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Abstract The hesitant fuzzy set permits the membership

degree of an element to be a set of several possible values

between 0 and 1, and is therefore an efficient tool for

handling multi-criteria group decision making (MCGDM)

problems in which experts hesitate between several values

to assess an alternative. The aim of this paper is to study

MCGDM problems in which the criterion values provided

by experts take the form of hesitant fuzzy elements, and the

weight information about both the decision makers and the

criteria is unknown. By minimizing the divergence among

the individual hesitant fuzzy decision matrices, we first

establish a nonlinear optimization model to obtain an exact

formula, from which the weights of decision makers can be

derived. Then, based on all the individual hesitant fuzzy

decision matrices, we construct a nonlinear optimization

model to determine the weights of criteria by maximizing

group consensus. After obtaining the weights of decision

makers and criteria, a simple additive weighting operator is

used to aggregate all the individual hesitant fuzzy decision

matrices into the collective hesitant fuzzy decision matrix

and is used to obtain the collective overall hesitant fuzzy

values corresponding to each alternative. Moreover, all the

above results are also extended to interval-valued hesitant

fuzzy situations. Finally, we apply the developed models to

an investment selection problem.

Keywords Hesitant fuzzy set (HFS) � Interval-valued
hesitant fuzzy set (IVHFS) � Multi-criteria group decision

making (MCGDM) � Maximizing group consensus �
Additive weighting operator

1 Introduction

Considering that the difficulty of establishing the mem-

bership degree of an element to a given set is sometimes

not because we have a margin of error (as in intuitionistic

fuzzy set [1], interval-valued fuzzy set [32], or interval-

valued intuitionistic fuzzy set [2] or some possibility dis-

tribution on the possible values (as in type-2 fuzzy set [6,

14]), but because we have some possible numerical values,

[20] presented a new concept of hesitant fuzzy sets (HFSs),

which permits the membership degree of an element to be

presented as a set of several possible values between 0 and

1, and thus can be used to manage the situation where

people hesitate between several values to express their

opinions. In the short time since its first appearance, hesi-

tant fuzzy sets have received more and more attention [15,

22, 24, 30]. Rodrı́guez et al. [17] presented an overview on

hesitant fuzzy sets with the aim of providing a clear per-

spective on the different concepts, tools, and trends related

to hesitant fuzzy sets.

The aim of multi-criteria group decision making

(MCGDM) problems is to find the most desirable alterna-

tive(s) among a set of feasible alternatives according to the

preferences provided by a group of decision makers. In

some practical group decision making process, owing to

the time pressure and lack of knowledge or data, or the

decision makers (DMs)’ limited attention and information

processing capacities, the DMs cannot provide their pref-

erence information with single exact numerical value, a

margin of error or some possibility distribution on the

possible values, but several possible numerical values
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represented by the hesitant fuzzy elements (HFEs) [24]. To

deal with such situations, most recently, some hesitant

fuzzy aggregation operators [10, 13, 16, 18, 19, 31, 35, 36]

have been developed for aggregating hesitant fuzzy infor-

mation, including the HFEWA, HFEWG, HFEOWA,

HFEOWG, HFEHA, HFEHG, HFMSM, WHFMSM, GHF

PEWA, GHFPEWG, GHFGSCWA, GHFGSCGM, GHF

HWA, GHFHWG, GQHFHWA, GQHFHWG, IHFHWA,

IHFHWG, IQHFHWA, IQHFHWG, IGHFHWA, IGHFH

WG, IGQHFHWA, IGQHFHWG, HFHWA, HFHWG,

GHFHWA, GHFHWG, HFHOWA, HFHOWG, GHFHO

WA, GHFHOWG, HFHHA, HFHWG, GHFHHA, GHF

HHG, and THFPRI-OR operators. Moreover, based on

these aggregation operators, some methods have been

developed for handling the multi-criteria decision making

(MCDM) or multi-criteria group decision making

(MCGDM) problems with hesitant fuzzy information in

which the criterion values take the form of hesitant fuzzy

elements (HFEs) [24].

However, these operators and methods have some draw-

backs as follows: (1) An important topic in hesitant fuzzy

MCGDM is how to determine theweights of both criteria and

decision makers. All the aforementioned operators and

methods only consider the situations where the criteria

weights are completely known or partially known, and the

weights of decision makers (DMs) are completely known.

Furthermore, these weight vectors are provided by the

decision makers in advance and therefore are more or less

subjective and insufficient. However, in many practical

problems, owing to time pressure, lack of knowledge or data,

and the decisionmakers’ limited expertise about the problem

domain, the weight information on both criteria and decision

makers is usually completely unknown or is very difficult to

obtain. Thus, how to obtain theweight vectors of both criteria

and decision makers is an interesting issue and is worthy to

be studied in depth. Recently, some studies [8, 11, 29] have

been devoted to addressing this issue and developed some

completely unknownweight generation processes within the

hesitant fuzzy environment. For example, Hu et al. [8] con-

structed the entropy weight model to determine the criteria

weights based on the proposed entropy measures. Liu et al.

[11] took advantage of the the linear programming technique

for multidimensional analysis of preference (LINMAP) to

determine the attribute weights objectively in the hesitant

fuzzymultiple attribute decisionmaking. Xu and Zhang [29]

established an optimization model based on the maximizing

deviation method to determine the optimal relative weights

of attributes under hesitant fuzzy environment. However, the

existing weight generation methods in [8, 11, 29] only

investigated multi-criteria single person decision making

with hesitant fuzzy information and did not consider multi-

criteria group decision making (MCGDM) with hesitant

fuzzy information. In addition, in a MCGDM with hesitant

fuzzy information, because the experts have their own

inherent value systems and consideration, and thus the dis-

agreement among the experts is inevitable. In such a case,

consensus turns out to be very important in group decision

making. Consensus makes it possible for a group to reach a

final decision that all group members can support despite

their differing opinions. Clearly, it is preferable that the

experts had achieved a high level of consensus concerning

their preferences before reaching a desirable decision result.

The existing weight generationmethods in [8, 11, 29] did not

consider any consensus issue. To address this issue, in this

paper, we develop two nonlinear optimization models for

MCGDM problems with hesitant fuzzy information, one

minimizing the divergence among the individual hesitant

fuzzy decision matrices, and the other minimizing the

divergence between each individual hesitant fuzzy decision

matrix and the collective hesitant fuzzy decision matrix,

fromwhich two exact formulae can be obtained to derive the

weights of decision makers and criteria, respectively. (2)

These operators and methods need to perform some aggre-

gation operations on the input hesitant fuzzy arguments,

which will lead to increasing dimensions of the aggregated

hesitant fuzzy elements. Consequently, these operators and

methods increase the computational complexity and may

cause the loss of decision information. In real applications,

the large computational complexity means the high costs of

decisionmaking. To address this issue, in this paper, we use a

simple additive weighting operator to aggregate all the

individual hesitant fuzzy decision matrices into the collec-

tive hesitant fuzzy decision matrix and then derive the col-

lective overall HFE corresponding to each alternative from

the collective hesitant fuzzy decision matrix. Compared to

the other operators, the additive weighting operator does not

increase the dimensions of the fused hesitant fuzzy argu-

ments. Comparison analysis shows that the developed

operators and methods can obtain the same optimal alter-

native as the one obtained with the other methods on the

premise that the dimensions of the fused hesitant fuzzy

arguments is not increased.

As a generalization of hesitant fuzzy set, interval-valued

hesitant fuzzy set [4, 5] permits the membership of an ele-

ment to be a set of several possible interval values due to the

fact it is somewhat difficult for experts to assign exact

numerical values for the membership degrees of certain

elements to a set in some practical problems [4, 5]. Interval-

valued hesitant fuzzy set can efficiently manage the

MCGDM problems in which experts hesitate between sev-

eral possible interval values instead of exact numerical val-

ues to assess an alternative. To date, some interval-valued

hesitant fuzzy aggregation operators [9, 33, 34] have been

proposed for aggregating interval-valued hesitant fuzzy

information, such as the interval-valued hesitant fuzzy

Hamacher synergetic weighted averaging (IVHFHSWA)
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operator, the interval-valued hesitant fuzzy Hamacher syn-

ergetic weighted geometric (IVHFHSWG) operator, the

induced generalized interval-valued hesitant fuzzy ordered

weighted averaging (IGIVHFOWA) operator, the induced

generalized interval-valued hesitant fuzzy ordered weighted

geometric (IGIVHFOWG) operator, the Archimedean

t-conorm- and t-norm-based interval-valued hesitant fuzzy

weighted averaging (A-IVHFWA) operator, and the Archi-

medean t-conorm- and t-norm-based interval-valued hesi-

tant fuzzy weighted geometric (A-IVHFWG) operator.

Furthermore, based on these operators, some methods have

been developed for handling the MCDM and MCGDM

problems with interval-valued hesitant fuzzy information in

which the criterion values take the form of interval-valued

hesitant fuzzy elements (IVHFEs) [5]. However, these

operators and methods have the same shortcomings as the

ones shown in the above section. To address this issue, we

extend the above results to interval-valued hesitant fuzzy

situations.

The remainder of this paper is arranged as follows. In

Sect. 2, we give a brief review of hesitant fuzzy sets and

interval-valued hesitant fuzzy sets. In Sect. 3, we first

develop two nonlinear optimization models, one is to

minimize the divergence among the individual hesitant

fuzzy decision matrices to derive the weights of decision

makers, and the other is to minimize the divergence

between each individual hesitant fuzzy decision matrix and

the collective hesitant fuzzy decision matrix to obtain the

criterion weights. Then, on the basis of the simple additive

weighting operator and the score function, we develop a

method for ranking the given alternatives and selecting the

optimal alternative. Section 4 extends the results obtained

in Sect. 3 to interval-valued hesitant fuzzy environments.

In Sect. 5, two illustrative examples are employed to

illustrate the effectiveness and practicality of the developed

methods. Furthermore, this section also makes a compar-

ison analysis with the other methods. Section 6 ends this

paper with some concluding remarks.

2 Preliminaries

2.1 Hesitant Fuzzy Sets (HFSs)

Torra [20] proposed the notion of hesitant fuzzy sets to

manage the situations in which several numerical values

are possible for the definition of the membership of an

element to a given set.

Definition 2.1 Torra [20]. Let X be a reference set, a

hesitant fuzzy set (HFS) A on X is in terms of a function

hA(x) that when applied to X returns a subset of [0,1].

To be easily understood, the HFS can be expressed by a

mathematical symbol

A ¼ x; hA xð Þh ijx 2 Xf g ð1Þ

where hA(x) is a set of some values in [0,1], denoting the

possible membership degrees of the element x [ X to the

set A. For convenience, Xia and Xu [24] called h = hA(x) a

hesitant fuzzy element (HFE).

Let lh denote the numbers of values in the HFE h. For

convenience, the values in the HFE h are arranged in a

descending order, i.e., h ¼ hr ið Þ��i ¼ 1; 2; . . .; lh
� �

, where

hr(i) is the ith biggest value in h.

Example 2.1 Let X ¼ x1; x2; x3f g, A ¼ x1; 0:7;fhf
0:5gi; x2; 0:5; 0:3; 0:2f gh i; x3; 0:8; 0:7f gh ig, and h ¼ 0:5;f
0:3; 0:2g. Then, A is a HFS on X, h is a HFE, and lh = 3.

Given three HFEs, h, h1, and h2, Torra [20] defined the

following operations:

(1) hc ¼
S

c2h 1� cf g;
(2) h1 [ h2 ¼

S

c12h1;c22h2 c1 _ c2f g
(3) h1 \ h2 ¼

S

c12h1;c22h2 c1 ^ c2f g

Xia and Xu [24] defined the following comparison rules

for HFEs:

Definition 2.2 Xia and Xu [24]. For a HFE h ¼
S

c2h cf g,

s hð Þ ¼
P

c2h c

lh
is called the score function of h, where lh is

the number of elements in h. For two HFEs, h1 and h2,

if s h1ð Þ[ s h2ð Þ, then h1[ h2; if s h1ð Þ ¼ s h2ð Þ, then

h1 = h2.

Let h1 and h2 be two HFEs. In most cases, lh1 6¼ lh2 ; for

convenience, let l ¼ max lh1 ; lh2f g. To compare h1 and h2,

Xu and Xia [28] suggested that we should extend the

shorter HFE until the length of both HFEs was the same.

The simplest way to extend the shorter HFE is to append

the same value repeatedly; in principle, any value can be

appended. In practice, the selection of the appended value

depends primarily on the decision makers’ risk preferences.

To address this issue, Xu and Zhang [29] developed the

following method:

Definition 2.3 Xu and Zhang [29]. Assume a HFE

h ¼ hr ið Þ��i ¼ 1; 2; . . .; lh
� �

, and stipulate that h? and h- are

the maximum and minimum values in the HFE h, respec-

tively; then we call �h ¼ ghþ þ 1� gð Þh� an extension

value, where g (0� g� 1) is the parameter determined by

the DM according his/her risk preference.

As a result, we can add different values to the HFE using

h according the DM’s risk preference. If g ¼ 1, then the

extension value �h ¼ h�, which shows that the DM’s risk
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preference is risk-seeking; if g ¼ 0, then �h ¼ h�, which

means that the DM’s risk preference is risk-averse; if g ¼ 1
2
,

then �h ¼ hþþh�

2
, which indicates that the DM’s risk pref-

erence is risk-neutral. Clearly, the parameter g provided by

the DM reflects his/her risk preference and affects the final

decision results.

Example 2.2 Let h1 ¼ 0:4; 0:3; 0:1f g and h2 ¼
0:8; 0:7f g be two HFEs. It is clear that lh1 ¼ 3, lh2 ¼ 2, and

lh1 [ lh2 . Therefore, by Xu and Zhang’s method (suppose

g ¼ 0), we can extend h2 to the following: �h2 ¼ 0:8;f
0:7; 0:7g.

To aggregate hesitant fuzzy information, we define

some new operational laws on the HFEs h1 ¼ h
r ið Þ
1

�
�
�

n

i ¼ 1; 2; . . .; lh1g, h2 ¼ h
r ið Þ
2

�
�
�i ¼ 1; 2; . . .; lh2

n o

, and h ¼
hr ið Þ��i ¼ 1; 2; . . .; lh
� �

:

h1 � h2 ¼ h
r ið Þ
1 þ h

r ið Þ
2

�
�
�i ¼ 1; 2; . . .; l

n o

h1�h2 ¼
[

cr sð Þ
1

2h1;cr sð Þ
2

2h2
cr sð Þ
1 � cr sð Þ

2

n o

kh ¼ khr ið Þ��i ¼ 1; 2; . . .; lh

n o

; 0� k� 1

where h
r sð Þ
1 and h

r sð Þ
2 are the ith biggest elements in h1 and

h2, respectively, and it is assumed that lh1 ¼ lh2 ¼ l,

otherwise the shorter one can be extended by using Defi-

nition 2.3 until both of them have the same length.

2.2 Interval-Valued Hesitant Fuzzy Sets (IVHFSs)

It should be noted that hesitant fuzzy sets permit the

membership of an element to be a set of several possible

values. All these possible values are crisp real numbers that

belong to [0,1]. However, in some practical problems, it is

somewhat difficult for experts to assign exact values for the

membership degrees of certain elements to a set, but a

range of values belonging to [0,1] may be assigned [4, 5].

For such cases, Chen et al. [4, 5] introduced the concept of

interval-valued hesitant fuzzy set (IVHFS). Next, we

briefly review the IVHFS.

Throughout this paper, let D 0; 1½ �ð Þ ¼ a ¼ aL; aU½ �f
jaL � aU ; aL; aU 2 0; 1½ �g stand for the set of all closed

subintervals of [0,1].

Definition 2.4 Xu and Da [26]. If a ¼ aL; aU½ �; b ¼ bL;½
bU � 2 D 0; 1½ �ð Þ, then we define

(1) a ¼ b , aL; aU½ � ¼ bL; bU½ � , aL ¼ bL and

aU ¼ bU ;

(2) aþ b ¼ aL; aU½ � þ bL; bU½ � ¼ aL þ bL; aU þ bU½ �;
(3) ka ¼ k aL; aU½ � ¼ kaL; kaU½ �;

(4) The complement of a is denoted by ac ¼
aL; aU½ �c¼ 1� aU ; 1� aL½ �.

In order to compare a ¼ aL; aU½ � and b ¼ bL; bU½ �, Xu
and Da [26] gave the following definition.

Definition 2.5 Xu and Da [26]. Let a ¼ aL; aU½ �;
b ¼ bL; bU½ � 2 D 0; 1½ �ð Þ, and let len að Þ ¼ aU � aL and

len bð Þ ¼ bU � bL. Then the degree of possibility of a� b is

defined as

p a� bð Þ ¼ max 1�max
bU � aL

lenðaÞ þ lenðbÞ ; 0
� �

; 0

� �

To rank the interval numbers ai ¼ aLi ; a
U
i

	 


2 D 0; 1½ �ð Þ
(i ¼ 1; 2; . . .; n), based on Definition 2.5, Xu and Da [26]

developed a complementary matrix as

P ¼

p11 p12 � � � p1n
p21 p22 � � � p2n

..

. ..
. ..

. ..
.

pn1 pn2 � � � pnn

2

6
6
6
4

3

7
7
7
5

where pij ¼ p ai � aj
� �

, pij � 0, pij þ pji ¼ 1, pii ¼ 1
2
,

i; j ¼ 1; 2; . . .; n.

Summing all elements in each line of the matrix P, we

have

pi ¼
Xn

j¼1

pij i ¼ 1; 2; . . .; n

Then we can rank the ai ¼ aLi ; a
U
i

	 


(i ¼ 1; 2; . . .; n) in
descending order according to the values of pi
(i ¼ 1; 2; . . .; n).

Definition 2.6 Chen et al. [4, 5]. Let X be a fixed set, an

interval-valued hesitant fuzzy set (IVHFS) on X is in terms

of a function that when applied to X returns a subset of

D([0,1]).

To be easily understood, we express the IVHFS by a

mathematical symbol:

~A ¼ x; ~h ~A xð Þ

 ��

�x 2 X
� �

ð2Þ

where ~h ~AðxÞ denotes all possible interval membership

degrees of the element x 2 X to the set ~A. For convenience,

Chen et al. [5] called eh ¼ ~h ~A xð Þ an interval-valued hesitant

fuzzy element (IVHFE). If ~c 2 eh, then ~c is an interval

number and can be denoted by ~c ¼ ~cL; ~cU½ �, where ~cL ¼
inf ~c and ~cU ¼ sup ~c express the lower and upper limits of

~c, respectively. Obviously, if ~cL ¼ ~cU for any ~c 2 eh, then
the IVHFEs reduce to the HFEs.

Let l~h denote the numbers of intervals in the IVHFE ~h.

For convenience, the values in the IVHFE ~h are arranged in

618 International Journal of Fuzzy Systems, Vol. 19, No. 3, June 2017

123



a descending order, i.e., ~h ¼ ~hr ið Þ��i ¼ 1; 2; . . .; l~h
� �

, where

~hr ið Þ is the ith biggest interval in ~h.

Example 2.3 Let X ¼ x1; x2; x3f g, ~A ¼ x1; 0:7; 0:8½ �;fhf
0:5; 0:6½ �gi; x2; 0:3; 0:5½ �; 0:3; 0:4½ �; 0:1; 0:3½ �f gh i; x3; 0:6;½fh
0:8�; 0:6; 0:7½ �gig, and ~h ¼ 0:3; 0:5½ �; 0:3; 0:4½ �; 0:1; 0:3½ �f g.
Then, ~A is an IVHFS on X, ~h is an IVHFE, and l~h ¼ 3.

In most situations, the number of intervals for different

IVHFEs could be different. For convenience, let

l ¼ max l~h1 ; l~h2

n o

, where l~h1 and l~h2 are the numbers of

intervals in IVHFEs ~h1 and ~h2, respectively. In order to

more accurately operate between two IVHFEs, they should

have the same number of intervals. To address this issue,

similar to Definition 23, Xu and Zhang [29] developed the

following method to extend the shorter IVHFE until the

length of both IVHFEs was the same.

Definition 2.7 Xu and Zhang [29]. Assume an IVHFE

~h ¼ ~hr ið Þ��i ¼ 1; 2; . . .; l~h
� �

, and stipulate that ~hþ and ~h� are

the maximum and minimum intervals in the IVHFE ~h,

respectively; then we call
�~h ¼ g~hþ þ 1� gð Þ~h� an exten-

sion value, where g (0� g� 1) is the parameter determined

by the DM according his/her risk preference.

Consequently, we can add different values to the IVHFE

using g according the DM’s risk preference. If g ¼ 1, then

the extension value
�~h ¼ ~hþ, which shows that the DM’s

risk preference is risk-seeking; if g ¼ 0, then
�~h ¼ ~h�,

which means that the DM’s risk preference is risk-averse;

if g ¼ 1
2
, then

�~h ¼ ~hþþ~h�

2
, which indicates that the DM’s risk

preference is risk-neutral. Clearly, the parameter g pro-

vided by the DM reflects his/her risk preference and affects

the final decision results. In this paper, we assume that the

decision makers are all risk-averse.

Definition 2.8 Chen et al. [5]. For an IVHFE ~h, s ~h
� �

¼
P

~c2eh
~c

l ~h
is called the score function of ~h. For two IVHFEs ~h1

and ~h2, if s ~h1
� �

� s ~h2
� �

, then ~h1 � ~h2.

3 Nonlinear Optimization Models for Multi-
Criteria Group Decision Making Under Hesitant
Fuzzy Situations

3.1 Problem Description

First, a multi-criteria group decision making (MCGDM)

with hesitant fuzzy information can be formulated as fol-

lows: Let X ¼ x1; x2; . . .; xmf g be a set of m alternatives,

C ¼ c1; c2; . . .; cnf g be a collection of n criteria, whose

weight vector is w ¼ w1;w2; . . .;wnð ÞT , with wj 2 0; 1½ �,
j ¼ 1; 2; . . .; n, and

Pn
j¼1 wj ¼ 1, and let D ¼

d1; d2; . . .; dp
� �

is a set of p decision makers, whose weight

vector is x ¼ x1;x2; . . .;xp

� �T
, with xk 2 0; 1½ �,

k ¼ 1; 2; . . .; p, and
Pp

k¼1 xk ¼ 1. Let A kð Þ ¼ a
kð Þ
ij

� �

m	n
be

a hesitant fuzzy decision matrix, where a
kð Þ
ij ¼

a
kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2; . . .; l

a
kð Þ
ij

� �

is a HFE, which is a set of

all of the possible values that the alternative xi 2 X satisfies

the attribute cj 2 C, given by the decision maker dk 2 D.

In general, there are benefit criteria and cost criteria in a

MCGDM problem. For such cases, we need to transform

the hesitant fuzzy decision matrices A kð Þ ¼ a
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) into the normalized hesitant fuzzy decision

matrix B kð Þ ¼ b
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p) by the following

equation [27]:

b
kð Þ
ij ¼

a
kð Þ
ij ; for benefit criterion cj

a
kð Þ
ij

� �c

; for cost criterion cj

8

<

:

i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; p

ð3Þ

where a
kð Þ
ij

� �c

is the complement of a
kð Þ
ij , such that

a
kð Þ
ij

� �c

¼ 1� a
kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2; . . .; l

a
kð Þ
ij

� �

.

In most situations, it is noted that the numbers of the

elements in different HFEs b
kð Þ
ij of B kð Þ (k ¼ 1; 2; . . .; p) are

different. In order to more accurately operate between

these HFEs, we should extend the shorter ones until all of

them have the same length. Let l ¼ max l
b

kð Þ
ij

�
�
�
�
i ¼ 1; 2; . . .;

�

m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pg. By the regulation

method proposed by Xu and Zhang [29], we transform the

hesitant fuzzy decision matrices B kð Þ ¼ b
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) into the corresponding hesitant fuzzy

decision matrices H kð Þ ¼ h
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p), such

that l
h

kð Þ
ij

¼ l for all i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n, and

k ¼ 1; 2; . . .; p.

3.2 A Nonlinear Optimization Model

for Determining Decision Makers’ Weights

For any two HFEs h1 ¼ h
r ið Þ
1

�
�
�i ¼ 1; 2; . . .; lh1

n o

and

h2 ¼ h
r ið Þ
2

�
�
�i ¼ 1; 2; . . .; lh2

n o

, we define the square devia-

tion between h1 and h2 as
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d h1; h2ð Þ ¼
Xl

i¼1

h
r ið Þ
1 � h

r ið Þ
2

� �2

ð4Þ

where l ¼ max lh1 ; lh2f g, and h
r ið Þ
1 and h

r ið Þ
2 are the ith lar-

gest values in h1 and h2, respectively.

If we take the weight of each HFE into account, then we

define the weighted square deviation between h1 and h2 as

d x1h1;x2h2ð Þ ¼
Xl

i¼1

x1h
r ið Þ
1 � x2h

r ið Þ
2

� �2

ð5Þ

where x1 and x2 are the weights of h1 and h2, respectively,

x ¼ x1;x2ð ÞT , xi � 0, i ¼ 1; 2, x1 þ x2 ¼ 1.

Based on Eq. (5), we define the weighted square devi-

ation between each pair of the individual hesitant fuzzy

decision matrices H kð Þ;H qð Þ� �

as

d xkH
kð Þ;xqH

qð Þ
� �

¼
Xm

i¼1

Xn

j¼1

Xl

t¼1

xk h
kð Þ
ij

� �r tð Þ
�xq h

qð Þ
ij

� �r tð Þ
� �2 ð6Þ

where h
kð Þ
ij

� �r tð Þ
and h

qð Þ
ij

� �r tð Þ
are the tth largest values in

h
kð Þ
ij and h

qð Þ
ij , respectively.

Furthermore, if we consider all the weighted square

deviations among all the pairs of the individual hesitant

fuzzy decision matrices, then it follows from Eq. (6) that

f xð Þ¼
Xp

k¼1

Xp

q¼1;q 6¼k

d xkH
kð Þ;xqH

qð Þ
� �

¼
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xk h
kð Þ
ij

� �r tð Þ
�xq h

qð Þ
ij

� �r tð Þ
� �2

ð7Þ

It is highly likely that individual hesitant fuzzy decision

matrices are largely dispersed if their weights are not

considered. Therefore, the weights should be incorporated

into each hesitant fuzzy decision matrix. In group decision-

making problems, the experts, because they usually come

from different specialty fields and have different back-

grounds and levels of knowledge, usually have diverging

opinions. Consensus can measure the degree of agreement

among the decision makers on the solution of the problem.

The larger the value of consensus measure, the closer that

decision maker is to the group, and the more desirable the

decision result. Consensus is a pathway to a true group

decision because it can guarantee that the final result

should be supported by all the group members despite their

different opinions. Clearly, it is preferable that the experts

had achieved a high level of consensus concerning their

preferences before reaching a desirable decision result. In

the cases where all the individual weighted hesitant fuzzy

decision matrices xkH
kð Þ ¼ xkh

kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p)

are the same, then obviously the group is of high consen-

sus. Nevertheless, in the actual applications, this case

generally does not occur since the experts may have dif-

ferent experiences and specialties. In order to achieve

maximum consensus, the weighted hesitant fuzzy decision

matrices should come closer to each other. Based on this

idea, the following nonlinear optimization model (M-1) is

constructed to minimize the sum of squared distances

between all pairs of weighted hesitant fuzzy decision

matrices and make the group consensus as high as possible:

min f xð Þ ¼
Xp

k¼1

Xp

q¼1;q6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xk h
kð Þ
ij

� �r tð Þ
� xq h

qð Þ
ij

� �r tð Þ
� �2

s:t

Xp

k¼1

xk ¼ 1;

xk � 0; k ¼ 1; 2; . . .; p;

8

>><

>>:

ðM-1Þ

Theorem 3.1 Model (M-1) is equivalent to (M-2) below

in a matrix form

min f xð Þ ¼ xTGx

s:t:
eTx ¼ 1;

x� 0

(

ðM-2Þ

where x ¼ x1;x2; . . .;xp

� �T
, e ¼ 1; 1; . . .; 1ð ÞT , and

G ¼ gkq
� �

p	p

¼ 2

p� 1ð Þ
Pm

i¼1

Pn

j¼1

Pl

t¼1

h
1ð Þ
ij

� �r tð Þ
� �2

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

h
1ð Þ
ij

� �r tð Þ
h

2ð Þ
ij

� �r tð Þ
� � � �

Pm

i¼1

Pn

j¼1

Pl

t¼1

h
1ð Þ
ij

� �r tð Þ
h

pð Þ
ij

� �r tð Þ

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

h
2ð Þ
ij

� �r tð Þ
h

1ð Þ
ij

� �r tð Þ
p� 1ð Þ

Pm

i¼1

Pn

j¼1

Pl

t¼1

h
2ð Þ
ij

� �r tð Þ
� �2

� � � �
Pm

i¼1

Pn

j¼1

Pl

t¼1

h
2ð Þ
ij

� �r tð Þ
h

pð Þ
ij

� �r tð Þ

� � � � � � � � � � � �

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

h
pð Þ
ij

� �r tð Þ
h

1ð Þ
ij

� �r tð Þ
�
Pm

i¼1

Pn

j¼1

Pl

t¼1

h
pð Þ
ij

� �r tð Þ
h

2ð Þ
ij

� �r tð Þ
� � � p� 1ð Þ

Pm

i¼1

Pn

j¼1

Pl

t¼1

h
pð Þ
ij

� �r tð Þ
� �2

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð8Þ
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Proof

f xð Þ ¼
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xk h
kð Þ
ij

� �r tð Þ
�xq h

qð Þ
ij

� �r tð Þ
� �2

¼
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
k h

kð Þ
ij

� �r tð Þ
� �2

þx2
q h

qð Þ
ij

� �r tð Þ
� �2

 !

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq h
kð Þ
ij

� �r tð Þ
h

qð Þ
ij

� �r tð Þ

¼
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
k h

kð Þ
ij

� �r tð Þ
� �2

 !

þ
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
q h

qð Þ
ij

� �r tð Þ
� �2

 !

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq h
kð Þ
ij

� �r tð Þ
h

qð Þ
ij

� �r tð Þ

¼
Xp

k¼1

p� 1ð Þ
Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
k h

kð Þ
ij

� �r tð Þ
� �2

 !

þ
Xp

q¼1

p� 1ð Þ
Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
q h

qð Þ
ij

� �r tð Þ
� �2

 !

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq h
kð Þ
ij

� �r tð Þ
h

qð Þ
ij

� �r tð Þ

¼
Xp

k¼1

2 p� 1ð Þ
Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
k h

kð Þ
ij

� �r tð Þ
� �2

 !

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq h
kð Þ
ij

� �r tð Þ
h

qð Þ
ij

� �r tð Þ

¼
Xp

k¼1

2 p� 1ð Þ
Xm

i¼1

Xn

j¼1

Xl

t¼1

h
kð Þ
ij

� �r tð Þ
� �2

 !

x2
k

þ
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

�2 h
kð Þ
ij

� �r tð Þ
h

qð Þ
ij

� �r tð Þ
� �

xkxq

¼
Xp

k¼1

gkkx
2
k þ

Xp

k¼1

Xp

q¼1;q 6¼k

gkqxkxq

¼
Xp

k¼1

Xp

q¼1

gkqxkxq ¼ xTGx

which completes the proof of Theorem 3.1. h

Theorem 3.2 For the model (M-2), if there exist

k0; q0 2 1; 2; . . .; pf g, and k0 6¼ q0, satisfying H
k0ð Þ 6¼ cH q0ð Þ

for any c 2 �1;þ1ð Þ, thenmatrixGdetermined byEq. (8)

is positive definite and, hence, nonsingular and invertible.

Proof Obviously, f xð Þ ¼ xTGx� 0. Now, we will prove

that f xð Þ 6¼ 0 if there exist k0; q0 2 1; 2; . . .; pf g, and

k0 6¼ q0, satisfying H k0ð Þ 6¼ cH q0ð Þ for any c 2 �1;þ1ð Þ.
Suppose that there exists a weight vector x ¼ x1;ð

x2; . . .;xpÞT such that f xð Þ ¼ xTGx ¼ 0. Then, for all i, j,

t, k, and q, we have xk h
kð Þ
ij

� �r tð Þ
¼ xq h

qð Þ
ij

� �r tð Þ
, i.e.,

h
kð Þ
ij

� �r tð Þ
¼ xq

xk
h

qð Þ
ij

� �r tð Þ
, which contradicts with the

assumption that there exist k0; q0 2 1; 2; . . .; pf g, and

k0 6¼ q0, satisfying H k0ð Þ 6¼ cH q0ð Þ for any c 2 �1;þ1ð Þ.
Thus, f xð Þ ¼ xTGx[ 0. In addition, according to Eq. (8),

we have gkq ¼ gqk, 8k; q ¼ 1; 2; . . .; p, i.e., 8k; q ¼ 1; 2; . . .;

p;i.e., G ¼ gkq
� �

p	p
is a symmetry matrix. According to the

definition of positive definiteness, G ¼ gkq
� �

p	p
is positive

definite, and, hence, nonsingular and invertible, i.e., G-1

exists. This completes the proof of Theorem 3.2. h

Remark 3.1 Theorem 3.2 shows us that G is positive defi-

nite as long as not all H kð Þ ¼ h
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p) are

proportional to one another. If all H kð Þ ¼ h
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) are proportional to one another, then a

complete weighted consensus is reached. However, in real

situations, this case generally does not occur due to the fact

that the experts may come from different fields and thus have

different experiences and specialties. In the following, we

consider the general case where not all H kð Þ ¼ h
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) are proportional to one another, and it is

always assumed that there exist k0; q0 2 1; 2; . . .; pf g, and
k0 6¼ q0, satisfying H k0ð Þ 6¼ cH q0ð Þ for any c 2 �1;þ1ð Þ.

Lemma 3.1 Let X be the feasible set of (M-2). Then, X is a

closed convex set, and (M-2) is a convex quadratic program.

Proof Based on the definition of convex set [3], it is clear that

X is a closed convex set. Because
o2f xð Þ
ox2 ¼ 2G is a definite

matrix, f xð Þ ¼ xTGx is a strictly convex function. Because

the constraints of (M-2) are linear, (M-2) is a convex quadratic

programming. This completes the proof of Lemma 3.1. h

Lemma 3.2 Ma et al. [12]. Let F ¼ fij
� �

p	p
be a sym-

metric matrix such that fij � 0 for i 6¼ j and fii [ 0. Then,

F�1 � 0½ �p	p (i.e., F
�1 is a nonnegative matrix) if and only

if F is positive definite.

Theorem 3.3 Let H kð Þ ¼ h
kð Þ
ij

� �

m	n
¼
 

h
kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼

�

1; 2; . . .; l

��

m	n

(k ¼ 1; 2; . . .; p) be p hesitant fuzzy deci-

sion matrices. Assume that there exist k0; q0 2 1;f
2; . . .; pg, and k0 6¼ q0, satisfying H k0ð Þ 6¼ cH q0ð Þ for any

c 2 �1;þ1ð Þ. Then, the unique optimal solution to the

model (M-2) is

x
 ¼ G�1e

eTG�1e
ð9Þ

Proof We first construct the following Lagrange function:

L x; kð Þ ¼ xTGxþ 2k eTx� 1
� �

ð10Þ

where k is the Lagrange multiplier.
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Differentiate Eq. (10) with respect to x and k, and then

set these partial derivatives equal to zero, then we have the

following equations:

oL x; kð Þ
ox

¼ 2Gxþ 2ke ¼ 0 ð11Þ

oL x; kð Þ
ok

¼ 2 eTx� 1
� �

¼ 0 ð12Þ

By Theorem 3.2, G is invertible. Thus, the optimal solu-

tions to Eqs. (11) and (12) are derived as follows:

x
 ¼ G�1e

eTG�1e
ð13Þ

k
 ¼ � 1

eTG�1e
ð14Þ

According to Theorem 3.2 and Eq. (8), G is a positive defi-

nite matrix, gkq � 0 (k 6¼ q), and gkk [ 0. Thus, it follows

fromLemma 3.2 thatG�1 � 0½ �p	p, i.e.,G
�1 is a nonnegative

matrix. Therefore, x
 � 0, which means that the weight

vector x
 satisfies the nonnegativity constraint. By com-

bining Lemma 3.1, x
 ¼ G�1e
eTG�1e

is the unique optimal solu-

tion to the model (M-2), which completes the proof. h

3.3 A Nonlinear Optimization Model

for Determining the Weight Vector

of the Criteria

First, to get the group opinion, we aggregate all the indi-

vidual hesitant fuzzy decision matrices H kð Þ ¼ h
kð Þ
ij

� �

m	n
¼

h
kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2; . . .; l

� �� �

m	n

(k ¼ 1; 2; . . .; p) into the

collective hesitant fuzzy decision matrix H ¼ hij
� �

m	n
¼

h
r tð Þ
ij

�
�
�t ¼ 1; 2; . . .; l

n o� �

m	n
, where

hij ¼ �
p

k¼1
xkh

kð Þ
ij

� �

¼
Xp

k¼1

xk h
kð Þ
ij

� �r tð Þ
�
�
�
�
�
t ¼ 1; 2; . . .; l

( )

ð15Þ

In what follows, we further investigate the approach to

determining the weight vector w ¼ w1;w2; . . .;wnð ÞT of the

criteria cj (j ¼ 1; 2; . . .; n):

In the cases where the decision maker dk’s opinion is

consistent with the group opinion, the individual hesitant

fuzzy decision matrix H(k) should be equal to the collective

hesitant fuzzy decision matrix H, i.e., h
kð Þ
ij ¼ hij, for all

i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n. By Eq. (15), we have

h
kð Þ
ij

� �r tð Þ
¼
Xp

q¼1

xq h
qð Þ
ij

� �r tð Þ

for all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; and t ¼ 1; 2; . . .; l

ð16Þ

It is noted that each criterion cj has its own importance

weight wj, we can express the weighted form of Eq. (16) as

wj h
kð Þ
ij

� �r tð Þ
¼
Xp

q¼1

wjxq h
qð Þ
ij

� �r tð Þ

for all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; and t ¼ 1; 2; . . .; l

ð17Þ

However, Eq. (17) generally does not hold because the

decision makers may have different experiences and spe-

cialties. As a result, we define a deviation variable e
kð Þ
ij wð Þ as

e
kð Þ
ij wð Þ ¼

Xl

t¼1

wj h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1

wjxq h
qð Þ
ij

� �r tð Þ
 !2

for all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; p

ð18Þ

and construct a deviation function

e wð Þ ¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

e
kð Þ
ij wð Þ ¼

Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

	 wj h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1

wjxq h
qð Þ
ij

� �r tð Þ
 !2

¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1

xq h
qð Þ
ij

� �r tð Þ
 !2

w2
j

ð19Þ

The following nonlinear optimization model (M-3) is

established to obtain a desirable decision result with as

high group consensus as possible:

mine xð Þ

¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1

xq h
qð Þ
ij

� �r tð Þ
 !2

w2
j

s:t:

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n

8

>><

>>:

ðM-3Þ

In the following, the Lagrangian multiplier technique is

utilized to solve the model (M-3). To do it, we first con-

struct the Lagrange function:
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L w;kð Þ¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1

xq h
qð Þ
ij

� �r tð Þ
 !2

w2
j

�2k
Xn

j¼1

wj�1

 !

ð20Þ

where k is the Lagrange multiplier.

Differentiating Eq. (20) with respect to wj (j ¼ 1;

2; . . .; n) and k, and setting these partial derivatives equal to
zero, then the following set of equations is obtained:

oL

owj

¼ 2
Xp

k¼1

Xm

i¼1

Xl

t¼1

h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1
xq h

qð Þ
ij

� �r tð Þ
� �2

wj

� 2k ¼ 0

ð21Þ
oL

ok
¼ �2

Xn

j¼1
wj � 1

� �

¼ 0 ð22Þ

It follows from Eq. (21) that

wj ¼
k

Pp
k¼1

Pm
i¼1

Pl
t¼1 h

kð Þ
ij

� �r tð Þ
�
Pp

q¼1 xq h
qð Þ
ij

� �r tð Þ
� �2

ð23Þ

Putting Eq. (23) into Eq. (22), we get

k ¼ 1

Pn
j¼1

1

Pp

k¼1

Pm

i¼1

Pl

t¼1
h

kð Þ
ijð Þr tð Þ

�
Pp

q¼1

xq h
qð Þ
ijð Þr tð Þ

� �2

0

B
B
@

1

C
C
A

ð24Þ

Then, by Eqs. (23) and (24), we have

wj ¼

1

Pn

j¼1

1

Pp

k¼1

Pm

i¼1

Pl

t¼1
h
kð Þ
ijð Þr tð Þ

�
Pp

q¼1
xq h

qð Þ
ijð Þr tð Þ

� �2

0

B
@

1

C
A

Pp
k¼1

Pm
i¼1

Pl
t¼1 h

kð Þ
ij

� �r tð Þ
�
Pp

q¼1 xq h
qð Þ
ij

� �r tð Þ
� �2

ð25Þ

Remark It is noted that [23] used the maximizing devia-

tion method [21] to determine the optimal criterion weights

under the assumption that criterion weights are completely

unknown. The idea of the maximizing deviation method is

that the criterion with a larger deviation value among

alternatives should be assigned a larger weight, while the

criterion with a small deviation value among alternatives

should be assigned a smaller weight. Different from the

maximizing deviation method, the proposed approach in

this paper uses the maximizing group consensus method to

determine the weight vector of the criteria. The main idea

of the maximizing group consensus method is that the

criteria weights should make all the weighted hesitant

fuzzy decision matrices come close to the collective hesi-

tant fuzzy decision matrix as much as possible.

Based on the above analysis, we next develop an

approach to MCGDM problem with hesitant fuzzy infor-

mation, which is composed of the following steps:

Step 1 For a MCGDM problem, the decision maker dk 2
D constructs the hesitant fuzzy decision matrix

A kð Þ ¼ a
kð Þ
ij

� �

m	n
, where a

kð Þ
ij is a HFE, given by

the DM dk 2 D, for the alternative xi 2 X with

respect to the criterion cj 2 C. Utilize Eq. (3) to

transform the hesitant fuzzy decision matrices

A kð Þ ¼ a
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p) into the nor-

malized hesitant fuzzy decision matrices H kð Þ ¼

h
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p).

Step 2 Utilize Eq. (9) to obtain decision makers’

weights x ¼ x1;x2; . . .;xp

� �T
.

Step 3 Utilize Eq. (25) to obtain the weights of the

criteria w ¼ w1;w2; . . .;wnð ÞT .
Step 4 Utilize Eq. (15) to aggregate all the individual

hesitant fuzzy decision matrices H kð Þ ¼

h
kð Þ
ij

� �

m	n
¼ h

kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2; . . .; l

� �� �

m	n

(k ¼ 1; 2; . . .; p) into the collective hesitant

fuzzy decision matrix H ¼ hij
� �

m	n
¼

h
r tð Þ
ij

�
�
�t ¼ 1; 2; . . .; l

n o� �

m	n
.

Step 5 Utilize the additive weighting operator to get the

collective overall HFE hi corresponding to each

alternative xi, where

hi ¼ �
n

j¼1
wjhij ¼

Xn

j¼1

wjh
r tð Þ
ij

�
�
�
�
�
t ¼ 1; 2; . . .; l

( )

;

i ¼ 1; 2; . . .;m

ð26Þ

Step 6 Calculate the scores s hið Þ (i ¼ 1; 2; . . .;m) of the

overall HFEs hi (i ¼ 1; 2; . . .;m) as

s hið Þ ¼
Pl

t¼1

Pn
j¼1 wjh

r tð Þ
ij

l
ð27Þ

Step 7 Rank the alternatives xi (i ¼ 1; 2; . . .;m) in

accordance with the ranking of the HFEs hi
(i ¼ 1; 2; . . .;m), and then select the optimal one.

Step 8 End.
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4 Extended Nonlinear Optimization Models Under
Interval-Valued Hesitant Fuzzy Situations

In this section, we extend the results obtained in Sect. 3 to

interval-valued hesitant fuzzy environments.

Similar to Subsect 3.1, a MCGDM problem with interval-

valued hesitant fuzzy information can be summarized as fol-

lows: Let X ¼ x1; x2; . . .; xmf g be a set of m alternatives, C ¼
c1; c2; . . .; cnf g be a collection of n criteria, whose weight

vector is w ¼ w1;w2; . . .;wnð ÞT , with wj 2 0; 1½ �,
j ¼ 1; 2; . . .; n, and

Pn
j¼1 wj ¼ 1, and let D ¼

d1; d2; . . .; dp
� �

is a set of p decision makers, whose weight

vector is x ¼ x1;x2; . . .;xp

� �T
, with xk 2 0; 1½ �,

k ¼ 1; 2; . . .; p, and
Pp

k¼1

xk ¼ 1. Let ~A kð Þ ¼ ~a
kð Þ
ij

� �

m	n
be an

interval-valued hesitant fuzzy decision matrix, where ~a
kð Þ
ij ¼

~a
kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2; . . .; l

~a
kð Þ
ij

� �

is an IVHFE, which is a set of

all the possible interval values that the alternative xi 2 X sat-

isfies the criterion cj 2 C, given by the decisionmaker dk 2 D.

The following equation [27] is utilized to transform the inter-

val-valued hesitant fuzzy decision matrices ~A kð Þ ¼ ~a
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) into the normalized interval-valued hesitant

fuzzy decision matrix ~B kð Þ ¼ ~b
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p):

~b
kð Þ
ij ¼

~a
kð Þ
ij ; for benefit criterion cj

~a
kð Þ
ij

� �c

; for cost criterion cj

8

<

:

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; p

ð28Þ

where ~a
kð Þ
ij

� �c

is the complement of ~a
kð Þ
ij , such that

~a
kð Þ
ij

� �c

¼ 1� ~a
kð Þ
ij

� �r tð Þ
� �U

; 1� ~a
kð Þ
ij

� �r tð Þ
� �L

" #�
�
�
�
�
t¼1;

(

2; . . .; l
~a
kð Þ
ij

g.
In most situations, it is noted that the numbers of the ele-

ments in different IVHFEs ~b
kð Þ
ij of ~B kð Þ (k ¼ 1; 2; . . .; p) are

different. In order to more accurately operate between these

IVHFEs, we should extend the shorter ones until all of them

have the same length. Let l ¼ max l~b kð Þ
ij

�
�
�
�
i ¼ 1; 2;

�

. . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pg. By the regulations

mentioned by [29], we transform the interval-valued hesitant

fuzzy decision matrices ~B kð Þ ¼ ~b
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p)

into the corresponding interval-valued hesitant fuzzy decision

matrices ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p), such that l~h kð Þ

ij

¼ l

for all i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n, and k ¼ 1; 2; . . .; p.

For any two IVHFEs ~h1 ¼ ~h
r ið Þ
1

�
�
�i ¼ 1; 2; . . .; l~h1

n o

¼

~h
r ið Þ
1

� �L

; ~h
r ið Þ
1

� �U
� ��

�
�
�
i ¼ 1; 2; . . .; l~h1

� �

and ~h2 ¼ ~h
r ið Þ
2

�
�
�

n

i¼1; 2; . . .; l~h2g ¼ ~h
r ið Þ
2

� �L

; ~h
r ið Þ
2

� �U
� ��

�
�
�
i ¼ 1; 2; . . .;

�

l~h2g,

we define the square deviation between ~h1 and ~h2 as

d ~h1; ~h2
� �

¼
Xl

i¼1

~h
r ið Þ
1

� �L

� ~h
r ið Þ
2

� �L
� �2

 

þ ~h
r ið Þ
1

� �U

� ~h
r ið Þ
2

� �U
� �2

! ð29Þ

where l ¼ max l~h1 ; l~h2

n o

, and ~h
r ið Þ
1 and ~h

r ið Þ
2 are the ith

largest intervals in ~h1 and ~h2, respectively.

If we take theweight of each IVHFE into account, thenwe

define the weighted square deviation between ~h1 and ~h2 as

d x1
~h1;x2

~h2
� �

¼
Xl

i¼1

x1
~h
r ið Þ
1

� �L

�x2
~h
r ið Þ
2

� �L
� �2

 

þ x1
~h
r ið Þ
1

� �U

�x2
~h
r ið Þ
2

� �U
� �2

!

ð30Þ

where x1 and x2 are the weights of ~h1 and ~h2, respectively,

x ¼ x1;x2ð ÞT , xi � 0, i ¼ 1; 2, x1 þ x2 ¼ 1.

Based on Eq. (30), we define the weighted square

deviation between each pair of the individual interval-

valued hesitant fuzzy decision matrices ~H kð Þ; ~H qð Þ� �

as

d xk
~H kð Þ;xq

~H qð Þ
� �

¼
Xm

i¼1

Xn

j¼1

Xl

t¼1

xk
~h
kð Þ
ij

� �r tð Þ
� �L

�xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ xk
~h
kð Þ
ij

� �r tð Þ
� �U

�xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

A ð31Þ

~h
kð Þ
ij

� �r tð Þ
and ~h

qð Þ
ij

� �r tð Þ
are the tth largest values in ~h

kð Þ
ij and

~h
qð Þ
ij , respectively.

Furthermore, we define the weighted square deviations

among all the pairs of the individual interval-valued hesi-

tant fuzzy decision matrices as

~f xð Þ ¼
Xp

k¼1

Xp

q¼1;q6¼k

d xk
~H kð Þ;xq

~H qð Þ
� �

¼
Xp

k¼1

Xp

q¼1;q6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

	 xk
~h
kð Þ
ij

� �r tð Þ
� �L

�xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ xk
~h
kð Þ
ij

� �r tð Þ
� �U

�xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

A

ð32Þ
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Then, similar to (M-1), the following nonlinear opti-

mization model (M-4) is constructed to make the group

consensus as high as possible:

min ~f xð Þ ¼
Xp

k¼1

Xp

q¼1;q6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

	 xk
~h
kð Þ
ij

� �r tð Þ
� �L

�xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ xk
~h
kð Þ
ij

� �r tð Þ
� �U

�xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

A

s:t:

Xp

k¼1

xk ¼ 1;

xk � 0; k ¼ 1; 2; . . .; p;

8

>><

>>:

ðM-4Þ

Theorem 4.1 Model (M-4) is equivalent to (M-5) below

in a matrix form

min ~f xð Þ ¼ xT ~Gx

s:t:
eTx ¼ 1;

x� 0

(

ðM-5Þ

where x ¼ x1;x2; . . .;xp

� �T
, e ¼ 1; 1; . . .; 1ð ÞT , and

~G ¼ ~gkq
� �

p	p

¼ 2

p� 1ð Þ
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
1ð Þ
ij

� �r tð Þ
� �L

 !2

þ ~h
1ð Þ
ij

� �r tð Þ
� �U

 !2
0

@

1

A

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
1ð Þ
ij

� �r tð Þ
� �L

~h
2ð Þ
ij

� �r tð Þ
� �L

þ ~h
1ð Þ
ij

� �r tð Þ
� �U

~h
2ð Þ
ij

� �r tð Þ
� �U

 !

� � �

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
1ð Þ
ij

� �r tð Þ
� �L

~h
pð Þ
ij

� �r tð Þ
� �L

þ ~h
1ð Þ
ij

� �r tð Þ
� �U

~h
pð Þ
ij

� �r tð Þ
� �U

 !

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
2ð Þ
ij

� �r tð Þ
� �L

~h
1ð Þ
ij

� �r tð Þ
� �L

þ ~h
2ð Þ
ij

� �r tð Þ
� �U

~h
1ð Þ
ij

� �r tð Þ
� �U

 !

p� 1ð Þ
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
2ð Þ
ij

� �r tð Þ
� �L

 !2

þ ~h
2ð Þ
ij

� �r tð Þ
� �U

 !2
0

@

1

A

� � �

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
2ð Þ
ij

� �r tð Þ
� �L

~h
pð Þ
ij

� �r tð Þ
� �L

þ ~h
2ð Þ
ij

� �r tð Þ
� �U

~h
pð Þ
ij

� �r tð Þ
� �U

 !

..

.

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
pð Þ
ij

� �r tð Þ
� �L

~h
1ð Þ
ij

� �r tð Þ
� �L

þ ~h
pð Þ
ij

� �r tð Þ
� �U

~h
1ð Þ
ij

� �r tð Þ
� �U

 !

�
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
pð Þ
ij

� �r tð Þ
� �L

~h
2ð Þ
ij

� �r tð Þ
� �L

þ ~h
pð Þ
ij

� �r tð Þ
� �U

~h
2ð Þ
ij

� �r tð Þ
� �U

 !

� � �

p� 1ð Þ
Pm

i¼1

Pn

j¼1

Pl

t¼1

~h
pð Þ
ij

� �r tð Þ
� �L

 !2

þ ~h
pð Þ
ij

� �r tð Þ
� �U

 !2
0

@

1

A

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð33Þ

Proof

~f xð Þ ¼
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xk
~h
kð Þ
ij

� �r tð Þ
� �L

�xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2

þ xk
~h
kð Þ
ij

� �r tð Þ
� �U

�xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
0

@

1

A

¼
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

x2
k

~h
kð Þ
ij

� �r tð Þ
� �L
 !2

þx2
q

~h
qð Þ
ij

� �r tð Þ
� �L

 !2

þx2
k

~h
kð Þ
ij

� �r tð Þ
� �U
 !2

þx2
q

~h
qð Þ
ij

� �r tð Þ
� �U

 !2
0

@

1

A

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq
~h
kð Þ
ij

� �r tð Þ
� �L

~h
qð Þ
ij

� �r tð Þ
� �L

þxkxq
~h
kð Þ
ij

� �r tð Þ
� �U

~h
qð Þ
ij

� �r tð Þ
� �U

 !

¼
Xp

k¼1

x2
k

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

~h
kð Þ
ij

� �r tð Þ
� �L
 !2

þ ~h
kð Þ
ij

� �r tð Þ
� �U
 !2

0

@

1

A

0

@

1

A

þ
Xp

k¼1

Xp

q¼1;q 6¼k

x2
q

Xm

i¼1

Xn

j¼1

Xl

t¼1

~h
qð Þ
ij

� �r tð Þ
� �L

 !2

þ ~h
qð Þ
ij

� �r tð Þ
� �U
 !2

0

@

1

A

0

@

1

A

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq
~h
kð Þ
ij

� �r tð Þ
� �L

~h
qð Þ
ij

� �r tð Þ
� �L

þ ~h
kð Þ
ij

� �r tð Þ
� �U

~h
qð Þ
ij

� �r tð Þ
� �U

 !

¼
Xp

k¼1

x2
k p� 1ð Þ

Xm

i¼1

Xn

j¼1

Xl

t¼1

~h
kð Þ
ij

� �r tð Þ
� �L
 !2

þ ~h
kð Þ
ij

� �r tð Þ
� �U
 !2

0

@

1

A

0

@

1

A

þ
Xp

q¼1

x2
q p� 1ð Þ

Xm

i¼1

Xn

j¼1

Xl

t¼1

~h
qð Þ
ij

� �r tð Þ
� �L

 !2

þ ~h
qð Þ
ij

� �r tð Þ
� �U
 !2

0

@

1

A

0

@

1

A

� 2
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

xkxq
~h
kð Þ
ij

� �r tð Þ
� �L

~h
qð Þ
ij

� �r tð Þ
� �L

þ ~h
kð Þ
ij

� �r tð Þ
� �U

~h
qð Þ
ij

� �r tð Þ
� �U

 !

¼
Xp

k¼1

2 p� 1ð Þ
Xm

i¼1

Xn

j¼1

Xl

t¼1

~h
kð Þ
ij

� �r tð Þ
� �L
 !2

þ ~h
kð Þ
ij

� �r tð Þ
� �U
 !2

0

@

1

A

0

@

1

Ax2
k

þ
Xp

k¼1

Xp

q¼1;q 6¼k

Xm

i¼1

Xn

j¼1

Xl

t¼1

�2 ~h
kð Þ
ij

� �r tð Þ
� �L

~h
qð Þ
ij

� �r tð Þ
� �L

þ ~h
kð Þ
ij

� �r tð Þ
� �U

~h
qð Þ
ij

� �r tð Þ
� �U

 ! !

xkxq

¼
Xp

k¼1

~gkkx
2
k þ

Xp

k¼1

Xp

q¼1;q 6¼k

~gkqxkxq ¼
Xp

k¼1

Xp

q¼1

~gkqxkxq ¼ xT ~Gx

which completes the proof of Theorem 4.1. h

Theorem 4.2 For the model (M-5), if there exist

k0; q0 2 1; 2; . . .; pf g, and k0 6¼ q0, satisfying ~H k0ð Þ 6¼
c ~H q0ð Þ for any c 2 �1;þ1ð Þ, then matrix ~G determined

by Eq. (33) is positive definite and, hence, nonsingular and

invertible.

Proof Obviously, ~f xð Þ ¼ xT ~Gx� 0. Now, we will prove

that ~f xð Þ 6¼ 0 if there exist k0; q0 2 1; 2; . . .; pf g, and

k0 6¼ q0, satisfying ~H k0ð Þ 6¼ c ~H q0ð Þ for any c 2 �1;þ1ð Þ.
Suppose that there exists a weight vector x ¼ x1;x2;ð

. . .;xpÞT such that ~f xð Þ ¼ xT ~Gx ¼ 0. Then, for all i, j, t,

k, and q, we have xk
~h
kð Þ
ij

� �r tð Þ
� �L

¼ xq
~h
qð Þ
ij

� �r tð Þ
� �L

and

xk
~h
kð Þ
ij

� �r tð Þ
� �U

¼ xq
~h
qð Þ
ij

� �r tð Þ
� �U

, i.e.,
~h
kð Þ
ijð Þr tð Þ� �L

~h
qð Þ
ijð Þr tð Þ� �L ¼

~h
kð Þ
ijð Þr tð Þ� �U

~h
qð Þ
ijð Þr tð Þ� �U ¼ xq

xk
, which contradicts with the assumption

that there exist k0; q0 2 1; 2; . . .; pf g, and k0 6¼ q0, satisfy-

ing ~H k0ð Þ 6¼ c ~H q0ð Þ for any c 2 �1;þ1ð Þ. Thus,
~f xð Þ ¼ xT ~Gx[ 0. In addition, according to Eq. (33),

we have ~gkq ¼ ~gqk, 8k; q ¼ 1; 2; . . .; p, i.e., ~G ¼ ~gkq
� �

p	p
is

a symmetry matrix. According to the definition of positive

definiteness, ~G ¼ ~gkq
� �

p	p
is positive definite, and, hence,

nonsingular and invertible, i.e., ~G�1 exists. This completes

the proof of Theorem 4.2. h
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Remark 4.1 Theorem 4.2 shows us that ~G is positive defi-

nite as long as not all ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p) are

proportional to one another. If all ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) are proportional to one another, then a

complete weighted consensus is reached. However, in real

situations, this case generally does not occur due to the fact

that the experts may come from different fields and thus have

different experiences and specialties. In the following, we

consider the general case in which not all ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n

(k ¼ 1; 2; . . .; p) are proportional to one another, and it is

always assumed that there exist k0; q0 2 1; 2; . . .; pf g, and
k0 6¼ q0, satisfying ~H k0ð Þ 6¼ c ~H q0ð Þ for any c 2 �1;þ1ð Þ.

Similar to Lemma 3.1, we have the following result:

Lemma 4.1 Let X be the feasible set of (M-5). Then, X is a

closed convex set, and (M-5) is a convex quadratic program.

Similar to Theorem 3.3, we have the following theorem:

Theorem 4.3 Let ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n
¼ ~h

kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼

��

1; 2; . . .; lgÞm	n (k ¼ 1; 2; . . .; p) be p interval-valued hesi-

tant fuzzy decision matrices. Assume that there exist

k0; q0 2 1; 2; . . .; pf g, k0 6¼ q0, satisfying ~H k0ð Þ 6¼ c ~H q0ð Þ for
any c 2 �1;þ1ð Þ. Then, the unique optimal solution to

the model (M-5) is

x
 ¼
~G�1e

eT ~G�1e
ð34Þ

In what follows, we further investigate the approach to

determining the weight vector w ¼ w1;w2; . . .;wnð ÞT of the

criteria cj (j ¼ 1; 2; . . .; n) from the angle of maximizing

the group consensus.

First, to get the group opinion, we aggregate all the

individual interval-valued hesitant fuzzy decision matrices

~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n
¼ ~h

kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2; . . .; l

� �� �

m	n

(k ¼ 1; 2; . . .; p) into the collective interval-valued hesitant

fuzzy decision matrix ~H ¼ ~hij
� �

m	n
¼ ~h

r tð Þ
ij

�
�
�t ¼ 1; 2;

n�

. . .; lgÞm	n, where

~hij ¼ �
p

k¼1
xk

~h
kð Þ
ij

� �

¼
Xp

k¼1

xk
~h
kð Þ
ij

� �r tð Þ
�
�
�
�
�
t ¼ 1; 2; . . .; l

( )

¼
Xp

k¼1

xk
~h
kð Þ
ij

� �r tð Þ
� �L

;
Xp

k¼1

xk
~h
kð Þ
ij

� �r tð Þ
� �U

" #�
�
�
�
�
t

(

¼ 1; 2; . . .; l

)

ð35Þ

In the cases where the decision maker dk’s opinion is

consistent with the group opinion, the individual interval-

valued hesitant fuzzy decision matrix ~H kð Þ should be equal

to the collective interval-valued hesitant fuzzy decision

matrix ~H, i.e., ~h
kð Þ
ij ¼ ~hij, for all i ¼ 1; 2; . . .;m,

j ¼ 1; 2; . . .; n. By Eq. (35), we have

~h
kð Þ
ij

� �r tð Þ
� �L

¼
Xp

q¼1

xq
~h
qð Þ
ij

� �r tð Þ
� �L

and

~h
kð Þ
ij

� �r tð Þ
� �U

¼
Xp

q¼1

xq
~h
qð Þ
ij

� �r tð Þ
� �U

for

all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n;

and t ¼ 1; 2; . . .; l

ð36Þ

It is noted that each criterion cj has its own importance

weight wj, we can express the weighted form of Eq. (36) as

wj
~h
kð Þ
ij

� �r tð Þ
� �L

¼
Xp

q¼1

wjxq
~h
qð Þ
ij

� �r tð Þ
� �L

and

wj
~h
kð Þ
ij

� �r tð Þ
� �U

¼
Xp

q¼1

wjxq
~h
qð Þ
ij

� �r tð Þ
� �U

for

all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n;

and t ¼ 1; 2; . . .; l ð37Þ

However, Eq. (37) generally does not hold because the

decision makers may have different experiences and spe-

cialties. As a result, we define a deviation variable ~e
kð Þ
ij wð Þ as

~e
kð Þ
ij wð Þ

¼
Xl

t¼1

wj
~h
kð Þ
ij

� �r tð Þ
� �L

�
Xp

q¼1

wjxq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ wj
~h
kð Þ
ij

� �r tð Þ
� �U

�
Xp

q¼1

wjxq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

A

for all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; p

ð38Þ

and construct a deviation function

~e wð Þ ¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

~e
kð Þ
ij wð Þ

¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

	 wj
~h
kð Þ
ij

� �r tð Þ
� �L

�
Xp

q¼1

wjxq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ wj
~h
kð Þ
ij

� �r tð Þ
� �U

�
Xp

q¼1

wjxq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

A

¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

~h
kð Þ
ij

� �r tð Þ
� �L

�
Xp

q¼1

xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ ~h
kð Þ
ij

� �r tð Þ
� �U

�
Xp

q¼1

xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

Aw2
j

ð39Þ
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The following nonlinear optimization model (M-6) is

established to obtain a desirable decision result with as

high group consensus as possible:

min~e xð Þ ¼
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

	 ~h
kð Þ
ij

� �r tð Þ
� �L

�
Xp

q¼1

xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2
0

@

þ ~h
kð Þ
ij

� �r tð Þ
� �U

�
Xp

q¼1

xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
1

Aw2
j

s:t:

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n

8

>><

>>:

ðM-6Þ

Similar to Subsect. 3.3, by using the Lagrangian multi-

plier technique, the solution to the model (M-6) can be

derived as

wj ¼

1

Pn

j¼1

1

Pp

k¼1

Pm

i¼1

Pl

t¼1
~h
kð Þ
ijð Þr tð Þ

� �L

�
Pp

q¼1

xq ~h
qð Þ
ijð Þr tð Þ

� �L
� �2

þ ~h
kð Þ
ijð Þr tð Þ

� �U

�
Pp

q¼1
xq ~h

qð Þ
ijð Þr tð Þ

� �U
� �2� �

0

B
B
B
@

1

C
C
C
A

Pp
k¼1

Pm
i¼1

Pl
t¼1

~h
kð Þ
ij

� �r tð Þ
� �L

�
Pp

q¼1 xq
~h
qð Þ
ij

� �r tð Þ
� �L

 !2

þ ~h
kð Þ
ij

� �r tð Þ
� �U

�
Pp

q¼1 xq
~h
qð Þ
ij

� �r tð Þ
� �U

 !2
0

@

1

A

;

j ¼ 1; 2; . . .; n

ð40Þ

On the basis of the above analysis, we next develop an

approach to MCGDM problem with interval-valued hesi-

tant fuzzy information, which consists of the following

steps:

Step 1 For a MCGDM problem, the decision maker dk 2
D constructs the interval-valued hesitant fuzzy

decision matrix ~A kð Þ ¼ ~a
kð Þ
ij

� �

m	n
, where ~a

kð Þ
ij is

an IVHFE, given by the DM dk 2 D, for the

alternative xi 2 X with respect to the attribute

cj 2 C. Utilize Eq. (28) to transform the interval-

valued hesitant fuzzy decision matrices ~A kð Þ ¼

~a
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p) into the normalized

interval-valued hesitant fuzzy decision matrices

~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n
(k ¼ 1; 2; . . .; p).

Step 2 Utilize Eq. (34) to obtain decision makers’

weights x ¼ x1;x2; . . .;xp

� �T
.

Step 3 Utilize Eq. (40) to obtain the weights of the

criteria w ¼ w1;w2; . . .;wnð ÞT .
Step 4 Utilize Eq. (35) to aggregate all the individual

interval-valued hesitant fuzzy decision matri-

ces ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n
¼ ~h

kð Þ
ij

� �r tð Þ
�
�
�
�
t ¼ 1; 2;

��

. . .; lgÞm	n (k ¼ 1; 2; . . .; p) into the collective

interval-valued hesitant fuzzy decision matrix

~H ¼ ~hij
� �

m	n
¼ ~h

r tð Þ
ij

�
�
�t ¼ 1; 2; � � � ; l

n o� �

m	n
.

Step 5 Utilize the additive weighting operator to get the

collective overall IVHFE ~hi corresponding to

each alternative xi, where

~hi ¼ �
n

j¼1
wj
~hij ¼

Xn

j¼1

wj
~h
r tð Þ
ij

�
�
�
�
�
t ¼ 1; 2; . . .; l

( )

¼
Xn

j¼1

wj
~h
r tð Þ
ij

� �L

;
Xn

j¼1

wj
~h
r tð Þ
ij

� �U

" #�
�
�
�
�
t ¼ 1; 2; . . .; l

( )

;

i ¼ 1; 2; . . .;m

ð41Þ

Step 6 Calculate the scores s ~hi
� �

(i ¼ 1; 2; . . .;m) of the

overall IVHFEs ~hi (i ¼ 1; 2; . . .;m), where

s ~hi
� �

¼
Pl

t¼1

Pn
j¼1 wj

~h
r tð Þ
ij

l

¼
Pl

t¼1

Pn
j¼1 wj

~h
r tð Þ
ij

� �L

l
;

Pl
t¼1

Pn
j¼1 wj

~h
r tð Þ
ij

� �U

l

2

6
4

3

7
5

ð42Þ

To rank these scores s ~hi
� �

(i ¼ 1; 2; . . .;m), based

on Definition 2.5, we first develop a comple-

mentary matrix as

P ¼

p11 p12 � � � p1m
p21 p22 � � � p2m

..

. ..
. ..

. ..
.

pm1 pm2 � � � pmm

2

6
6
6
4

3

7
7
7
5

m	m

where pij ¼ p s ~hi
� �

� s ~hj
� �� �

, pij � 0,

pij þ pji ¼ 1, pii ¼ 1
2
, i; j ¼ 1; 2; . . .;m.

Summing all elements in each line of the matrix

P, we have

pi ¼
Xm

j¼1

pij; i ¼ 1; 2; . . .;m

Then we can rank the s ~hi
� �

(i ¼ 1; 2; . . .;m) in

descending order according to the values of pi
(i ¼ 1; 2; . . .;m).

Step 7 Rank the alternatives xi (i ¼ 1; 2; . . .;m) in

accordance with the ranking of the scores s ~hi
� �

(i ¼ 1; 2; . . .;m), and then select the optimal one.

Step 8 End.
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5 Illustrative Examples

In this section, a numerical example is used to illustrate the

applicability and the effectiveness of our methods under

hesitant fuzzy environments and interval-valued hesitant

fuzzy environments.

Example 5.1 Let us suppose an investment company,

which wants to invest a sum of money in the best option

(adapted from [7, 25]). There is a panel with five possible

alternatives to invest the money: (1) x1 is a car industry; (2)

x2 is a food company; (3) x3 is a computer company; (4) x4
is an arms company; and (5) x5 is a TV company. The

investment company must make a decision according to the

following four criteria (whose weight vector w ¼
w1;w2;w3;w4ð ÞT is to be determined): (1) c1 is the risk

analysis; (2) c2 is the growth analysis; (3) c3 is the social–

political impact analysis; (4) c4 is the environmental impact

analysis. Suppose that five possible candidates xi
i ¼ 1; 2; 3; 4; 5ð Þ are to be evaluated by three decision

makers dk (k ¼ 1; 2; 3) (whose weight vector x ¼
x1;x2;x3ð ÞT is to be determined) under the above four

criteria cj (j ¼ 1; 2; 3; 4). The decision makers construct,

respectively, three hesitant fuzzy decision matrices A kð Þ ¼

a
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3) listed in Tables 1, 2, 3, where a

kð Þ
ij is

a HFE denoting all the possible values, given by the

decision maker dk, for the alternative xi under the attribute

cj.

In what follows, we utilize the developed method to find

the best alternative(s).

Step 1 Considering that all the criteria cj (j ¼ 1; 2; 3; 4)

are the benefit type criteria, the hesitant fuzzy

decision matrices A kð Þ ¼ a
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3)

do not need normalization. Suppose that all the

decision makers (DMs) (k ¼ 1; 2; 3) are pes-

simistic, then we utilize Definition 2.3 to trans-

form the hesitant fuzzy decision matrices

A kð Þ ¼ a
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3) into the corre-

sponding hesitant fuzzy decision matrices H kð Þ ¼

h
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3) (see Tables 4, 5, 6), such

that l
h

kð Þ
ij

¼ 5 for all i ¼ 1; 2; 3; 4; 5, j ¼ 1; 2; 3; 4,

and k ¼ 1; 2; 3.

Step 2 Utilize Eq. (9) to get the decision makers’ weight

vector:

x ¼ 0:3447; 0:3263; 0:3290ð Þ

Step 3 Utilize Eq. (25) to get the optimal weight vector

of criteria:

w ¼ 0:3463; 0:2236; 0:1789; 0:2511ð ÞT

Table 1 Hesitant fuzzy

decision matrix A(1) provided by

the decision maker d1

c1 c2 c3 c4

x1 {0.5,0.4,0.3} {0.7,0.6} {0.8,0.6,0.4} {0.8,0.7,0.6,0.4,0.3}

x2 {0.8,0.7,0.6,0.5,0.3} {0.9,0.7,0.6,0.4} {0.3,0.2} {0.6,0.5,0.4,0.3}

x3 {0.9,0.8,0.6} {0.4,0.3,0.2,0.1} {0.7,0.5,0.3} {0.5,0.3}

x4 {0.7,0.5} {0.8,0.7,0.5} {0.9,0.8,0.7,0.6} {0.4,0.3}

x5 {0.9,0.8} {0.5,0.3} {0.5,0.4,0.3} {0.6,0.4,0.3}

Table 2 Hesitant fuzzy

decision matrix A(2) provided by

the decision maker d2

c1 c2 c3 c4

x1 {0.9,0.8,0.7} {0.4,0.3,0.1} {0.8,0.6} {0.7,0.6,0.5}

x2 {0.7,0.6,0.5,0.4,0.3} {0.3,0.2} {0.5,0.4,0.3} {0.8,0.7,0.6,0.4,0.3}

x3 {0.8,0.7,0.5} {0.5,0.3,0.2,0.1} {0.7,0.6,0.5} {0.9,0.8,0.6}

x4 {0.9,0.8,0.7} {0.7,0.6} {0.6,0.5,0.3} {0.8,0.6}

x5 {0.7,0.6} {0.8,0.7,0.5,0.3} {0.9,0.7,0.6,0.4,0.3} {0.5,0.4,0.3}

Table 3 Hesitant fuzzy

decision matrix A(3) provided by

the decision maker d3

c1 c2 c3 c4

x1 {0.7,0.6,0.5,0.4,0.3} {0.4,0.3} {0.8,0.7} {0.9,0.7,0.6,0.4}

x2 {0.6,0.5,0.3} {0.4,0.3,0.2} {0.9,0.7} {0.8,0.6}

x3 {0.9,0.7,0.6,0.5} {0.2,0.1} {0.6,0.5,0.3,0.2,0.1} {0.8,0.6,0.5}

x4 {0.9,0.6} {0.7,0.6} {0.7,0.5,0.3} {0.8,0.6,0.5,0.4,0.3}

x5 {0.8,0.7,0.6} {0.6,0.5,0.4} {0.7,0.6,0.5} {0.9,0.7,0.5}

628 International Journal of Fuzzy Systems, Vol. 19, No. 3, June 2017

123



Step 4 Utilize Eq. (15) to aggregate all the individual

hesitant fuzzy decision matrices H kð Þ (k ¼ 1; 2; 3)

into the collective hesitant fuzzy decision matrix

H (see Table 7).

Step 5 Utilize Eq. (26) to get the collective overall HFE

hi corresponding to each alternative xi as follows:

h1 ¼ 0:6978; 0:5776; 0:4909; 0:4457; 0:4256f g
h2 ¼ 0:6479; 0:5261; 0:4423; 0:3786; 0:3352f g
h3 ¼ 0:6849; 0:5431; 0:4157; 0:3834; 0:3775f g
h4 ¼ 0:7501; 0:5930; 0:5284; 0:5140; 0:5057f g
h5 ¼ 0:7106; 0:5801; 0:4955; 0:4693; 0:4634f g

Step 6 Utilize Eq. (27) to calculate the scores s hið Þ
(i ¼ 1; 2; 3; 4; 5) of the overall HFEs hi
(i ¼ 1; 2; 3; 4; 5) as

s h1ð Þ ¼ 0:5275; s h2ð Þ ¼ 0:4660;
s h3ð Þ ¼ 0:4809; s h4ð Þ ¼ 0:5782;
s h5ð Þ ¼ 0:5438

Step 7 According to Definition 2.2, the ranking of the

alternatives xi (i ¼ 1; 2; 3; 4; 5) is as follows:

x4 [ x5 [ x1 [ x3 [ x2

and the optimal one is x4.

In order to clearly demonstrate the advantages of the

developed methods, we use the hesitant fuzzy weighted

averaging (HFWA) operator-based MCGDM method [24]

to revisit Example 5.1, which includes the following steps:

Step 1 Utilize the HFWA operator [24]:

HFWA h
1ð Þ
ij ; h

2ð Þ
ij ; h

3ð Þ
ij

� �

¼ �
3

k¼1
xkh

kð Þ
ij

� �

¼
[

t1¼1;2;...;l
h
1ð Þ
ij

;t2¼1;2;...;l
h
2ð Þ
ij

;t3¼1;2;...;l
h
3ð Þ
ij

1�
Y3

k¼1

1� h
kð Þ
ij

� �tk
� �xk

( )

i ¼ 1; 2; 3; 4; 5; j ¼ 1; 2; 3; 4

to aggregate all the individual hesitant fuzzy

decision matrix H kð Þ ¼ h
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3)

into the collective hesitant fuzzy decision matrix

H ¼ hij
� �

5	4
, which is not be listed here because

of space limitations. In order to be consistent

with Example 5.1, the same weights for decision

makers obtained, i.e., x1 ¼ 0:3447,

x2 ¼ 0:3263, and x3 ¼ 0:3290 are adopted here.

Let L ¼ lhij
� �

5	4
, where lhij is the dimension of

the collective hesitant fuzzy element hij.

Table 4 Hesitant fuzzy

decision matrix H(1)
c1 c2 c3 c4

x1 {0.5,0.4,0.3,0.3,0.3} {0.7,0.6,0.6,0.6,0.6} {0.8,0.6,0.4,0.4,0.4} {0.8,0.7,0.6,0.4,0.3}

x2 {0.8,0.7,0.6,0.5,0.3} {0.9,0.7,0.6,0.4,0.4} {0.3,0.2,0.2,0.2,0.2} {0.6,0.5,0.4,0.3,0.3}

x3 {0.9,0.8,0.6,0.6,0.6} {0.4,0.3,0.2,0.1,0.1} {0.7,0.5,0.3,0.3,0.3} {0.5,0.3,0.3,0.3,0.3}

x4 {0.7,0.5,0.5,0.5,0.5} {0.8,0.7,0.5,0.5,0.5} {0.9,0.8,0.7,0.6,0.6} {0.4,0.3,0.3,0.3,0.3}

x5 {0.9,0.8,0.8,0.8,0.8} {0.5,0.3,0.3,0.3,0.3} {0.5,0.4,0.3,0.3,0.3} {0.6,0.4,0.3,0.3,0.3}

Table 5 Hesitant fuzzy

decision matrix H(2)
c1 c2 c3 c4

x1 {0.9,0.8,0.7,0.7,0.7} {0.4,0.3,0.1,0.1,0.1} {0.8,0.6,0.6,0.6,0.6} {0.7,0.6,0.5,0.5,0.5}

x2 {0.7,0.6,0.5,0.4,0.3} {0.3,0.2,0.2,0.2,0.2} {0.5,0.4,0.3,0.3,0.3} {0.8,0.7,0.6,0.4,0.3}

x3 {0.8,0.7,0.5,0.5,0.5} {0.5,0.3,0.2,0.1,0.1} {0.7,0.6,0.5,0.5,0.5} {0.9,0.8,0.6,0.6,0.6}

x4 {0.9,0.8,0.7,0.7,0.7} {0.7,0.6,0.6,0.6,0.6} {0.6,0.5,0.3,0.3,0.3} {0.8,0.6,0.6,0.6,0.6}

x5 {0.7,0.6,0.6,0.6,0.6} {0.8,0.7,0.5,0.3,0.3} {0.9,0.7,0.6,0.4,0.3} {0.5,0.4,0.3,0.3,0.3}

Table 6 Hesitant fuzzy

decision matrix H(3)
c1 c2 c3 c4

x1 {0.7,0.6,0.5,0.4,0.3} {0.4,0.3,0.3,0.3,0.3} {0.8,0.7,0.7,0.7,0.7} {0.9,0.7,0.6,0.4,0.4}

x2 {0.6,0.5,0.3,0.3,0.3} {0.4,0.3,0.2,0.2,0.2} {0.9,0.7,0.7,0.7,0.7} {0.8,0.6,0.6,0.6,0.6}

x3 {0.9,0.7,0.6,0.5,0.5} {0.2,0.1,0.1,0.1,0.1} {0.6,0.5,0.3,0.2,0.1} {0.8,0.6,0.5,0.5,0.5}

x4 {0.9,0.6,0.6,0.6,0.6} {0.7,0.6,0.6,0.6,0.6} {0.7,0.5,0.3,0.3,0.3} {0.8,0.6,0.5,0.4,0.3}

x5 {0.8,0.7,0.6,0.6,0.6} {0.6,0.5,0.4,0.4,0.4} {0.7,0.6,0.5,0.5,0.5} {0.9,0.7,0.5,0.5,0.5}
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L ¼ lhij
� �

5	4
¼

45 12 12 60

75 24 12 40

36 32 45 18

12 12 36 20

12 24 45 27

0

B
B
B
B
@

1

C
C
C
C
A

Step 2 Utilize the HFWA operator [24]:

HFWA hi1; hi2; hi3; hi4ð Þ ¼ �
4

j¼1
wjhij
� �

¼
[

t1¼1;2;...;lhi1 ;t2¼1;2;...;lhi2 ;t3¼1;2;...;lhi3 ;t3¼1;2;...;lhi4

	 1�
Y4

j¼1

1� hij
� �tj

� �wj

( )

; i ¼ 1; 2; 3; 4; 5

to aggregate all the preference values hij
(j ¼ 1; 2; 3; 4) in the ith line of H, and then derive

the collective overall preference value hi
(i ¼ 1; 2; 3; 4; 5) of the alternative xi
(i ¼ 1; 2; 3; 4; 5). In order to be consistent with

Example 5.1, the same weights for criteria

obtained, i.e., w1 ¼ 0:2694, w2 ¼ 0:2850,

w3 ¼ 0:2694, and w4 ¼ 0:1762 are adopted here.

We will not list the collective overall preference

values here because of space limitations. The

dimensions of the collective overall preference

value hi (i ¼ 1; 2; 3; 4; 5) are shown below:

lh1 ¼ 388800; lh2 ¼ 864000; lh3 ¼ 933120;
lh4 ¼ 103680; lh5 ¼ 349920

Step 3 According to Definition 2.2, we calculate the

score values s hið Þ (i ¼ 1; 2; 3; 4; 5) of hi
(i ¼ 1; 2; 3; 4; 5):

s h1ð Þ ¼ 0:6125; s h2ð Þ ¼ 0:5481;
s h3ð Þ ¼ 0:6000; s h4ð Þ ¼ 0:6709;
s h5ð Þ ¼ 0:6364

Step 4 Get the priority of the alternatives xi (i ¼ 1; 2;

3; 4; 5) by ranking s hið Þ (i ¼ 1; 2; 3; 4; 5) as

follows: x4 [ x5 [ x1 [ x3 [ x2. Thus, the best

alternative is x4.

It is easy to see that the ranking order of the alternatives

obtained by the Xia and Xu’ method [24] is the same as our

method, which shows the effectiveness and reasonableness

of our method. However, it is noted that the dimension lhi
of the collective overall preference value hi obtained with

the Xia and Xu’ method is very larger, which increases the

computational complexity. The number of operations

required in Xia and Xu’s method is 2640124. In contrast,

our method has a less computational complexity. The

number of operations required in our method is 197.

Therefore, our method is more computationally efficient

than Xia and Xu’s method. Furthermore, by using theT
a
b
le
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MATLAB mathematics software 7.0, the time that is used to

obtain the optimal alternative with the Xia andXu’method is

more than 2 h,while the time that is used to obtain the optimal

alternative with ourmethod is less than 1 s. Thus, ourmethod

is considerably time saving and convenient. Based on the

above analysis, comparedwith the othermethods, ourmethod

not only is more appropriate for handling the hesitant fuzzy

MCGDM problems, but also can reduce the computational

complexity and the information loss.

To show the advantages of the proposed criteria weight

generation process, we next compare the proposed method

with the other criteria weight generation methods men-

tioned in the existing references [8, 11, 29].

The existing criteria weight generation methods in [8,

11, 29] only investigated multi-criteria single person

decision making with hesitant fuzzy information and did

not consider multi-criteria group decision making

(MCGDM) with hesitant fuzzy information. Therefore, to

facilitate the comparison, we first use Eq. (15) to aggregate

all the individual hesitant fuzzy decision matrices H kð Þ ¼

h
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3) into the collective hesitant fuzzy

decision matrix H ¼ hij
� �

5	4
, which has been shown in

Table 7. Then, we employ the existing criteria weight

generation methods in [8, 11, 29] to derive the optimal

weight vector of criteria. Finally, we calculate the group

consensus measures by the following formula:

GCM ¼ 1

�
Xp

k¼1

Xm

i¼1

Xn

j¼1

Xl

t¼1

h
kð Þ
ij

� �r tð Þ
�
Xp

q¼1

xq h
qð Þ
ij

� �r tð Þ
 !2

w2
j

ð43Þ

The calculated results are summarized in Table 8.

According to Eq. (43), the group consensus measure can

be somehow understood as closeness between the indi-

vidual preference and the collective one and it can measure

the degree of agreement among the decision makers on the

solution of the problem. The larger the value of GCM, the

closer that decision maker is to the group, and the more

desirable the decision result. In a practical MCGDM with

hesitant fuzzy information, because the experts have their

own inherent value systems and consideration, the dis-

agreement among the experts is inevitable. In such a case,

consensus turns out to be very important in group decision

making because it can make a group reach a final decision

that all group members can support despite their differing

opinions. It is preferable that the experts had achieved a

high level of consensus concerning their preferences before

applying the selection process. The existing criteria weight

generation methods in [8, 11, 29] did not consider any

consensus issue. In contrast, our proposed method deter-

mines the optimal weight vector of criteria based on the

idea of maximizing the group decision consensus. From

Table 8, we can see that among four criteria weight gen-

eration methods, the proposed method in this paper can

produce the largest group consensus measure. Therefore,

from the point of view of group decision consensus, our

criteria weight generation method is more efficient and

useful than the other three in [8, 11, 29]. The decision

result obtained with our method is more reasonable and

convincing than that obtained with the other three methods.

Example 5.2 In Example 5.1, suppose that the decision

makers construct, respectively, three interval-valued hesi-

tant fuzzy decision matrices ~A kð Þ ¼ ~a
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3)

listed in Tables 9, 10, 11, where ~a
kð Þ
ij is an IVHFE denoting

all the possible interval values, given by the decision maker

dk, for the alternative xi under the attribute cj. In what

follows, we proceed to utilize the developed method to find

the most optimal alternative(s), which consists of the fol-

lowing steps:

Step 1 Considering that all the attributes cj
(j ¼ 1; 2; 3; 4) are the benefit type attributes, the

interval-valued hesitant fuzzy decision matrices

~A kð Þ ¼ ~a
kð Þ
ij

� �

5	4
(k ¼ 1; 2; 3) do not need nor-

malization. Suppose that all the DMs (k ¼ 1; 2; 3)

are pessimistic, then we utilize Definition 2.7 to

transform the interval-valued hesitant fuzzy

decision matrices ~A kð Þ ¼ ~a
kð Þ
ij

� �

m	n
(k ¼ 1; 2; 3)

into the corresponding interval-valued hesitant

fuzzy decision matrices ~H kð Þ ¼ ~h
kð Þ
ij

� �

m	n

(k ¼ 1; 2; 3) (see Tables 12, 13, 14), such that

l~h kð Þ
ij

¼ 5 for all i ¼ 1; 2; 3; 4; 5, j ¼ 1; 2; 3; 4, and

k ¼ 1; 2; 3.

Step 2 Utilize Eq. (34) to get the weights of the decision

makers:

Table 8 The criteria weights

and group consensus measures

with respect to different criteria

weight generation methods

Criteria weight generation methods w1 w2 w3 w4 Group consensus measure

Method in [8] 0.2661 0.2924 0.2342 0.2073 0.3049

Method in [11] 0.3575 0.0132 0.4587 0.1706 0.4759

Method in [29] 0.2540 0.3747 0.2185 0.1528 0.3362

The proposed method 0.3463 0.2236 0.1789 0.2511 0.2864
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x ¼ 0:3316; 0:3531; 0:3153ð Þ

Step 3 Utilize Eq. (40) to get the optimal weight vector

of criteria:

w ¼ 0:3011; 0:1610; 0:1875; 0:3504ð ÞT

Step 4 Utilize Eq. (35) to aggregate all the individual

interval-valued hesitant fuzzy decision matrices

~H kð Þ (k ¼ 1; 2; 3) into the collective interval-

valued hesitant fuzzy decision matrix ~H, which is

shown in Table 15.

Step 5 Utilize Eq. (41) to get the collective overall

IVHFE ~hi corresponding to each alternative xi as

follows:

~h1 ¼ 0:5729; 0:7446½ �; 0:4524; 0:5791½ �;f
	 0:3585; 0:4635½ �; 0:2984; 0:3984½ �;
	 0:2639; 0:3763½ �g

Table 9 Interval-valued hesitant fuzzy decision matrix ~Að1Þ provided by the decision maker d2

c1 c2 c3 c4

x1 {[0.4, 0.6], [0.1, 0.3], [0.1,

0.2]}

{[0.3, 0.5], [0.2, 0.3], [0.1, 0.2]} {[0.7, 0.9], [0.7, 0.8], [0.6,

0.7], [0.5, 0.6]}

{[0.8, 0.9], [0.5, 0.6]}

x2 {[0.4, 0.5], [0.2, 0.3]} {[0.5, 0.7], [0.5, 0.6]} {[0.7, 0.9], [0.5, 0.6], [0.4,

0.5]}

{[0.7, 0.8], [0.5, 0.6]}

x3 {[0.7, 0.8], [0.5, 0.6]} {[0.5, 0.7], [0.4, 0.6], [0.3, 0.4]} {[0.8, 0.9], [0.6, 0.7]} {[0.5, 0.7], [0.2, 0.3], [0.1, 0.2]}

x4 {[0.6, 0.8], [0.5, 0.6]} {[0.8, 0.9], [0.6, 0.7], [0.5, 0.6], [0.2,

0.4], [0.1, 0.3]}

{[0.7, 0.8], [0.5,0.7]} {[0.5, 0.6], [0.3, 0.4], [0.1, 0.2]}

x5 {[0.8, 0.9], [0.6, 0.7], [0.3,

0.4], [0.2, 0.3]}

{[0.6, 0.8], [0.2, 0.3]} {[0.3, 0.5], [0.3, 0.4], [0.2,

0.3]}

{[0.7, 0.8], [0.6,0.7], [0.5, 0.6], [0.4,

0.5], [0.1, 0.2]}

Table 10 Interval-valued hesitant fuzzy decision matrix h provided by the decision maker lh

c1 c2 c3 c4

x1 {[0.7, 0.9], [0.5, 0.6], [0.2, 0.3]} {[0.4, 0.5], [0.3, 0.5], [0.3, 0.4],

[0.2, 0.3]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3]} {[0.7, 0.9], [0.6, 0.7], [0.5, 0.6],

[0.2, 0.3], [0.1, 0.3]}

x2 {[0.5, 0.6], [0.3, 0.4]} {[0.2, 0.3], [0.1, 0.2]} {[0.7, 0.8], [0.5, 0.7], [0.5, 0.6],

[0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.7]}

x3 {[0.4, 0.6], [0.4, 0.5], [0.2, 0.3]} {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.3, 0.4], [0.1, 0.2]}

{[0.3, 0.5], [0.3, 0.4], [0.1, 0.2]} {[0.7, 0.9], [0.7, 0.8], [0.5, 0.6]}

x4 {[0.4, 0.5], [0.2,0.3], [0.1, 0.2]} {[0.4, 0.5], [0.3, 0.5], [0.2, 0.3]} {[0.8, 0.9], [0.6, 0.7], [0.5, 0.6],

[0.4, 0.5], [0.3, 0.4]}

{[0.6, 0.7], [0.4, 0.5]}

x5 {[0.7, 0.8], [0.6,0.7], [0.3,0.4],

[0.2,0.3], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7]} {[0.2, 0.3], [0.1, 0.3]} {[0.6, 0.8], [0.3, 0.5], [0.2, 0.3]}

Table 11 Interval-valued hesitant fuzzy decision matrix ~Að3Þ provided by the decision maker d3

c1 c2 c3 c4

x1 {[0.3, 0.5], [0.3, 0.4],

[0.2, 0.3]}

{[0.7, 0.8], [0.6, 0.8], [0.5, 0.7],

[0.5, 0.6]}

{[0.6, 0.7], [0.5, 0.7], [0.4, 0.5]} {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.5, 0.6], [0.3, 0.4]}

x2 {[0.5, 0.8], [0.5, 0.6]} {[0.8, 0.9], [0.6, 0.7]} {[0.2, 0.3], [0.1, 0.2]} {[0.7, 0.9], [0.6, 0.7], [0.5, 0.6]}

x3 {[0.7, 0.8], [0.5, 0.7],

[0.5, 0.6]}

{[0.7, 0.6], [0.5, 0.6], [0.2, 0.4],

[0.1, 0.3]}

{[0.7, 0.8], [0.6, 0.7], [0.4, 0.6]} {[0.3, 0.5], [0.2, 0.3]}

x4 {[0.3, 0.5], [0.3,0.4],

[0.2, 0.3]}

{[0.8, 0.9], [0.7, 0.6], [0.4, 0.6],

[0.4, 0.5], [0.1, 0.2]}

{[0.6, 0.7], [0.5, 0.7], [0.4, 0.5],

[0.3, 0.4], [0.2, 0.3]}

{[0.6, 0.8], [0.4, 0.6], [0.4, 0.5],

[0.1, 0.3]}

x5 {[0.8, 0.9], [0.7, 0.8],

[0.6, 0.7]}

{[0.2, 0.3], [0.1, 0.2]} {[0.7, 0.9], [0.7, 0.8], [0.5, 0.6]} {[0.5, 0.7], [0.5, 0.6]}
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~h2 ¼ 0:5786; 0:7202½ �; 0:4309; 0:5375½ �;f
	 0:4013; 0:5136½ �; 0:3814; 0:4938½ �;
	 0:3814; 0:4938½ �g

~h3 ¼ 0:5697; 0:7229½ �; 0:4510; 0:5659½ �;f
	 0:3421; 0:4531½ �; 0:3200; 0:4309½ �;
	 0:3086; 0:4196½ �g

~h4 ¼ 0:5676; 0:6981½ �; 0:4132; 0:5319½ �;f
	 0:3311; 0:4424½ �; 0:2694; 0:3920½ �;
	 0:2363; 0:3589½ �g

~h5 ¼ 0:5963; 0:7429½ �; 0:4744; 0:5934½ �;f
	 0:3554; 0:4620½ �; 0:3231; 0:4298½ �;
	 0:2776; 0:3843½ �g

Table 13 Interval-valued hesitant fuzzy decision matrix ~Hð2Þ

c1 c2 c3 c4

x1 {[0.3, 0.5], [0.3, 0.4], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.8], [0.6, 0.8], [0.5, 0.7],

[0.5, 0.6], [0.5, 0.6]}

{[0.6, 0.7], [0.5, 0.7], [0.4, 0.5],

[0.4, 0.5], [0.4, 0.5]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.5, 0.6], [0.3, 0.4]}

x2 {[0.5, 0.8], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

{[0.8, 0.9], [0.6, 0.7], [0.6, 0.7],

[0.6, 0.7], [0.6, 0.7]}

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.9], [0.6, 0.7], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

x3 {[0.7, 0.8], [0.5, 0.7], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

{[0.7, 0.6], [0.5, 0.6], [0.2, 0.4],

[0.1, 0.3], [0.1, 0.3]}

{[0.7, 0.8], [0.6, 0.7], [0.4, 0.6],

[0.4, 0.6], [0.4, 0.6]}

{[0.3, 0.5], [0.2, 0.3], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

x4 {[0.3, 0.5], [0.3,0.4], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.8, 0.9], [0.7, 0.6], [0.4, 0.6],

[0.4, 0.5], [0.1, 0.2]}

{[0.6, 0.7], [0.5, 0.7], [0.4, 0.5],

[0.3, 0.4], [0.2, 0.3]}

{[0.6, 0.8], [0.4, 0.6], [0.4, 0.5],

[0.1, 0.3], [0.1, 0.3]}

x5 {[0.8, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.6, 0.7], [0.6, 0.7]}

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

{[0.5, 0.7], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

Table 12 Interval-valued hesitant fuzzy decision matrix ~Hð1Þ

c1 c2 c3 c4

x1 {[0.4, 0.6], [0.1, 0.3], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.3, 0.5], [0.2, 0.3], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.5, 0.6], [0.5, 0.6]}

{[0.8, 0.9], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

x2 {[0.4, 0.5], [0.2, 0.3], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.5, 0.7], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

{[0.7, 0.9], [0.5, 0.6], [0.4, 0.5],

[0.4, 0.5], [0.4, 0.5]}

{[0.7, 0.8], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

x3 {[0.7, 0.8], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

{[0.5, 0.7], [0.4, 0.6], [0.3, 0.4],

[0.3, 0.4], [0.3, 0.4]}

{[0.8, 0.9], [0.6, 0.7], [0.6, 0.7],

[0.6, 0.7], [0.6, 0.7]}

{[0.5, 0.7], [0.2, 0.3], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

x4 {[0.6, 0.8], [0.5, 0.6], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.6],

[0.2, 0.4], [0.1, 0.3]}

{[0.7, 0.8], [0.5,0.7], [0.5,0.7],

[0.5,0.7], [0.5,0.7]}

{[0.5, 0.6], [0.3, 0.4], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

x5 {[0.8, 0.9], [0.6, 0.7], [0.3, 0.4],

[0.2, 0.3], [0.2, 0.3]}

{[0.6, 0.8], [0.2, 0.3], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.8], [0.6,0.7], [0.5, 0.6],

[0.4, 0.5], [0.1, 0.2]}

Table 14 Interval-valued hesitant fuzzy decision matrix ~Hð3Þ

c1 c2 c3 c4

x1 {[0.7, 0.9], [0.5, 0.6], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.4, 0.5], [0.3, 0.5], [0.3, 0.4],

[0.2, 0.3], [0.2, 0.3]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.9], [0.6, 0.7], [0.5, 0.6],

[0.2, 0.3], [0.1, 0.3]}

x2 {[0.5, 0.6], [0.3, 0.4], [0.3, 0.4],

[0.3, 0.4], [0.3, 0.4]}

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.8], [0.5, 0.7], [0.5, 0.6],

[0.2, 0.3], [0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.7],

[0.5, 0.7], [0.5, 0.7]}

x3 {[0.4, 0.6], [0.4, 0.5], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.3, 0.4], [0.1, 0.2]}

{[0.3, 0.5], [0.3, 0.4], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.5, 0.6],

[0.5, 0.6], [0.5, 0.6]}

x4 {[0.4, 0.5], [0.2,0.3], [0.1, 0.2],

[0.1, 0.2], [0.1, 0.2]}

{[0.4, 0.5], [0.3, 0.5], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.6],

[0.4, 0.5], [0.3, 0.4]}

{[0.6, 0.7], [0.4, 0.5], [0.4, 0.5],

[0.4, 0.5], [0.4, 0.5]}

x5 {[0.7, 0.8], [0.6,0.7], [0.3,0.4],

[0.2,0.3], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7],

[0.6, 0.7], [0.6, 0.7]}

{[0.2, 0.3], [0.1, 0.3], [0.1, 0.3],

[0.1, 0.3], [0.1, 0.3]}

{[0.6, 0.8], [0.3, 0.5], [0.2, 0.3],

[0.2, 0.3], [0.2, 0.3]}
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Step 6 Utilize Eq. (42) to calculate the scores s ~hi
� �

(i ¼ 1; 2; 3; 4; 5) of the overall IVHFEs ~hi
(i ¼ 1; 2; 3; 4; 5) as shown below:

s ~h1
� �

¼ 0:3892; 0:5124½ �;
s ~h2
� �

¼ 0:4347; 0:5518½ �;
s ~h3
� �

¼ 0:3983; 0:5185½ �;
s ~h4
� �

¼ 0:3635; 0:4846½ �;
s ~h5
� �

¼ 0:4054; 0:5225½ �

To rank these scores s ~hi
� �

(i ¼ 1; 2; 3; 4; 5),

based on Definition 2.5, we first develop a

complementary matrix as

P¼

0:5000 0:3234 0:4689 0:6095 0:4454
0:6766 0:5000 0:6470 0:7904 0:6252
0:5311 0:3530 0:5000 0:6422 0:4766
0:3905 0:2096 0:3578 0:5000 0:3327
0:5546 0:3748 0:5234 0:6673 0:5000

2

6
6
6
6
4

3

7
7
7
7
5

5	5

where pij ¼ p s ~hi
� �

� s ~hj
� �� �

, i; j ¼ 1; 2; � � � ; 5.
Summing all elements in each line of the matrix P,

we have

p1 ¼ 2:3471; p2 ¼ 3:2392; p3 ¼ 2:5029;
p4 ¼ 1:7907; p5 ¼ 2:6201 i ¼ 1; 2; . . .;m

Then we can rank the s ~hi
� �

(i ¼ 1; 2; 3; 4; 5) in

descending order according to the values of pi
(i ¼ 1; 2; 3; 4; 5):

s ~h2
� �

[ s ~h5
� �

[ s ~h3
� �

[ s ~h1
� �

[ s ~h4
� �

Step 7 Rank the alternatives xi (i ¼ 1; 2; . . .;m) in

accordance with the ranking of the scores s ~hi
� �

(i ¼ 1; 2; . . .;m):

x2 [ x5 [ x3 [ x1 [ x4

thus x2 is the best alternative.

6 Conclusions

In this paper, we have developed two nonlinear opti-

mization models for dealing with MCGDM problems in

which the criterion values are expressed in HFEs, and the

weight information about both the decision makers and

the criteria is unknown. First, we have minimized the

divergence among the individual hesitant fuzzy decision

matrices to establish a nonlinear optimization model for

determining the optimal weights of decision makers under

hesitant fuzzy situations. It has been shown that the

solution to this model can be derived from an exact for-

mula. Then, another nonlinear optimization model has

been developed to obtain the weights of criteria from the

viewpoint of maximizing group consensus on the basis of

all the individual hesitant fuzzy decision matrices, whose

solution can also be derived from a simple formula.

Moreover, a simple additive weighting operator has been

utilized to aggregate all the hesitant fuzzy criterion values

corresponding to each alternative, and then the score

function has been utilized to rank the given alternatives

and to select the best alternative. Finally, we have

extended all the above results to interval-valued hesitant

fuzzy environments, and have applied the developed

Table 15 Collective interval-valued hesitant fuzzy decision matrix ~H

c1 c2 c3 c4

x1 {[0.4744, 0.6744], [0.3043,

0.4374], [0.1668, 0.2668],

[0.1668, 0.2668], [0.1668,

0.2668]}

{[0.4614, 0.5946], [0.3614,

0.5283], [0.2967, 0.4283],

[0.2614, 0.3614], [0.2614,

0.3614]}

{[0.5272, 0.6957], [0.4957,

0.6272], [0.3957, 0.4957],

[0.3626, 0.4626], [0.3626,

0.4626]}

{[0.7332, 0.9000], [0.5984,

0.6984], [0.5315, 0.6315],

[0.3941, 0.4941], [0.2957,

0.4310]}

x2 {[0.4668, 0.6299], [0.3299,

0.4299], [0.3299, 0.4299],

[0.3299, 0.4299], [0.3299,

0.4299]}

{[0.4887, 0.6218], [0.3903,

0.4903], [0.3903, 0.4903],

[0.3903, 0.4903], [0.3903,

0.4903]}

{[0.5423, 0.6755], [0.3739,

0.5092], [0.3407, 0.4407],

[0.2348, 0.3348], [0.2348,

0.3348]}

{[0.7353, 0.8668], [0.5668,

0.6668], [0.5000, 0.6353],

[0.5000, 0.6353], [0.5000,

0.6353]}

x3 {[0.5941, 0.7294], [0.4647,

0.5962], [0.3941, 0.4941],

[0.3941, 0.4941], [0.3941,

0.4941]}

{[0.6337, 0.7391], [0.5374,

0.6706], [0.3744, 0.5059],

[0.2369, 0.3685], [0.1663,

0.2979]}

{[0.5919, 0.7272], [0.4941,

0.5941], [0.3604, 0.4919],

[0.3604, 0.4919], [0.3604,

0.4919]}

{[0.5075, 0.7075], [0.3765,

0.4765], [0.2728, 0.3728],

[0.2728, 0.3728], [0.2728,

0.3728]}

x4 {[0.4348, 0.5995], [0.3310,

0.4310], [0.2642, 0.3642],

[0.2642, 0.3642], [0.2642,

0.3642]}

{[0.6588, 0.7588], [0.5256,

0.5979], [0.3626, 0.4941],

[0.2631, 0.3962], [0.1353,

0.2685]}

{[0.7038, 0.8038], [0.5353,

0.7000], [0.4685, 0.6016],

[0.4016, 0.5348], [0.3348,

0.4680]}

{[0.5668, 0.6984], [0.3668,

0.4984], [0.3005, 0.4005],

[0.2059, 0.3374], [0.2059,

0.3374]}

x5 {[0.7647, 0.8647], [0.6315,

0.7315], [0.3946, 0.4946],

[0.3261, 0.4261], [0.2908,

0.3908]}

{[0.5092, 0.6776], [0.3450,

0.4450], [0.3097, 0.4097],

[0.3097, 0.4097], [0.3097,

0.4097]}

{[0.3908, 0.5555], [0.3555,

0.4908], [0.2593, 0.3946],

[0.2593, 0.3946], [0.2593,

0.3946]}

{[0.6016, 0.7685], [0.4626,

0.5979], [0.3941, 0.4941],

[0.3609, 0.4609], [0.2614,

0.3614]}
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models to an investment decision problem. A comparison

analysis has shown that the developed methods have some

prominent advantages over the other hesitant fuzzy or

interval-valued hesitant fuzzy MCGDM methods.
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