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Abstract In this paper, variational iteration method is

presented to solve the linear and nonlinear fuzzy differ-

ential equations. This technique provides a sequence of

functions which converges to the exact solution of the

problem. Sufficient condition for convergence of the pro-

posed method is given and also a maximum absolute

truncation error is estimated. This method provides

remarkable accuracy in comparison with the analytical

solution. Several numerical examples are given to illustrate

the efficiency and performance of the presented method.

Keywords Fuzzy number � Fuzzy function � Fuzzy
differential equation � Variational iteration method

1 Introduction

Many physical problems are governed by fuzzy differential

equations, and finding the solution of these equations has been

the subject of many investigators in recent years [1–12]. In

[13], Ji-Huan He presented a very lucid as well as an ele-

mentary discussion of the variational iterationmethod (VIM);

the method was further developed by the originator himself

[14–16]. Themain property of the method is its flexibility and

ability to solve nonlinear equations accurately and conve-

niently, the solution procedure is simple, and results are

acceptable and have been applied to a wide class of nonlinear

problems [17–25]. This scheme is used for solving linear

system of first-order fuzzy differential equations with fuzzy

constant coefficients and nth-order fuzzy differential equa-

tions in [12, 17], respectively. The aim of this paper is to

extend the VIM for solving the linear and nonlinear fuzzy

differential equations, whenever these equations possess

unique fuzzy solutions. The VIM provides a new approach to

solve the fuzzy differential equations without discretization.

Numerical examples are presented to illustrate the efficiency

of the VIM. The rest of paper is organized as follows. In

Sect. 2, we briefly present the basic definitions. In Sect. 3,

VIM for solving fuzzy differential equations is introduced. In

Sect. 4, the sufficient condition is presented to guarantee the

convergence of the method, and an estimation of the maxi-

mum absolute error is presented. The proposed method is

illustrated by solving three examples in Sect. 5.

2 Preliminaries

The basic concepts of fuzzy numbers are given in [11]. In

this section, we review some of them.

Definition 2.1 [11] A fuzzy number U is a pair of func-

tions ðUðrÞ; UðrÞÞ; for every 0� r� 1; which satisfies the

following requirements:

(a) UðrÞ is a bounded, left continuous, and nondecreas-

ing function over [0, 1].

(b) UðrÞ is a bounded, left continuous, and nonincreas-

ing function over [0, 1].

(c) UðrÞ�UðrÞ; 0� r� 1:

A crisp number a is simply represented by UðrÞ ¼
UðrÞ ¼ a; 0� r� 1: The fuzzy number space can be
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embedded to the Banach space B ¼ C½0; 1� � C½0; 1�;
where the metric is usually defined as

kðU; VÞk ¼ max sup
0� r� 1

jUðrÞj; sup
0� r� 1

jVðrÞj
� �

; ð1Þ

for arbitrary ðU; VÞ 2 C½0; 1� � C½0; 1�:
A first-order fuzzy differential equation is defined by

x0ðtÞ ¼ f ðt; xÞ;

where x is a fuzzy function of t and f ðt; xÞ is a fuzzy

function of the crisp variable t and the fuzzy variable x0 is
the fuzzy derivative of x. If an initial value xðt0Þ ¼ x0 is

given, we obtain a fuzzy Cauchy problem of first order:

x0ðtÞ ¼ f ðt; xÞ;
xðt0Þ ¼ x0:

�
ð2Þ

Sufficient conditions for the existence of a unique solution

to Eq. (2) are that f is continuous and that a Lipschitz

condition

kf ðt; xÞ � f ðt; yÞk� Lkx� yk; L[ 0; ð3Þ

is fulfilled. By Theorem 5.2 in [8] we may replace Eq. (2)

by the equivalent system

x0ðtÞ ¼ f ðt; xÞ ¼ Fðt; x; xÞ; xðt0Þ ¼ x0;

x0ðtÞ ¼ f ðt; xÞ ¼ Gðt; x; xÞ; xðt0Þ ¼ x0;

(
ð4Þ

which possesses a unique solution ðx; xÞ 2 B and it is a

fuzzy function, i.e., for each t, the pair ðxðt; rÞ; xðt; rÞÞ is
a fuzzy number. The parametric form of Eq. (4) is given by

x0ðt; rÞ ¼ Fðt; xðt; rÞ; xðt; rÞÞ; xðt0; rÞ ¼ x0ðrÞ;
x0ðt; rÞ ¼ Gðt; xðt; rÞ; xðt; rÞÞ; xðt0; rÞ ¼ x0ðrÞ;

�
ð5Þ

for 0� r� 1: A solution of Eq. (5) must solve Eq. (4) as

well by using the sup norm, an equality between two fuzzy

numbers in B yields a pointwise equality.

3 Variational Iteration Method (VIM)

In order to solve the system given in Eq. (5), by VIM, we

can construct following correction functionals:

xnþ1ðt; rÞ ¼ xnðt; rÞ þ
Z t

0

k1ðsÞ x0nðs; rÞ
�

� Fðs; ~xðs; rÞ; ~xðs; rÞÞ
�
ds;

xnþ1ðt; rÞ ¼ xnðt; rÞ þ
Z t

0

k2ðsÞ x0nðs; rÞ
�

� Gðs; ~xðs; rÞ; ~xðs; rÞÞ
�
ds;

where k1ðsÞ and k2ðsÞ are general Lagrange multipliers and

they can be identified via variational theory. Here, ~xn and
~xn denote restricted variations, i.e., d~xn ¼ d~xn ¼ 0:

Making the above correct functionals stationary, note

that

dxnð0; rÞ ¼ dxnð0; rÞ ¼ 0;

dxnþ1ðt; rÞ ¼ dxnðt; rÞ þ k1ðsÞdxnðs; rÞjt0

�
Z t

0

k01ðsÞdxnðs; rÞds ¼ 0;

dxnþ1ðt; rÞ ¼ dxnðt; rÞ þ k2ðsÞdxnðs; rÞjt0

�
Z t

0

k02ðsÞdxnðs; rÞds ¼ 0;

and the following stationary conditions can be obtained as,

k01ðsÞ ¼ k02ðsÞ ¼ 0;

1þ k1ðsÞjs¼t ¼ 0; 1þ k2ðsÞjs¼t ¼ 0:

The Lagrange multipliers can be identified as follows:

k1ðsÞ ¼ k2ðsÞ ¼ �1;

and it implies the following iteration formula,

xnþ1ðt; rÞ¼ xnðt; rÞ�
Z t

0

½x0nðs; rÞ�Fðs; xnðs; rÞ; xnðs; rÞÞ�ds;

xnþ1ðt; rÞ¼ xnðt; rÞ�
Z t

0

½x0nðs; rÞ�Gðs; xnðs; rÞ; xnðs; rÞÞ�ds;

8>><
>>:

ð6Þ

where x0ðt; rÞ ¼ xð0; rÞ and x0ðt; rÞ ¼ xð0; rÞ:
Now, we define the operator A ¼ ½A1; A2�; as [24],

A1½x� ¼ �
Z t

0

½x0 � Fðs; x; xÞ�ds;

A2½x� ¼ �
Z t

0

½x0 � Gðs; x; xÞ�ds;

8>><
>>:

ð7Þ

and define the components Vk ¼ ðVk; VkÞ; k ¼ 0; 1; 2; . . .;

as

V0 ¼ x0; V0 ¼ x0;

V1 ¼ A1½V0�; V1 ¼ A2½V0�;
V2 ¼ A1½V0 þ V1�;
V2 ¼ A2½V0 þ V1�;

..

.

Vkþ1 ¼ A1½V0 þ V1 þ � � � þ Vk�;
Vkþ1 ¼ A2½V0 þ V1 þ � � � þ Vk�:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð8Þ

It implies that,
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xðt; rÞ ¼ lim
k!1

xkðt; rÞ ¼
X1
k¼0

Vkðt; rÞ;

xðt; rÞ ¼ lim
k!1

xkðt; rÞ ¼
X1
k¼0

Vkðt; rÞ:

Therefore, as a result, the solution of problem (5) can be

obtained from (7) and (8), in the series form,

xðt; rÞ ¼
X1

k¼0
Vkðt; rÞ;

xðt; rÞ ¼
X1

k¼0
Vkðt; rÞ:

8<
: ð9Þ

Here, we approximate the solutions (9) by the nth-order

truncated series
Xn

k¼0
Vkðt; rÞ and

Xn

k¼0
Vkðt; rÞ:

It is easy to see that the above procedure can be easily

extended to the nth-order fuzzy differential equation,

xðnÞðtÞ ¼ f ðt; x; x0; . . .; xðn�1ÞÞ;
xðiÞðt0Þ ¼ ci; i ¼ 0; 1; . . .; n� 1;

(
ð10Þ

where ci; 0� i� n� 1; are given fuzzy numbers. Using

VIM to solve Eq. (10), we have,

k1ðsÞ ¼ k2ðsÞ ¼ ð�1Þn ðs� tÞn�1

ðn� 1Þ! ;

and the following iteration formula will be derived as,

xkþ1ðt; rÞ ¼ xkðt; rÞ þ
Z t

0

ð�1Þn ðs� tÞn�1

ðn� 1Þ! ½xðnÞk ðs; rÞ

�Fðs; xðiÞk ðs; rÞ; xðiÞk ðs; rÞÞji¼0;...;n�1�ds;

xkþ1ðt; rÞ ¼ xkðt; rÞ þ
Z t

0

ð�1Þn ðs� tÞn�1

ðn� 1Þ! ½xðnÞk ðs; rÞ

�Gðs; xðiÞk ðs; rÞ; xðiÞk ðs; rÞÞji¼0;...;n�1�ds;

8>>>>>>>>><
>>>>>>>>>:
where

x0ðt; rÞ ¼
Xn�1

i¼0

ci
i!
ti;

and

x0ðt; rÞ ¼
Xn�1

i¼0

ci

i!
ti:

4 Convergence Analysis

In this section, we study the convergence of the VIM when

applied to problem (6) [24]. The sufficient conditions for

convergence of the method and the error estimate are

presented. The main results are proposed in the following

theorems.

Theorem 4.1 Let A, defined in (7), be an operator from a

Banach space B to B. The series solutionsX1
k¼0

Vkðt; rÞ;
X1

k¼0
Vkðt; rÞ defined in (9), converges if

there exists 0\c\1 such that kVkþ1k� ckVkk for

k 2 N [ f0g:

The proof is straightforward.

Theorem 4.2 If the series solution xðt; rÞ ¼X1
k¼0

Vkðt; rÞ; defined in (9), converges then it is an exact

solution of the nonlinear problem (5).

Proof Suppose that the series solution (9) converges. Set

Sðt; rÞ ¼
X1

k¼0
Vkðt; rÞ; then we have

lim
j!1

Vj ¼ 0;
Xn
j¼0

Vjþ1 � Vj

� �
¼ Vnþ1 � V0;

and so,

X1
j¼0

Vjþ1 � Vj

� �
¼ lim

j!1
Vj � V0 ¼ �V0: ð11Þ

By assuming that the infinite summation (11) and deriva-

tion can be replaced, we apply the derivative operator to

both sides of Eq. (11) and we obtain

X1
j¼0

Vjþ1 � Vj

� �0¼ �V 0
0 ¼ 0: ð12Þ

On the other hand, from definition (8), we have,

Vjþ1 � Vj

� �0 ¼ A V0 þ V1 þ � � � þ Vj

� ��
� V0 þ V1 þ � � � þ Vj�1

� �
�0;

when j� 1 and so, using definition (7), we get,

Vjþ1 � Vj

h i0
¼� d

dt

Z t

0

V0 þ V1 þ � � � þ Vj

h i0h

� V0 þ V1 þ � � � þ Vj�1

h i0
;

�F z;
Xj

i¼0

Vi;
Xj

i¼0

Vi

 !
þ F z;

Xj�1

i¼0

Vi;
Xj�1

i¼0

Vi

 !#
dz;

Vjþ1 � Vj

� �0¼� d

dt

Z t

0

V0 þ V1 þ � � � þ Vj

� �0h

� V0 þ V1 þ � � � þ Vj�1

� �0

�G z;
Xj

i¼0

Vi;
Xj

i¼0

Vi

 !
þ G z;

Xj�1

i¼0

Vi;
Xj�1

i¼0

Vi

 !#
dz;

for j� 1: It implies that,
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� Vjþ1 � Vj

h i0
¼ Vj

h i0
�F t;

Xj

i¼0

Vi;
Xj

i¼0

Vi

 !

þ F t;
Xj�1

i¼0

Vi;
Xj�1

i¼0

Vi

 !
;

� Vjþ1 � Vj

� �0 ¼ Vj

� �0�G t;
Xj

i¼0

Vi;
Xj

i¼0

Vi

 !

þ G t;
Xj�1

i¼0

Vi;
Xj�1

i¼0

Vi

 !
;

for j� 1:

Consequently, we have,

ð�1Þ
Xn
j¼0

Vjþ1 � Vj

h i0
¼ V 0

0 � F t; V0; V0

� �� �

þ V 0
1 � F t; V0 þ V1; V0 þ V1

� ��
þ t; V0; V0

� �
� þ � � � þ

V 0
n � F t;

Xn
i¼0

Vi;
Xn
i¼0

Vi

 !
þ F t;

Xn�1

i¼0

Vi;
Xn�1

i¼0

Vi

 !" #
;

and

ð�1Þ
Xn
j¼0

Vjþ1 � Vj

� �0¼ V
0
0 � G t; V0; V0

� �h i

þ V
0
1 � G t; V0 þ V1; V0 þ V1

� �h

þ t; V0; V0

� �
� þ � � � þ

V
0
n � G t;

Xn
i¼0

Vi;
Xn
i¼0

Vi

 !
þ G t;

Xn�1

i¼0

Vi;
Xn�1

i¼0

Vi

 !" #
:

Thus,

ð�1Þ
X1

j¼0
½Vjþ1�Vj�

0 ¼
X1

j¼0
Vj

h i0
�F t;

X1
j¼0

Vj;
X1

j¼0
Vj

� 	
;

ð�1Þ
X1

j¼0
½Vjþ1�Vj�0 ¼

X1
j¼0

Vj

h i0
�G t;

X1
j¼0

Vj;
X1

j¼0
Vj

� 	
:

8><
>:

ð13Þ

From (12) and (13), we can observe that Sðt; rÞ ¼X1
j¼0

Vjðt; rÞ is an exact solution of problem (5). h

Theorem 4.3 Assume that the series solutionX1
k¼0

Vkðt; rÞ; defined in (9), is convergent to the solution

xðt; rÞ: If the truncated series
Xm

k¼0
Vkðt; rÞ; is used as an

approximation to the solution xðt; rÞ of problem (5), then

the maximum error, Emðt; rÞ; is estimated as,

Emðt; rÞ�
cmþ1

1� c
kV0k:

Proof From Theorem 4.1, we have

Sn � Smk k� cmþ1

1� c
V0k k;

for n�m: Now, as n ! 1 we have Sn ! xðt; rÞ: So,

xðt; rÞ �
Xm
k¼0

Vkðt; rÞ












�
cmþ1

1� c
V0k k:

h

In summary, Theorems 4.1 and 4.2 state that the vari-

ational iteration solution of nonlinear problem (5),

obtained using the iteration formula (6) or (8), converges to

exact solution under the condition that, there exists

0\c\1 such that kVkþ1k� ckVkk; for every k 2 N [ f0g:
In other words, if we define, for every i 2 N [ f0g; the
parameters,

bi ¼
kViþ1k
kVik

if kVik 6¼ 0;

0 if kVik ¼ 0;

8<
:

then the series solution
X1

k¼0
Vkðt; rÞ of problem (5)

converges to exact solution, xðt; rÞ; when 0� bi\1; for

i 2 N [ f0g: Moreover, as stated in Theorem 4.3, the

maximum absolute truncation error is estimated to be

xðt; rÞ �
Xm
k¼0

Vkðt; rÞ












�
bmþ1

1� b
V0ðt; rÞk k;

where b ¼ maxfbi; i ¼ 0; . . .;mg: The convergence

discussion, which is presented in this section, can be

easily extended to nth-order fuzzy differential

equation (10).

5 Numerical Examples

In this section, some interesting problems are solved by

proposed method. It should be noted that by VIM a con-

tinuous and smooth approximation of exact solution can be

obtained, whereas based on finite difference methods, just a

discrete approximate solution can be achieved. Further-

more, it can be seen that the results obtained by proposed

method have high accuracy.

Example 5.1 Consider the fuzzy initial value problem

[6],

x0ðtÞ ¼ xðtÞ; t� 0;

xð0Þ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ;

�

for r 2 ð0; 1�: The exact solution is given by
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xðt; rÞ ¼ xð0; rÞet;
xðt; rÞ ¼ xð0; rÞet:

�

According to Eq. (5), we have,

x0ðt; rÞ ¼ xðt; rÞ; xð0; rÞ ¼ 0:75þ 0:25r;

x0ðt; rÞ ¼ xðt; rÞ; xð0; rÞ ¼ 1:125� 0:125r:

�

Applying VIM, defined in (6), we get,

xnþ1ðt; rÞ ¼ xnðt; rÞ �
Z t

0

½x0nðs; rÞ � xnðs; rÞ�ds;

xnþ1ðt; rÞ ¼ xnðt; rÞ �
Z t

0

½x0nðs; rÞ � xnðs; rÞ�ds;

8>><
>>:
where x0ðt; rÞ ¼ 0:75þ 0:25r and x0ðt; rÞ ¼ 1:125

�0:125r:

Approximate solution ðx40ðt; rÞ; x40ðt; rÞÞ; at t ¼ 1; and

the obtained absolute errors, jxðt; rÞ � x40ðt; rÞj and

jxðt; rÞ � x40ðt; rÞj; for ðt; rÞ 2 ½0; 1� � ½0; 1�: are given

in Figs. 1, 2, and 3, respectively.

Example 5.2 Consider the fuzzy initial value problem [6],

x0ðtÞ ¼ CxðtÞ; 0� t� 1;
xð0Þ ¼ ð8þ 0:5r; 9� 0:5rÞ;

�

where C ¼ ð1þ r; 3� rÞ and the exact solution is

xðt; rÞ ¼ ð8þ 0:5rÞeð1þrÞt;

xðt; rÞ ¼ ð9� 0:5rÞeð3�rÞt;

(

for 0� r� 1:

Using the VIM, we obtain,

xnþ1ðt; rÞ ¼ xnðt; rÞ �
Z t

0

½x0nðs; rÞ � ð1þ rÞxnðs; rÞ�ds;

xnþ1ðt; rÞ ¼ xnðt; rÞ �
Z t

0

½x0nðs; rÞ � ð3� rÞxnðs; rÞ�ds;

8>><
>>:

where x0ðt; rÞ ¼ 8þ 0:5r and x0ðt; rÞ ¼ 9� 0:5r:
Approximate solution ðx40ðt; rÞ; x40ðt; rÞÞ; at t ¼ 1 and

the obtained absolute errors jxðt; rÞ � x40ðt; rÞj and

jxðt; rÞ � x40ðt; rÞj; for ðt; rÞ 2 ½0; 1� � ½0; 1�; are plotted

in Figs. 4, 5, and 6, respectively.

Example 5.3 Consider the following fuzzy differential

equation[7],

x000ðtÞ ¼ 2x00ðtÞ þ 3x0ðtÞ;
xð0Þ ¼ ð3þ r; 5� rÞ;

x0ð0Þ ¼ ð�1� r; �3þ rÞ;
x00ð0Þ ¼ ð8þ r; 10� rÞ;

8>>><
>>>:
where 0� r; t� 1: The exact solution is

Fig. 1 Approximate solutions x40ð1; rÞ and x40ð1; rÞ of VIM in

Example 5.1

Fig. 2 Absolute error jxðt; rÞ � x40ðt; rÞj; which is obtained about

4� 10�41; for Example 5.1

Fig. 3 Absolute error jxðt; rÞ � x40ðt; rÞj; which is obtained about

4� 10�41; for Example 5.1
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xðt; rÞ ¼ �1

3
þ 7

12
e3t þ 11

4
þ r

� �
e�t;

�1

3
þ 7

12
e3t

�

þ 19

4
� r

� �
e�t

�
; 0� r� 1:

Using the VIM, we obtain,

xnþ1ðt; rÞ¼ xnðt; rÞ�
1

2

Z t

0

ðs� tÞ2½x000n �2x00n�3x0n�ðs; rÞds;

xnþ1ðt; rÞ¼ xnðt; rÞ�
1

2

Z t

0

ðs� tÞ2½x000n �2x00n�3x0n�ðs; rÞds;

8>><
>>:

where x0ðt; rÞ ¼ 3þ r � ð1þ rÞt þ ð8þ rÞ t2
2

and

x0ðt; rÞ ¼ 5� r þ ðr � 3Þt þ ð10� rÞ t2
2
: The results are

shown in Figs. 7, 8, and 9, respectively.

Example 5.4 Consider the nonlinear fuzzy initial value

problem [3],

x0ðtÞ ¼ 0:5xðtÞð1� xðtÞÞ; 0� t� 1;

xð0Þ ¼ ð0:4þ 0:2r; 0:9� 0:3rÞ;

�

with the exact solution,

xðt; rÞ ¼ x0
x0 � ðx0 � 1Þe�0:5t

;
x0

x0 � ðx0 � 1Þe�0:5t

� �
;

for 0� r� 1:

According to VIM, we have,

xnþ1ðt; rÞ¼ xnðt; rÞ�
Z t

0

½x0nðs; rÞþ0:5xnðs; rÞðxnðs; rÞ�1Þ�ds;

xnþ1ðt; rÞ¼ xnðt; rÞ�
Z t

0

½x0nðs; rÞþ0:5xnðs; rÞðxnðs; rÞ�1Þ�ds;

8>><
>>:

where x0ðt; rÞ ¼ 0:2þ 0:2r and x0ðt; rÞ ¼ 0:9� 0:3r:

Fig. 5 Absolute error jxðt; rÞ � x40ðt; rÞj; which is obtained about

6� 10�37; for Example 5.2

Fig. 6 Absolute error jxðt; rÞ � x40ðt; rÞj; which is obtained about

1:1� 10�29; for Example 5.2

Fig. 7 Approximate solutions x20ð1; rÞ and x20ð1; rÞ of VIM in

Example 5.3

Fig. 4 Approximate solutions x40ð1; rÞ and x40ð1; rÞ of VIM in

Example 5.2
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Table 1 shows the comparison between the exact

solution and approximate solution ðx6; x6Þ; at t ¼ 1: Also,

Fig. 10 shows the approximate solution by VIM, at t ¼ 1:

6 Conclusion

In this paper, an efficient iterative method has been pre-

sented to solve fuzzy differential equations. The theorems

of convergence and error estimation have been discussed.

Furthermore, several numerical examples of the proposed

method have been presented, and the comparisons with the

exact solutions confirm that the method is capable of

generating accurate solutions. The proposed method can be

easily implemented for a system of fuzzy differential

equations. To solve boundary value, fuzzy problems can be

studied using VIM in future work.
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