immeasurable premise

variables, and Fi
rj are the fuzzy sets; r 2 M ¼ f1; 2; . . .; lg

is a switching signal, which is a piecewise constant func-

tion; Ar i, Br i and Cr i are known real constant matrices

with appropriate dimensions; ur is the control input vector;

x 2 Rn is the immeasurable state variable vector; y is the

output of the switched system.

Using the center-average defuzzification, product infer-

ence, and singleton fuzzifier, the input–output relation in

the lth switched system (1) is represented as

_x ¼
PNr

i¼1

lr iðzÞ Ar ixþ Br iur½ �

y ¼
PNr

i¼1

lr iðzÞCr ix

8>><
>>:

ð2Þ

where the lth switched system (2) is equivalent to

_x ¼ ArðlrÞxþ BrðlrÞur
y ¼ CrðlrÞx

�

lr iðzÞ ¼ xr iðzÞ=
PNr

i¼1

xr iðzÞ; xr iðzÞ ¼
Qq
p¼1

FrpðzpÞ.

FrpðzpÞ is the fuzzy membership grade of zp in Fp, Nr is

the number of If-Then rules, lr iðzÞ satisfies the following

conditions:

0\lr iðzÞ\1;
XNr

i¼1

lr iðzÞ ¼ 1;

Lemma 1 [36] For any real matrices Xi; Yið1� i� nÞ,
and D[ 0 with appropriate dimensions, we have,
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Xn
i¼1

Xn
j¼1

Xn
k¼1

Xn
l¼1

hihjhkhlX
T
ijDYkl � 1=2

Xn
i¼1

Xn
j¼1

hihj XT
ijDXij þ YT

ij DYij

� � ð3Þ

where 0\hi\1;
Pn

i¼1 hi ¼ 1; ð1� i� nÞ.

Lemma 2 [38] Given constant matrices X and Y , for

arbitrary -[ 0, the following inequality holds:

XTY þ YTX�-XTX þ -�1YTY ð4Þ

The control objective of this paper is to design an output

feedback fuzzy controller for the fuzzy system (2) and a

switching law r such that the switched fuzzy nonlinear

system is robustly asymptotically stable.

3 Fuzzy Controller Design and Stability Analysis

This section will give the output feedback control design

for the switched fuzzy system, and the stability of the

closed-loop switched fuzzy system will be proved by using

multiple Lyapunov function method.

Since the states in (2) are unavailable for the control

design, a fuzzy state observer is first established for esti-

mating the immeasurable states.

Design the switched fuzzy observer for switched fuzzy

system (2) as

_̂x ¼
PNr

i¼1

lr iðẑÞðAr ix̂þ Br iur þ Lr iðy� ŷÞÞ

ŷ ¼
PNr

i¼1

lr iðẑÞCr ix̂

8>><
>>:

ð5Þ

The switched fuzzy observer (5) is equivalent to

_̂x ¼ Arðl̂rÞx̂þ Brðl̂rÞur þ Lrðl̂rÞðy� ŷÞ
ŷ ¼ Crðl̂rÞx̂

�

where x̂ 2 Rn is the estimate of x, ẑ is the estimate of

immeasurable premise variables z, l̂r is the estimate of

membership functions lr, Lr i is the observer gain matrix

for the rth switched fuzzy subsystem; Lrðl̂rÞ ¼PNr

i¼1

lr iðẑÞLr i.

Next, we consider the switching signal in the state-de-

pendent form r ¼ rðx̂Þ [39], suppose that ~X1; ~X2; . . .; ~Xl�1

and ~Xl is a segmentation of Rn, i.e., [
l

i¼1

~Xi ¼ Rnnf0g; and
~Xi \ ~Xj ¼ /, i 6¼ j, the switching signal is chosen as r ¼
rðx̂Þ ¼ r , which depends on ~X1; ~X2; . . .; ~Xl�1 and ~Xl.

When x̂ 2 ~Xl, the switching signal rðx̂Þ can be described by
function mrðx̂Þ.

mrðx̂Þ ¼ 1 x̂ 2 ~Xr

0 x̂ 62 ~Xr;

�
r 2 M ¼ f1; 2; . . .; lg ð6Þ

That is, if and only if r ¼ rðx̂Þ ¼ r, mrðx̂Þ ¼ 1. We will

show how to construct ~X1; ~X2; . . .; ~Xl�1 and ~Xl, thus the

switching law r will be designed later.

The overall switched fuzzy observer (5) can be rewritten

as

_̂x ¼
Pl
r¼1

PNr

i¼1

vrðx̂ÞlriðẑÞ½Arix̂þ Briur þ Lriðy� ŷÞ�

ŷ ¼
Pl
r¼1

PNr

i¼1

vrðx̂ÞlriðẑÞCrix̂

8>><
>>:

ð7Þ

The equivalent form of (7) is

_̂x ¼
Pl
r¼1

vrðx̂Þ½Arðl̂rÞx̂þ Brðl̂rÞur þ Lrðl̂rÞðy� ŷÞ�

ŷ ¼
Pl
r¼1

vrðx̂ÞCrðl̂rÞx̂

8>><
>>:

ð8Þ

where Arðl̂rÞ ¼
PNr

j¼1

lrjðẑÞArj, Brðl̂rÞ ¼
PNr

j¼1

lrjðẑÞBrj and

Crðl̂rÞ ¼
PNr

j¼1

lrjðẑÞCrj are known matrices;vrðx̂Þ is the

membership function of switching signal rðx̂Þ.
Based on the PDC scheme, the fuzzy control law for the

switched fuzzy systems (2) is

ur ¼
Xl
r¼1

XNr

i¼1

vrðx̂ÞlriðẑrÞKrix̂ ð9Þ

or

ur ¼
Xl
r¼1

vrðx̂ÞKrðl̂rÞx̂ ð10Þ

where Kr is the control gain matrix of the r th switching

mode; KrðlrÞ ¼
PNr

s¼1

lr sðẑrÞKr s.

Substituting (9) into (2), the closed-loop switched fuzzy

system is represented as follows:

_x ¼
Pl
r¼1

vrðx̂Þ
PNr

i¼1

lriðzÞ
PNr

s¼1

lrsðẑÞ½Arixþ BriKrsx̂�

y ¼
Pl
r¼1

vrðx̂Þ
PNr

i¼1

lriðẑÞCrix

8>><
>>:

ð11Þ

The equivalent form of (11) is

_x ¼
Pl
r¼1

vrðx̂Þ½ArðlrÞxþ BrðlrÞKrðl̂rÞx̂�

y ¼
Pl
r¼1

mrðx̂ÞCrðlrÞx

8>><
>>:

ð12Þ

where ArðlrÞ ¼
PNr

i¼1

lr iðzÞAr i, BrðlrÞ ¼
PNr

i¼1

lr iðzÞBr i, and

CrðlrÞ ¼
PNr

i¼1

lr iðzÞCr i are known matrices.
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Let e ¼ x� x̂. From (7), (9) and (11), we get the

dynamic equation of estimation error e.

_e ¼ _x� _̂x ¼
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lr iðzÞ
XNr

j¼1

lr jðẑÞ

�
XNr

s¼1

lr sðẑÞ½ððAri � ArjÞ þ ðBri � BrjÞ

� Krs � LrjðCri � CrsÞÞx̂þ ðAri � LrjCriÞe�

ð13Þ

Eq. (13) can be expressed as follows:

_e ¼
Xl
r¼1

vrðx̂Þ½ððArðlrÞ � Arðl̂rÞÞ þ ðBrðlrÞ

� Brðl̂rÞÞKrðl̂rÞ � Lrðl̂rÞðCrðlrÞ � Crðl̂rÞÞÞx̂þ ðArðlrÞ
� Lrðl̂rÞCrðlrÞÞe�

ð14Þ

where

ArðlrÞ � Arðl̂rÞ ¼
XNr

i¼1

lr iðzÞAr i �
XNr

j¼1

lrjðẑÞArj;

BrðlrÞ � Brðl̂rÞ ¼
XNr

i¼1

lr iðzÞBr i �
XNr

j¼1

lrjðẑÞBrj;

CrðlrÞ � Crðl̂rÞ ¼
XNr

i¼1

lr iðzÞCr i �
XNr

j¼1

lrjðẑÞCrj;

ArðlrÞ � Lrðl̂rÞCrðlrÞ ¼
XNr

i¼1

lr iðzÞAr i

�
XNr

j¼1

lrjðẑÞ
XNr

i¼1

lr iðzÞLrjCr i:

The sufficient stabilization conditions of the closed-loop

switched fuzzy systems are provided in the following

theorem.

Theorem 1 For the switched fuzzy system (12), if there

exist non-positive (non-negative) crk 2 R ðr; k ¼ 1; 2;

� � � l; r 6¼ kÞ, positive definite matrices Pr, Qr and Pk with

appropriate dimensions and d[ a[ 0; b[ 0, satisfying

the following conditions

Pr þ b�1QrQr\0 ð15Þ

Kr þ
Xl

k¼1; k 6¼r

crkðPk � PrÞ\0 ð16Þ

with

Pr ¼ AT
riQr � CT

riL
T
rjQr þ QrAri � QrLrjCri þ ða�1 � d�1ÞI

Kr ¼ AT
rj þ KT

rsB
T
rj þ CT

ri � CT
rs

� �
LTrj

� �
Pr

þ Pr Ari þ BrjKrs þ LrjðCri � CrsÞ
� �

þ aPrLrjCriC
T
riL

T
rjPr þ b AT

ri � AT
rj þ KT

rs BT
ri � BT

rj

� �� �

� ðAri � Arj þ ðBri � BrjÞ � KrsÞ � d CT
ri � CT

rs

� �
� LTrjQrQrLrjðCri � CrsÞ

Then the output feedback controller (9) with the switching

law r ¼ rðx̂Þ can guarantee the closed-loop switched fuzzy

system (12) to be asymptotical stable.

Proof Consider the Lyapunov function candidate

V ¼ x̂TPrx̂þ eTQre ð17Þ

where Pr and Qr are two positive definite matrices. For any

e 6¼ 0, it follows from (15) that

Pr þ b�1QrQr\0 ð18Þ

(15) means that under designing switching law, the

observer error e asymptotically converges to zero.

Without loss of generality, we assume cr k � 0. Obvi-

ously, for every x̂ 2 Rnnf0g, there exists a r such that

x̂TðPk � PrÞx̂[ 0, 8k 2 M, then from the matrix inequality

(16), we have

Kr þ
Xl

k¼1;k 6¼r

crkðPk � PrÞ\0 ð19Þ

For an arbitrary r 2 M ¼ f1; 2; . . .; lg, let

Xr ¼ fx̂ 2 Rnjx̂T½Kr þ
Xl

k¼1;k 6¼r

crkðPk � PrÞ�x̂\0; 8x̂ 6¼ 0g

Then Xr ¼ Rnnf0g. Constructing the sets

~Xr ¼ Xrn [
r�1

i¼1

~Xr , it is easy to see that [
r�1

i¼1

~Xi ¼ Rnnf0g, and
~Xi \ ~Xj ¼ /, i 6¼ j.

Therefore, the switching law is

rðx̂Þ ¼ r when x̂ 2 ~Xr ð20Þ

Let V1 ¼ x̂TPrx̂ and V2 ¼ eTQre.

(i) The time derivative of V1 satisfies
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_V1 ¼ _̂xTPrx̂þ x̂TPr
_̂x¼
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lriðzÞ
XNr

j¼1

lrjðẑÞ

�
XNr

s¼1

lrsðẑÞ½x̂TðAT
riPrþPrAriÞx̂þðuTr BT

riþðy� ŷÞTLTrjÞPrx̂

þ x̂TPrðArix̂þBrjurþLrjðy� ŷÞÞ�

¼
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lriðzÞ
XNr

j¼1

lrjðẑÞ
XNr

s¼1

lrsðẑÞ½x̂TððAT
rjþKT

rsB
T
rj

þðCT
ri�CT

rsÞLTrjÞPrþPrðAriþBrjKrsþLrjðCri�CrsÞÞÞx̂
þ eTCT

riL
T
rjPrx̂þ x̂TPrLrjCrie�

ð21Þ

According to Lemma 2, we have

eTCT
riL

T
rjPrx̂þ x̂TPrLrjCrie� ax̂TPrLrjCriC

T
riL

T
rjPrx̂

þ a�1eTe

ð22Þ

Applying (22) to (21) yields

_V1�
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lriðzÞ
XNr

j¼1

lrjðẑÞ

�
XNr

s¼1

lrsðẑÞ½x̂TððAT
rjþKT

rsB
T
rjþðCT

ri�CT
rsÞLTrjÞ�Pr

þPrðAriþBrjKrsþLrjðCri�CrsÞÞ
þaPrLrjCriC

T
riL

T
rjPrÞx̂þa�1eTe�

ð23Þ

(ii) The time derivative of V2 is

_V2 ¼ _eTQreþ eTQr _e¼
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lr i

� zÞ
XNr

j¼1

lr jðẑÞ
XNr

s¼1

lr sðẑÞ½ðððAri�ArjÞþðBri�BrjÞ
 

�Krs �Lrj �ðCri�CrsÞÞx̂þðAri�LrjCriÞeÞTQre

þeTQrðððAri�ArjÞþðBri�BrjÞKrs

�LrjðCri�CrsÞÞx̂þðAri�LrjCriÞe�

¼
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lriðzrÞ
XNr

j¼1

lrjðẑrÞ

�
XNr

s¼1

lrsðẑrÞ½x̂TðAT
ri�AT

rjþKT
rsðBT

ri�BT
rjÞÞQr

�eþ eTQrðAri�ArjþðBri�BrjÞKrsÞx̂
�eTQrLrjðCri�CrsÞx̂� x̂TðCT

ri�CT
rsÞ

�LTrjQreþ eT½ðAT
ri�CT

riL
T
rjÞQrþQrðAri�LrjCriÞ�e

ð24Þ

By using the Lemma 2 and (24), we can obtain

_V2�
Xl
r¼1

vrðx̂Þ½eTððAT
ri�CT

riL
T
rjÞQr þQrðAri�LrjCriÞ

� d�1Iþb�1�QrQrÞeþ x̂TðbðAT
ri�AT

rjþKT
rsðBT

ri�BT
rjÞÞ

� ðAri�ArjþðBri�BrjÞKrsÞ� dðCT
ri�CT

rsÞ
�LTrjQrQrLrjðCri�CrsÞÞx̂�

ð25Þ

In view of (23), (25), and (17), we have

_V ¼ _V1 þ _V2 �
Xl
r¼1

vrðx̂Þ
XNr

i¼1

lr iðzÞ
XNr

j¼1

lr jðẑÞ
XNr

s¼1

lr sðẑÞ

� ½x̂TððAT
rj þ KT

rsB
T
rj þ ðCT

ri � CT
rsÞLTrjÞPr þ PrðAri þ BrjKrs

þ LrjðCri � CrsÞÞ þ aPrLrjCriC
T
riL

T
rjPr

þ bðAT
ri � AT

rj þ KT
rsðBT

ri � BT
rjÞÞðAri � Arj

þ ðBri � BrjÞKrsÞ � dðCT
ri � CT

rsÞLTrjQrQrLrjðCri � CrsÞÞx̂
þ eT � ððAT

ri � CT
riL

T
rjÞQr þ QrðAri � LrjCriÞ

þ ða�1 � d�1ÞI þ b�1QrQrÞe�
ð26Þ

Further, we have

_V�
Xl
r¼1

vrðx̂Þ½x̂TððAT
r ðl̂rÞþKT

r ðl̂rÞBT
r ðl̂rÞþðCT

r ðlrÞ

�CT
r ðl̂rÞÞLTr ðl̂rÞÞ �PrþPrðArðlrÞþBrðl̂rÞKrðl̂rÞ

þLrðl̂rÞðCrðlrÞ�Crðl̂rÞÞÞþaPr

�Lrðl̂rÞCrðlrÞCT
r ðlrÞLTr ðl̂rÞPrþbðAT

r ðlrÞ�AT
r ðl̂rÞ

þKT
r ðl̂rÞ �ðBT

r ðlrÞ�BT
r ðl̂rÞÞÞðArðlrÞ�Arðl̂rÞ

þðBrðlrÞ�Brðl̂rÞÞKrðl̂rÞÞ�dðCT
r ðlrÞ�CT

r ðl̂rÞÞ
LTr ðl̂rÞQrQrLrðl̂rÞðCrðlrÞ�Crðl̂rÞÞÞx̂þ eT

�ððAT
r ðlrÞ�CT

r ðlrÞLTr ðl̂rÞÞQrþQrðArðlrÞ
�Lrðl̂rÞCrðl̂rÞÞþða�1 �d�1ÞIþb�1QrQrÞe�

ð27Þ

According to Lemma 1, there exists a symmetric matrix

Yrijj and a matrix Yrijs such that the following inequalities

are satisfied [36]:

ðAT
rj þ KT

rjB
T
rj þ ðCT

ri � CT
rjÞLTrjÞPr þ PrðAri þ BrjKrj

þ LrjðCri � CrjÞÞ þ aPrLrjCriC
T
riL

T
rjPr þ bðAT

ri � AT
rj

þ KT
rjðBT

ri � BT
rjÞÞðAri � Arj þ ðBri � BrjÞKrjÞ

� dðCT
ri � CT

rjÞLTrjQrQrLrjðCri � CrjÞ

þ
Xl

k¼1;k6¼r

crkðPk � PrÞ\Yrijj

ð28Þ
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2½ðAT
rjþKT

rsB
T
rjþCT

riL
T
rsÞPrþPrðAriþBrjKrsþLrsCriÞ

þaPrLrjCriC
T
riL

T
rj �PrþbðAT

ri�AT
rjþKT

rsðBT
ri�BT

rjÞÞ
�ðAri�ArjþðBri�BrjÞ�KrsÞ��ðCT

rj �LTrsþCT
rsL

T
rjÞ

�Pr�PrðLrsCrjþLrjCrsÞ�dðCT
ri�CT

rjÞLTrsQrQrLrsðCri�CrjÞ

þ
Xl

k¼1;k 6¼r

crkðPk�PrÞ\YrijsþYT
risj

ð29Þ

By using Lemma 1 again, there exist a symmetric matrix

Zrijj and a matrix Zrisj such that the following inequalities

are satisfied for the estimation error:

ðAT
ri � CT

riL
T
rjÞQr þ QrðAri � LrjCriÞ þ ða�1 � d�1ÞI

þ b�1QrQr\Zrijj ð30Þ

2½ðAT
ri � CT

riL
T
rjÞQr þ QrðAri � LrjCriÞ þ ða�1 � d�1ÞI

þ b�1QrQr�\Zrijs þ ZT
risj

ð31Þ

Similar to [40], the time derivative of (26) is expressed

by

_V �
Xl
r¼1

Xf
i¼1

vrðx̂Þl̂ri

l̂r1I

l̂r2I

..

.

l̂rf I

2
6666664

3
7777775

T

Yri11 � . . . �
ðYri12ÞT ðYri22ÞT . . . �

..

. ..
. . .

. ..
.

ðYri1f ÞT � � � � Zriff

2
66664

3
77775

l̂r1I

l̂r2I

..

.

l̂rf I

2
6666664

3
7777775

8>>>>>>><
>>>>>>>:

þ

l̂rf I

l̂rf I

..

.

l̂rf I

2
66666664

3
77777775

T

Zri11 � � � � �
ðZri12ÞT ðZri22ÞT � � � �

..

. ..
. . .

. ..
.

ðZri1f ÞT � � � � Zriff

2
66664

3
77775

l̂rf I

l̂rf I

..

.

l̂rf I

2
66666664

3
77777775

9>>>>>>>=
>>>>>>>;
\0

ð32Þ

From (15) and (16), we know that under the switching

law (20), for arbitrary x̂ 6¼ 0 and e 6¼ 0, i.e.,x 6¼ 0, _V\0

holds.

Therefore, the closed-loop switched fuzzy system is

asymptotically stable, and the observer error e asymptoti-

cally converges to zero.

Note that matrix inequalities <r ¼ Kr þ
Pl

k¼1;k 6¼r

crkðPk �

PrÞ\0 are not linear matrix inequalities. Therefore, we

should transform <r\0 into LMI and obtain positive

definite matrices Pr, control gain matrices Krs and observer

gain matrices Lrj.

Now, using Schur’s complement, and letting Mrj ¼
PrLrj and Wrj ¼ KrsPr, we obtain the following LMIs

Nr þ Tr wr NrjðCri � CrsÞ MrjCri

� �b�1I 0 0

� � d�1I 0

� � � �a�1I

2
664

3
775\0 ð33Þ

with

Nr ¼ ðAT
rj þ KT

rsB
T
rjÞPr þ PrðAri þ BrjKrsÞ

þ
Xl

k¼1;k 6¼r

crkðPk � PrÞ

wr ¼ Ari � Arj þ ðBri � BrjÞKrs

Tr ¼ ðCT
ri � CT

rsÞLTrjPr þ PrLrjðCri � CrsÞÞ
¼ ðCT

ri � CT
rsÞMT

rj þMrjðCri � CrsÞÞ

Since three parameters Pr, Krs and Lrj for system R

should be determined from (30), there is no effective

method for solving them simultaneously. In the following,

a decoupled method is provided to solve Pr, Krs and Lrj
simultaneously. To this end, the following useful theorem

is first introduced.

Theorem 2 [34] If two symmetric matrices are satisfied

a11 a12 a13
� a22 a23
� � a33

2
4

3
5\0 ð34Þ

and

b11 b12
� b22

� �
\0 ð35Þ

Then we will get

a11 0 a12 a13
� 0 0 0

� � a21 a22
� � � a33

2
664

3
775þ

b11 b12 0 0

� b22 0 0

� � 0 0

� � � 0

2
664

3
775\0 ð36Þ

Proof

For any ½ g1 g2 g3 g4 � 6¼ 0, if (34) and (35) hold,

then

g1
g2
g3
g4

2
664

3
775
T a11 0 a12 a13

� 0 0 0

� � a21 a22
� � � a33

2
664

3
775þ

8>><
>>:

b11 b12 0 0

� b22 0 0

� � 0 0

� � � 0

2
664

3
775
9>>=
>>;

g1
g2
g3
g4

2
664

3
775

¼
g1
g2
g3

2
4

3
5
T

a11 a12 a13
� a22 a23
� � a33

2
4

3
5 g1

g2
g3

2
4

3
5

þ g1
g2

� �T
b11 b12
� b22

� �
g1
g2

� �
\0

ð37Þ
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This implies that (37) holds. Therefore, the proof is

completed.

Note that (33) can be decoupled as (38), then, we have

Nr þ Tr wr NrjðCri � CrsÞ MrjCri

� �b�1I 0 0

� � d�1I 0

� � � �a�1I

2
664

3
775

¼

Tr 0 NrjðCri � CrsÞ MrjCri

� 0 0 0

� � d�1I 0

� � � �a�1I

2
664

3
775

þ

Nr wr 0 0

� �b�1I 0 0

� � 0 0

� � � 0

2
664

3
775\0 ð38Þ

The equivalent expressions of the two decoupled

matrices are

Tr 0 NrjðCri � CrsÞ MrjCri

� 0 0 0

� � d�1I 0

� � � �a�1I

2
664

3
775

¼
Tr NrjðCri � CrsÞ MrjCri

� d�1I 0

� � �a�1I

2
4

3
5\0 ð39Þ

Nr wr 0 0

� �b�1I 0 0

� � 0 0

� � � 0

2
664

3
775 ¼ Nr wr

� �b�1I

� �
\0 ð40Þ

Pre-and post-multiplying both side of (40) by matrix

diag fP�1
r ; Ig and by using Schur’s complement, then we

have

Cr Xr � � � Xr Hr

� �c�1
r1 X1 � � � 0 0

..

. ..
. . .

. ..
. ..

.

� � � � � �c�1
rl Xl 0

� � � � �b�1I

2
666664

3
777775
\0 ð41Þ

with Xr ¼ P�1
r ; Cr ¼ XrA

T
rj þWT

rsB
T
rj þ AriXr þ BrjWrs

�
Pl

k¼1;k6¼r

crkXr, Xk ¼ P�1
k ; k ¼ 1; 2; . . .l; Hr ¼ ðAri � ArjÞ

Xr þ ðBri � BrjÞWrs.

We need to transform the inequality (18) into LMI.

Now, by using Schur’s complement, and letting

Nrj ¼ QrLrj, we obtain the following LMI

Pr Qr

� �b

� �
\0 ð42Þ

Solving the LMIs (39), (41), and (42), we can obtain the

positive definite matrices Qr and Xr (thus Xr ¼ P�1
r ), the

control gain matrices Wrs (thus Krs ¼ WrsXr), the observer

gain matrices Nrj (thus Lrj ¼ QrNrj).

4 Simulation Study

In order to illustrate the effectiveness of the proposed

method, two simulation examples are given as follows:

Example 1 Consider a switched fuzzy system with

immeasurable premise variables.

_x ¼ _x1
_x2

� �
¼
P2
i¼1

lriðz1Þ½Arix1 þ Briur�

y ¼ y1
y2

� �
¼
P2
i¼1

lriðz1ÞCrix1

8>><
>>:
where A11 ¼

�0:32 0

0:1 0:08

� �
; A12 ¼

0:2 �0:8
2:6 �0:77

� �
;

A21 ¼
�0:9 �1

�0:05 �0:5

� �
, A22 ¼

0:27 1

�0:1 �0:5

� �
; B11 ¼

�0:39

0:78

" #
; B12 ¼

0:58

1:67

" #
; B21 ¼

0:13

1:21

" #
; B22 ¼

1:87

1:43

" #
,

C11 ¼ �0:01 0:25½ �; C12 ¼ �0:39 0:01½ �; C21 ¼ 0:21½
0:13�; C22 ¼ �0:01 0:14½ �.

Then the corresponding fuzzy membership functions are

as follows: l11ðx̂1Þ ¼ 1� 1=ð1þ e�3:07x̂1Þ; l12ðx̂1Þ
¼ 1� 1=ð1þ e�3:07x̂1Þ;l21ðx̂1Þ ¼ 1� 1=ð1þ e�3:07x̂1Þ;
l22ðx̂1Þ ¼ 1� 1=ð1þ e�3:07x̂1Þ:

The design parameters are chosen as

a ¼ 1:13; b ¼ 1; d ¼ 2:95; c12 ¼ 2:2; c21 ¼ 2:

Let

X1 ¼ fx̂ 2 R2jx̂TðP2 � P1Þx̂� 0; x̂ 6¼ 0g;

X2 ¼ fx̂ 2 R2jx̂TðP2 � P1Þx̂\0; x̂ 6¼ 0g:

Then ~X1 [ ~X2 ¼ R2nf0g, the switching law is con-

structed as

rðx̂Þ ¼
1; x̂ 2 ~X1

2; x̂ 2 ~X2

(

Design the output feedback control law as

ur ¼
Xl
r¼1

XNr

i¼1

mrðx̂ÞlriðẑÞKrix̂

By solving (39), (41), and (42), we can obtain the positive

definite matrices Qr and Pr, the control gains Krs and the

observer gains Lrj as follows, Q1 ¼
0:2022 0:0941
0:0941 0:2289

� �
;

Q2 ¼
1:5271 0:0595
0:0595 0:0638

� �
; P1 ¼

7:3211 �3:6157
�3:6157 12:2310

� �
,
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P2 ¼
0:9988 0:7584
0:7584 2:9803

� �
; K11 ¼ 7:6671 �4:3056½ �;

K12 ¼ 2:5059 �6:3410½ �
K21 ¼ ½�0:7170 �1:3986 �; K22 ¼ �0:5202 �0:7937½ �;

L11 ¼
2:039
3:1558

� �
, L12 ¼

�7:5155
1:9520

� �
; L21 ¼

8:922
�16:5491

� �
;

L22 ¼
�8:9935
19:1108

� �
.

In the simulation, the initial condition is chosen as

0:70 0:82 0:13 1:11½ �T. Then, the simulation results

are shown in Figs. 1, 2, 3, and 4, where Fig. 1 and Fig. 2

show the trajectories of xiði ¼ 1; 2Þ and their estimates

x̂iði ¼ 1; 2Þ, respectively; Fig. 3 expresses the trajectories

of control input urðr ¼ 1; 2Þ; Fig. 4 shows the trajectory of

switching signal r. From the simulation results, it is clear

that the proposed output feedback control method can

guarantee the stability of the closed-loop switched fuzzy

system.

Example 2 Consider the mass-spring-damping system

[41] shown in Fig. 5 and according to Newton’s law, it

follows as

‘€xþ Ff þ Fs ¼ u

where ‘ stands for the mass of the spring, Ff and Fs are the

friction force and the restoring force of the spring, where

the variables are the nonlinear or uncertain terms. u denotes

the external control input. Assume that the friction force

Ff ¼ t1 _x
3 with t1 [ 0 and the hardening spring force Fs ¼

t2xþ t3x
3 with constants t2 and t3.

Then, the dynamic equation can be written as

€x ¼ �ðt1=‘Þ _x3 � ðt2=‘Þx� ðt3=‘Þx3 þ ð1=‘Þu

where x stands for the displacement from a reference point.

Define xðtÞ ¼
x1ðtÞ
x2ðtÞ

" #
¼

x

_x

" #
, then

_xðtÞ ¼
_x1ðtÞ
_x2ðtÞ

" #

¼ _x
�ðt1=‘Þ _x3 � ðt2=‘Þx� ðt3=‘Þx3 þ ð1=‘Þu

� �

The nonlinear terms are �ðt1=‘Þ _x3 and �ðt3=‘Þx3. The
nonlinear terms satisfies the following conditions for

x 2 ½�1:7; 1:7�, _x 2 ½�1:7; 1:7�, then we can
Fig. 1 The trajectories of x1 (solid line) and x̂1 (dotted line)

Fig. 2 The trajectories of x2 (solid line) and x̂2 (dotted line)

Fig. 3 The trajectories of control input u1 (solid line) and u2 (dotted

line)
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obtain
� 2:89 � t3

‘
x� � t3

‘
x3 � 0 � x x� 0

0 � x\� t3

‘
x3 � � 2:89 � t3

‘
x x\0

8><
>: ;

� 2:89 � t1
‘

_x� � t1

‘
_x3 � 0 � _x _x� 0

0 � _x\� t1

‘
_x3 � � 2:89 � t1

‘
_x _x\0

8><
>:

Note that the nonlinear terms can be represented by the

upper bound and the lower bound.

�ðt3=‘Þx3 ¼ H11 � 0 � x� ð1� H11Þ � ð2:89 � t3=‘Þ � x

�ðt1=‘Þ _x3 ¼ H21 � 0 � _x� ð1� H21Þ � ð2:89 � t1=‘Þ � _x

By solving the above equations, H11 and H21 are

obtained as follows:

H11ðxÞ ¼ 1� x2=2:89; H12ðxÞ ¼ x2=2:89;

H21ð _xÞ ¼ 1� _x2=2:89; H22ð _xÞ ¼ _x2=2:89:

When the nonlinear terms reach the upper bound or

lower bound, the system will be switched, and the corre-

sponding fuzzy membership functions are represented by

H11, H12, H21 and H22, then, the switched fuzzy system

with unknown premise variables is constructed by the

following four-rule fuzzy model:

R1
1 : If x is H11; _x is H21; then

_x ¼ A11xþ B11u1; y ¼ C11x:

R2
1 : If x is H11; _x is H22; then

_x ¼ A12xþ B12u1; yðtÞ ¼ C12x:

R1
2 : If x is H12; _x is H21; then

_x ¼ A21xþ B21u2; y ¼ C21x:

R2
2 : If x is H12; _x is H22; then

_x ¼ A22xþ B22u2; y ¼ C22x:

where ‘ ¼ 2, t1 ¼ 0:1, t2 ¼ 0:2, t3 ¼ 0:05.

Then, we obtain

A11 ¼
0 1

�0:1 0

� �
; A12 ¼

0 1

�0:1 �0:1445

� �
; A21

¼ 0 1

�0:2445 0

� �
;

A22 ¼
0 1

�0:2445 �0:1445

� �
; B11 ¼

0

0:5

" #
; B12

¼
0

0:5

" #
; B21 ¼

0

0:5

" #
; B22 ¼

0

0:5

" #
;

C11 ¼ �2:01 0:15½ �; C12 ¼ �0:34 0:34½ �; C21

¼ 0:31 0:23½ �; C22 ¼ �1:35 0:14½ �:

Then the corresponding fuzzy membership functions are

l11ðx1Þ ¼ 1� 1=ð1þ e�5:4x1Þ ; l12ðx1Þ
¼ 1� 1=ð1þ e�5:4x1Þ;

l21ðx1Þ ¼ 1� 1=ð1þ e�5:4x1Þ; l22ðx1Þ
¼ 1� 1=ð1þ e�5:4x1Þ:

The design parameters are chosen

asa ¼ 1; b ¼ 1; d ¼ 3:2; c12 ¼ 1:2; c21 ¼ 1:2:

Let

X1 ¼ fx 2 R2jxTðP2 � P1Þx� 0; x 6¼ 0g;

X2 ¼ fx 2 R2jxTðP2 � P1Þx\0; x 6¼ 0g:

Then ~X1 [ ~X2 ¼ R2nf0g; the switching law is con-

structed as

rðx̂Þ ¼
1; x̂ 2 ~X1

2; x̂ 2 ~X2

(

Fig. 4 The trajectory of switching signal

Fig. 5 Mass–Spring–Damping system
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Design the output feedback controller as

ur ¼
Xl
r¼1

XNr

i¼1

mrðx̂ÞlriðẑÞKrix̂

By solving (39), (41) and (42), we can obtain the

positive definite matrices Qr and Pr, the control gains

Krs and the observer gain Lrj as follows:Q1 ¼
0:6568 0:0636
0:0636 0:4710

� �
; Q2 ¼

0:8923 0:1358
0:1358 0:4745

� �
; P1 ¼

2:3811 2:7511
2:7511 9:1005

� �
, P2 ¼

0:8038 1:1819
1:1819 8:7461

� �
; K11 ¼

�13:0053 �31:5743½ �; K12 ¼ �12:5231 �31:0993½ �,
K21 ¼ ½�4:2717 �26:6101 �; K22¼ �5:4128 �29:6035½ �;

L11¼
�1:0780
�0:0661

� �
,L12¼

�0:0185
0:3067

� �
;L21¼

1:3036
�0:2177

� �
;L22¼

�1:6668
0:3529

� �
.

The initial condition is chosen as

2:08 1:62 1:67 1:71½ �T. Then, the simulation results

are shown in Figs. 6, 7, and 8, where Figs. 6 and 7 show

the trajectories of xiði ¼ 1; 2Þ and their estimates

x̂iði ¼ 1; 2Þ, respectively; Fig. 8 shows the trajectory of

switching signal. From the simulation results, it is clear that

even though the state variables are immeasurable, the fuzzy

output feedback controller and the switching law guarantee

the stability of mass–spring–damping system.

5 Conclusions

In this paper, the output feedback robust stabilization

problem has been investigated for a class of switched fuzzy

systems, which contain the immeasurable premise vari-

ables and the state variables. By using the parallel dis-

tributed compensation (PDC) design method, a switched

state observer has been designed and estimations of the

immeasurable states can be obtained. Based on the

designed state observer and the multiple Lyapunov func-

tion approach, an output feedback controller and the

switching laws have been developed. It has been proved

that the proposed output feedback control scheme can

guarantee the control system to be asymptotical stable.

Compared with the existing results, the main contributions

of this paper are as follows. One is that the proposed

control method has first solved non-measurable premise

variable problem for the switched fuzzy systems. The other

Fig. 6 The trajectories of x1 (solid line) and x̂1 (dotted line)

Fig. 7 The trajectories of x2 (solid line) and x̂2 (dotted line)

Fig. 8 The trajectory of switching signal
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is that a novel decoupled method has been proposed to

obtain the feasible solutions of the control and observer

gain matrixes, instead of the two-step method adopted in

the previous literatures.
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