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Abstract The stabilization conditions of the discrete

Takagi–Sugeno (T–S) fuzzy system are reduced by con-

sidering possible switching subregions. In addition, the

stabilization conditions for the T–S fuzzy system are

relaxed by representing the interactions among the fuzzy

subsystems in a single matrix. However, these two con-

cepts have not been applied together to the discrete T–S

fuzzy system with constraints on the control input. The aim

of this paper is to relax the stabilization conditions for the

discrete T–S fuzzy system with constraints on the control

input. The possible switching subregions fired by two

successive states of the system are analyzed and utilized to

reduce the stabilization conditions. The interactions of

fuzzy subsystems within two subregions are integrated into

a single matrix to relax the stabilization conditions. The

relaxation and effectiveness of the proposed stabilization

conditions are demonstrated by a numerical example and a

mass-spring-damper system.
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1 Introduction

In the past few decades, Takagi–Sugeno (T–S) fuzzy

control systems have been extensively investigated, since

they can successfully control many nonlinear systems (see

[1–10] and references therein). The parallel distributed

compensation (PDC) [1, 11] control law that shares the

same fuzzy sets with the T–S fuzzy model in the premise

parts is primarily used to stabilize the T–S fuzzy system.

Owing to the nonlinear weighted summation in the T–S

fuzzy control system, the stabilization conditions of the

PDC control law are usually derived based on the Lya-

punov direct method. During the early development of T–S

fuzzy control systems, the common quadratic Lyapunov

function (CQLF) was employed to prove the stability of the

control designs [1, 11, 12]. Based on the CQLF, the PDC

stabilization criterion is to obtain a common positive def-

inite matrix such that all the Lyapunov inequalities with

respect to the subsystems of the T–S fuzzy system are

satisfied. The stabilization conditions are often represented

as linear matrix inequalities (LMI) and then solved using

existing LMI tools [13]. However, the structural informa-

tion between the subsystems and the membership functions

is ignored in the CQLF-based stabilization conditions. In

contrast, deriving the stabilization conditions for the T–S

fuzzy control system by using the piecewise quadratic

Lyapunov function (PQLF) involves the structural infor-

mation of the T–S fuzzy system [2, 14–22]. Further, the

PQLF has more Lyapunov function candidates than the

CQLF. If a piece of the PQLF strictly decreases in the

particular subregion(s) of the state space, the local stability

of the system in the subregion(s) can be guaranteed. If

sufficient pieces of the Lyapunov candidates guarantee the

local stability of all subregions, and the boundary condi-

tions are met, then the global stability of the system can be

guaranteed by the summation of all piecewise Lyapunov

candidates [14–20]. In [14, 20], the boundary condition is

that the PQLF has to remain continuous across subregion

boundaries of the state space, whereas in [15–19, 21, 22],

the PQLF has to strictly decrease not only in each
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subregion but also across subregion boundaries. Further

analysis of the possible switching subregions has been

considered such that the stabilization conditions of the

discrete T–S fuzzy system are reduced [16, 17, 19].

In practical control systems, the control signal always

falls in a definite range owing to the limitations induced by

the mechanical structure, driver circuit devices, and so on;

this is called the input constraint [1, 2, 18, 23–31]. The

input constraint limits the performance of the control sys-

tem and may affect its stability. The T–S fuzzy control

system design with input constraints has been applied to

many practical systems [23–31]. In [23], the use of extra

LMIs is proposed to ensure that the input constraints are

met, and the control design with input constraints is applied

to a hovercraft system. The fuzzy control laws with input

constraints have been applied to the overhead crane [24],

inverted pendulum on a cart [25], inverted pendulum [26],

self-sustaining bicycle [27], mobile robot [28], aircraft

[29], ship positioning systems [30], and electric power

steering system [31]. However, there has been little dis-

cussion about the relaxation of stabilization conditions for

the discrete T–S fuzzy system with input constraints.

This study proposes relaxed stabilizations for the discrete

T–S fuzzy systems with input constraints by considering

possible switching subregions. In this study, the PQLF is

employed to prove that the discrete T–S fuzzy system is

stable. The T–S fuzzy system is represented as an equivalent

switching T–S fuzzy system, in which the state space is

divided into several subregions according to the firing prin-

ciple of fuzzy rules. The possible switching subregions,

respectively, fired by two successive states of the system are

estimated based on the system and input constraints. Since,

the stabilization conditions are considered only with respect

to the possible switching subregions, fewer stabilization

conditions are derived as compared to the traditional stabi-

lization criteria. The stabilization conditions are also relaxed

by integrating the interactions of fuzzy subsystems within

two subregions, into a single matrix [12, 32]. The stabiliza-

tion conditions and input constraints are both represented in

the LMI form and solved by using LMI tools. Consequently,

we concluded that the stabilizations for the discrete T–S

fuzzy systems with input constraints can be relaxed.

2 Preliminary

The fuzzy rule of a discrete T–S fuzzy system is presented

as follows:

Rule i : If x1ðkÞ is Mi1; x2ðkÞ is Mi2; . . .; xnðkÞ is Min;

then xðk þ 1Þ ¼ AixðkÞ þ BiuðkÞ;
;

ð1Þ

where i ¼ 1; 2; . . .; r; r and n denote the numbers of fuzzy

rules and state variables, respectively. Mij is the member-

ship function of the state variable xj in the i-th fuzzy rule.

Ai 2 <n � n and Bi 2 <n�m are the system and input

matrices, respectively. xðkÞ ¼ ½x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ�T is

the state vector. uðkÞ ¼ ½u1ðkÞ; u2ðkÞ; . . .; umðkÞ�T is the

input vector. By the weighting average defuzzification, the

output of the system is inferred as

xðk þ 1Þ ¼
Xr

i¼1

wiðkÞ AixðkÞ þ BiuðkÞ½ �; ð2Þ

where

wiðkÞ ¼
Qn

j¼1 MijðxjðkÞÞPr
i¼1

Qn
j¼1 MijðxjðkÞÞ

; 0�wiðkÞ� 1;

Xr

i¼1

wiðkÞ ¼ 1;

ð3Þ

where MijðxjðkÞÞ denotes the grade of xjðkÞ in the mem-

bership function Mij. The PDC law [1, 11] is applied to the

system (2) as follows:

Rule i : If x1ðkÞ is Mi1; x2ðkÞ is Mi2; . . .; xnðkÞ is Min; then

uðkÞ ¼ �KixðkÞ;
ð4Þ

where i ¼ 1; 2; . . .; r: According to the PDC law, the fuzzy

control rules (4) use the same fuzzy sets as the system rules

(1). Then, using the same inference as (2), the defuzzified

controller is

uðkÞ ¼ �
Xr

i¼1

wiðkÞKixðkÞ: ð5Þ

For practical systems, the control input is always limited

in a definite range. This is called an input constraint [1].

Herein, the input constraint on the discrete T–S fuzzy

system is represented as

uðkÞk k2\�u: ð6Þ

By applying the PDC (5) to (2), the following discrete

T–S fuzzy control system is obtained.

x k þ 1ð Þ ¼
Xr

i¼1

Xr

j¼1

wiðkÞwjðkÞ½Ai � BiKj�xðkÞ: ð7Þ

Based on the CQLF VðkÞ ¼ xTðkÞPxðkÞ, the Lyapunov

stabilization criteria for the discrete T–S fuzzy system with

the input constraint (6) are presented below.

Lemma 1 [1]: Consider the discrete T–S fuzzy control

system (7) with the input constraint (6) and assume

xð0Þk k2\�x0. The system (7) is asymptotically stable if

there are matrices Mi ¼ KiX and X ¼ P�1 such that
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X[ �x2
0I ð8Þ

X �
Mi �u2I

� �
[ 0; ð9Þ

X �
AiX � BiMi X

� �
[ 0; ð10Þ

X �
ðAiX � BiMj þ AjX � BjMiÞ=2 X

� �
[ 0; ð11Þ

where i\j; i; j ¼ 1; 2; � � � ; r. The asterisk denotes the

transposed matrices for symmetric positions.

Lemma 1 is a typical stabilization criterion for the dis-

crete T–S fuzzy system with an input constraint. If the

LMIs (8) and (9) hold, the constraint (6) is guaranteed for

k � 0. For details, see [1]. LMIs (10) and (11) are typical

stabilization conditions for a discrete T–S fuzzy system.

The relaxation of LMIs (10) and (11) can be achieved by

integrating the interactions between all fuzzy subsystems

into a single matrix as follows.

Lemma 2 [12]: The discrete T–S fuzzy control system (7)

is asymptotically stable if there are matrices Mi ¼ KiX,

Qij ¼ QT
ij , for i; j ¼ 1; 2; � � � ; r, i� j, and X ¼ P�1 [ 0

such that

X � Qii �
AiX � BiMi X

� �
[ 0 ð12Þ

X � Qij �
ðAiX � BiMj þ AjX � BjMiÞ=2 X

� �
[ 0; ð13Þ

Q 	

Q11 � � � � �
Q12 Q22 � � � �
..
. ..

. . .
. ..

.

Q1r Q2r � � � Qrr

0

BBB@

1

CCCA[ 0: ð14Þ

By integrating Lemmas 1 and 2, the relaxed Lyapunov

stabilization criterion for the discrete T–S fuzzy system

with the input constraint (6) is derived as follows.

Theorem 1 Consider the discrete T–S fuzzy control sys-

tem (7) with the input constraint (6), and assume that

xð0Þk k2\�x0. The system (7) is asymptotically stable if

there are matrices Mi ¼ KiP
�1, Qij ¼ QT

ij , for i; j ¼
1; 2; � � � ; r, i� j, and X ¼ P�1 [ 0, such that the

inequalities (8)–(9) and (12)–(14) are satisfied.

The above stabilization conditions are derived based on

the CQLF. The further relaxed stability conditions for the

discrete T–S fuzzy system are expected to derive by

adopting the PQLF. For convenience, the discrete T–S

fuzzy system is represented as an equivalent discrete

switching T–S fuzzy system.

3 Main Results

The rules of a discrete switching T–S fuzzy system include

two levels: region rules and local fuzzy rules. The region

rules are constructed based on the firing property of fuzzy

rules. The overall state space W is divided into several

nonoverlapping subregions, wherein the same local fuzzy

rules are always fired simultaneously. Therefore, the fuzzy

rule (1) is represented as follows [17]:

Region Rule j : If xðkÞ 2 Sj; then

Local Fuzzy Rule LRjs : If x1ðkÞ is Mjs1; x2ðkÞ
is Mjs2; . . .; xnðkÞ is Mjsn; then

xðk þ 1Þ ¼ AjsxðkÞ þ BjsuðkÞ;

; ð15Þ

where Sj denotes the j-th subregion for j ¼ 1; 2; . . .; r;

LRjs denotes the s-th local fuzzy rule in Sj for

s ¼ 1; 2; � � � ; bðjÞ. Moreover, [ r
j¼1Sj ¼ W, and Si \ Sj ¼6 0

for i 6¼ j. The final output of (15) is inferred as

xðk þ 1Þ ¼
Xr

j¼1

XbðjÞ

s¼1

gjðkÞwjsðkÞ AjsxðkÞ þ BjsuðkÞ
� �

; ð16Þ

where

gjðkÞ ¼
1; xðkÞ 2 Sj

0; otherwise

�
; ð17Þ

wjsðkÞ ¼
Qn

d¼1 MjsdðxdðkÞÞ
PbðjÞ

s¼1

Qn
d¼1 MjsdðxdðkÞÞ

; 0�wjsðkÞ� 1;

XbðjÞ

s¼1

wjsðkÞ ¼ 1:

ð18Þ

Similarly, the PDC control law is rewritten in the

switching T–S fuzzy system form.

Region Rule j : If xðkÞ 2 Sj; then

Local Fuzzy Rule LRjs:

If x1ðkÞ is Mjs1; x2ðkÞ is Mjs2; � � � ; xnðkÞ is Mjsn;

then uðkÞ ¼ �KjsxðkÞ;

;

ð19Þ

where j ¼ 1; 2; . . .; r, and s ¼ 1; 2; . . .; bðjÞ. The switch-

ing fuzzy controller is inferred as

uðkÞ ¼ �
Xr

j¼1

XbðjÞ

s¼1

gjðkÞwjsðkÞKjsxðkÞ: ð20Þ
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By applying (20) to (16), the following closed-loop

switching T–S fuzzy control system is obtained.

xðk þ 1Þ ¼
Xr

j¼1

XbðjÞ

s¼1

XbðjÞ

l¼1

gjðkÞwjsðkÞwjlðkÞ½Ajs � BjsKjl�xðkÞ

¼
Xr

j¼1

XbðjÞ

s¼1

gjðkÞw2
jsðkÞGjssxðkÞ

þ 2
Xr

j¼1

XbðjÞ

s¼1

XbðjÞ

l[ s

gjðkÞwjsðkÞwjlðkÞKjslxðkÞ;

ð21Þ

where Gjsl ¼ Ajs � BjsKjl, and Kjsl ¼ ðGjsl þ GjlsÞ=2. In the

subregion Sj, a state xðkÞ can be represented by the inter-

polation of vertices xv
jc

xðkÞ ¼
X2n

c¼1

wv
jcðkÞxv

jc; xðkÞ 2 Sj ð22Þ

where

0�wv
jcðkÞ� 1;

X2n

c¼1

wv
jcðkÞ ¼ 1: ð23Þ

According to (16), (22)–(23) and the constraint on the

control input (6), jjDxðkÞjj1 for xðkÞ 2 Sj is estimated as

follows:

DxðkÞk k1 ¼ xðk þ 1Þ � xðkÞk k1

¼
XbðjÞ

s¼1

wjsðkÞ½AjsxðkÞ þ BjsuðkÞ� � xðkÞ
�����

�����
1

¼
XbðjÞ

s¼1

wjsðkÞ½Ajs � I�xðkÞ þ
XbðjÞ

s¼1

wjsðkÞBjsuðkÞ
�����

�����
1

�
XbðjÞ

s¼1

X2n

c¼1

wjsðkÞwv
jcðkÞ½Ajs � I�xv

jc

�����

�����
1

þ
XbðjÞ

s¼1

wjsðkÞBjs

�����

�����
1

��u ; for xðkÞ 2 Sj :

:

ð24Þ

According to (18) and (23),

DxðkÞk k1 � max
s; c

ðAjs � IÞxv
jc

���
���
1
þmax

s
Bjs

�� ��
1��u ;

for xðkÞ 2 Sj:
ð25Þ

If xðkÞ 2 Sj, the next state xðk þ 1Þ will only be located

at following subregions

xðk þ 1Þ 2 Si; for i ¼ j 
 ð1; 2; . . .; djÞ; 0\i� r;

ð26Þ

where

dj ¼ ceil DxðkÞk k1
�

Lj

	 

; ð27Þ

where Lj is the minimal width of subregion Sj; ceilðzÞ
rounds z to the nearest integer greater than or equal to z. Let

X be the set of the subregion switching from Sj to Si, i.e.,

X :¼ j; ih ijxðkÞ 2 Sj; xðk þ 1Þ 2 Si

� �
. Then,

X¼ j; ih ijj ¼ 1; 2; . . .;r; i ¼ j
 ð1; 2; . . .; djÞ; 0\i�r
� �

:

ð28Þ

Based on the PQLF, VðkÞ ¼
Pr

j¼1 gjðkÞxTðkÞPjxðkÞ and

the set X, the relaxed stabilization criterion for the discrete

T–S fuzzy system with the input constraint (6) is derived.

Theorem 2 Consider the discrete T–S fuzzy control sys-

tem (21) with the input constraint (6), and assume that

xð0Þk k2\�x0. The system (21) is asymptotically stable if

there are matrices Mjs ¼ KjsXj, Q
sl
ji ¼ ðQsl

ji Þ
T
, Qs

ji ¼ ðQs
jiÞ

T ;

and Xj ¼ P�1
j , for j ¼ 1; 2; � � � ; r, and s; l ¼ 1;

2; � � � ; bðjÞ, s\l, such that

Xj [ �x2
0I ð29Þ

Xj �
Mjs �u2I

� �
[ 0; ð30Þ

Xj � Qs
ji �

AjsXj � BjsMjs Xi

� �
[ 0; ð31Þ

Xj � Qsl
ji þ Qls

ji


 �.
2 �

ðAjsXj � BjsMjl þ AjlXj � BjlMjsÞ=2 Xi

" #
[ 0; ð32Þ

Q̂ji 	

Q1
ji Q12

ji � � � Q
1bðjÞ
ji

Q21
ji Q2

ji � � � Q
2bðjÞ
ji

..

. ..
. . .

. ..
.

Q
bðjÞ1
ji Q

bðjÞ2
ji � � � Q

bðjÞ
ji

2
66664

3
77775
[ 0; ð33Þ

where s; l ¼ 1; 2; . . .; bðjÞ, s\l; and j; ih i 2 X. The

asterisk denotes the transposed matrices for symmetric

positions.

Proof For the PQLF, VðkÞ ¼
Pr

j¼1 gjðkÞxTðkÞPjxðkÞ,
since (17) and j; ih i 2 X, the difference between Vðk þ 1Þ
and VðkÞ is represented as

DVðkÞ ¼ Vðk þ 1Þ � VðkÞ ¼ xTðk þ 1ÞPixðk þ 1Þ
� xTðkÞPjxðkÞ; for xðkÞ 2 Sj; j; ih i 2 X:

ð34Þ

From (21),
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DVðkÞ ¼ xTðkÞ
XbðjÞ

s¼1

XbðjÞ

l¼1

wjsðkÞwjlðkÞGjsl

 !T
2
4

Pi

XbðjÞ

s¼1

XbðjÞ

l¼1

wjsðkÞwjlðkÞGjsl

 !
� Pj

#
xðkÞ

�
XbðjÞ

s¼1

w2
jsðkÞxTðkÞ GT

jssPiGjss � Pj

h i
xðkÞ

þ
XbðjÞ

s¼1

XbðjÞ

s[ l

wjsðkÞwjlðkÞ xTðkÞ

KT
jslPiKjsl � Pj þ KT

jlsPiKjls � Pj

h i
xðkÞ:

ð35Þ

If

GT
jssPiGjss � Pj\�Ys

ji; j; ih i 2 X; s ¼ 1; 2; . . .; bðjÞ;
ð36Þ

KT
jslPiKjsl � Pj þ KT

jlsPiKjls � Pj\� Ysl
ji � Yls

ji ;

j; ih i 2 X; 1� s\ l� bðjÞ; ð37Þ

then

DVðkÞ� �
XbðjÞ

s¼1

w2
jsðkÞxTðkÞYs

ji xðkÞ

�
XbðjÞ

s¼1

XbðjÞ

l[ s

wjsðkÞwjlðkÞxTðkÞ½Ysl
ji þYls

ji �xðkÞ

¼�

wj1xðkÞ
wj2xðkÞ

..

.

wjbðjÞxðkÞ

2
66664

3
77775

T Y1
ji Y12

ji � � � Y
1bðjÞ
ji

Y21
ji Y2

ji � � � Y
2bðjÞ
ji

..

. ..
. . .

. ..
.

Y
bðjÞ1
ji Y

bðjÞ2
ji � � � Y

bðjÞ
ji

2
6666664

3
7777775

wj1xðkÞ
wj2xðkÞ

..

.

wjbðjÞxðkÞ

2
66664

3
77775

:

ð38Þ

DVðkÞ\0 holds, if

Ŷji 	

Y1
ji Y12

ji � � � Y
1bðjÞ
ji

Y21
ji Y2

ji � � � Y
2bðjÞ
ji

..

. ..
. . .

. ..
.

Y
bðjÞ1
ji Y

bðjÞ2
ji � � � Y

bðjÞ
ji

2
66664

3
77775
[ 0: ð39Þ

Multiplying the inequality (39) on the right and left by

diagðP�1
j ; P�1

j ; � � � ; P�1
j

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bðjÞ

Þ, and defining Xj ¼ P�1
j ,

XjY
s
jiXj ¼ Qs

ji, and XjY
sl
jiXj ¼ Qsl

ji , then (33) is obtained.

Moreover, by Schur complements, (36) and (37) are

equivalent to

Pj � Ys
ji �

Ajs � BjsKjs P�1
i

� �
[ 0; ð40Þ

Pj � Ysl
ji þ Yls

ji


 �.
2 �

ðAjs � BjsKjl þ Ajl � BjlKjsÞ=2 P�1
i

" #
[ 0: ð41Þ

Multiplying the inequalities (40) and (41) on the right and

left by diagðP�1
j ; IÞ, and defining Mjs ¼ KjsXj, then (31)

and (32) are obtained. The proof is completed. h

Remark 1 Based on the PQLF, the matrices Xj ¼ P�1
j and

Xi ¼ P�1
i are with respect to the piece of the PQLF candi-

dates for xðkÞ 2 Sj and xðk þ 1Þ 2 Si, respectively. In a

discrete system, the successive two states xðkÞ and xðk þ 1Þ
may be in any subregions, and consequently, i; j ¼
1; 2; � � � ; r should be considered in traditional stabilization

conditions. However, by estimating the relative positions of

two consecutive states xðkÞ and xðk þ 1Þ, only j; ih i 2 X
pairs should be satisfied in Theorem 2. Obviously, under the

consideration of j; ih i 2 X, the stabilization conditions are

reduced.

Remark 2 The interactions of fuzzy subsystems within

two subregions, for xðkÞ 2 Sj and xðk þ 1Þ 2 Si, are inte-

grated into a single matrix Q̂ji. Also, only j; ih i 2 X pairs

should be considered for Q̂ji. Following Lemma 2, the

integrating matrices Q̂ji can relax the stabilization condi-

tions for the discrete T–S fuzzy system with an input

constraint.

4 Illustrative Examples

Two examples are shown in this section. Example 1 is a

numerical example and demonstrates the relaxation of the

stabilization criteria. In Example 2, the control design for a

nonlinear mass-spring-damper system illustrates the

relaxation and effectiveness of the proposed theorem.

Example 1 Consider the following switching T–S fuzzy

system with the input constraint uðkÞk k2\�u ¼ 1.

Region Rule j : If xðkÞ 2 Sj; then

Local Fuzzy Rule LRjs:

If x1ðkÞ is Mjs1; x2ðkÞ is Mjs2; then xðk þ 1Þ
¼ AjsxðkÞ þ BjsuðkÞ;

ð42Þ

where

A11 ¼ a 0:4
0:5 0:8

� �
; A12 ¼ A21 ¼ 0:9 0:3

0:5 0:2

� �
;

A22 ¼ A31 ¼ 0:9 0:3
0:1 0:7

� �
; A32 ¼ 0:7 0:2

0:4 0:9

� �
;

A13 ¼ 0:9 0:5
0:5 0:1

� �
; A14 ¼ A23 ¼ 0:8 0:3

0:2 0:8

� �
;

A24 ¼ A33 ¼ 0:8 0:2
0:3 0:9

� �
; A34 ¼ 0:8 0:1

0:4 0:8

� �
;

172 International Journal of Fuzzy Systems, Vol. 18, No. 2, April 2016

123



B11 ¼ ½ b 0 �T ; and Bjs ¼ ½ 0:5 0 �T for j ¼ 1; 2; 3 and s

¼ 1; 2; 3; 4 except B11;

where a and b are variables used to demonstrate the

relaxation of the stabilization conditions brought by the

proposed theorems. Figure 1 shows the membership func-

tions and rule table of this system.

Figure 1 also displays the vertices xv
jc of subregion Sj,

for j ¼ 1; 2; 3 and c ¼ 1; 2; 3; 4. Therefore, the dj can be

obtained by (24)–(27) with uðkÞk k2\�u ¼ 1. Herein, d2 ¼
d3 ¼ 1 and d1 ¼ 2 regardless of the value of a and b.

Consequently, X ¼ 1; 1h i;f 1; 2h i; 1; 3h i; 2; 1h i; 2; 2h i;
2; 3h i; 3; 2h i; 3; 3h ig. Assume that the initial condition

xð0Þ is inside the subregion Sj, for j ¼ 1; 2; 3, therefore,

xð0Þk k2\�x0 ¼
ffiffiffiffiffi
10

p
. Then, the above stabilization condi-

tions are solved using Matlab LMI toolbox [13]. The

adopted instruction of LMI solver is FEASP with the

options [0 100 1e9 10 0]. The comparisons between the

Lemma 1 [1], Theorems 1 and 2, Theorem 3.1 of [19] and

the modified Theorem 3 of [17] are considered. Figure 2

shows the feasible areas for the stabilization conditions

under �2� a� 2 and �4� b� 5. The Theorem 3 of [17]

is modified to suit the T–S fuzzy system with input

constraints. Clearly, the modified Theorem 3 of [17] and

proposed Theorem 2 have the stabilization conditions

significantly more relaxed than in Lemma 1, Theorem 1,

and Theorem 3.1 of [19]. The relaxation can be explained

by integrating interactions among fuzzy subsystems of

subregion Sj into a single matrix Q̂ji or Q̂j(in Theorem 3 of

[17]). Furthermore, the proposed Theorem 2 relaxes the

stabilization conditions more than in modified Theorem 3

of [17]. The explanation for this is that the nondiagonal

matrices (i.e., Qst
ji ) of the integrating matrix Q̂ji herein are

asymmetric [32] and Q̂ji has additional degrees of freedom

compared to Q̂j in Theorem 3 of [17].

Example 2 Consider a nonlinear mass-spring-damper

system [33–36] as shown in Fig. 3.

The dynamic equation of the nonlinear mass-spring-

damper system is expressed as follows:

M€yðtÞ þ cðyðtÞ; _yðtÞÞ þ jðyðtÞÞ ¼ /ð _yðtÞÞuðtÞ; ð43Þ

where M and uðtÞ are the mass and input force, respec-

tively. cðyðtÞ; _yðtÞÞ is the reaction force of the damper.

jðyðtÞÞ is the reaction force of the spring. From [33–36],

cðyðtÞ; _yðtÞÞ ¼ c1yðtÞ þ c2 _yðtÞ, jðyðtÞÞ ¼ c3yðtÞ þ c4yðtÞ3;

and /ð _yðtÞÞ ¼ 1 þ c5 _yðtÞ3
for yðtÞ 2 ½�1:5 1:5� and

_yðtÞ 2 ½�1:5 1:5�. Assume M ¼ 1, c1 ¼ 0:01, c2 ¼ 0:1,

c3 ¼ 0:01, c4 ¼ 0:67, and c5 ¼ 0. Using the sector non-

linearity method [1], the nonlinear terms can be repre-

sented by the fuzzy combinations. To demonstrate the

relaxation of the stabilization conditions brought by The-

orem 2, multiple sectors are considered in this example.

The considered six sectors include �1:5� yðtÞ� � 1,

�1� yðtÞ� � 0:5, �0:5� yðtÞ� 0, 0� yðtÞ� 0:5, 0:5

� yðtÞ� 1; and 1� yðtÞ� 1:5. Let xðtÞT ¼ ½x1ðtÞ x2ðtÞ�¼
½yðtÞ _yðtÞ�, then the mass-spring-damper system (43) is

represented by the following continuous-time switching

T–S fuzzy model:

Region Rule j : If xðtÞ 2 Sj; then

Local Fuzzy Rule LRjs:

If x1ðtÞ is Mjs1; x2ðtÞ is Mjs2; then _xðtÞ
¼ �AjsxðtÞ þ �BjsuðtÞ

; ð44Þ

where j ¼ 1; 2; 3; � � � ; 6, s ¼ 1; 2; 3; 4,

S3S2S1

2x

1x

33LR 34LR

21LR 22LR

-3 -1 1 3

1

-1 31LR 32LR

23LR

12LR

24LR13LR

11LR

14LR

111M 121M 211M 221M 311M 321M

12jM

22jM

1

10

Fig. 1 Membership functions and rule table of Example 1
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Lemma. 1 [1]
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Th.3 of [17]
Th.2

a

b

Fig. 2 Feasible areas for the compared stabilization criteria
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Fig. 3 Mass-spring-damper system
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�A11 ¼ �A62 ¼ 0 1

�1:5275 0

� �
;

�A12 ¼ �A21 ¼ �A52 ¼ �A61 ¼ 0 1

�0:69 0

� �
;

�A22 ¼ �A31 ¼ �A42 ¼ �A51 ¼ 0 1

�0:1875 0

� �
;

�A32 ¼ �A41 ¼ 0 1

�0:02 0

� �
;

�A13 ¼ �A64 ¼ 0 1

�1:5275 �0:225

� �
;

�A14 ¼ �A23 ¼ �A54 ¼ �A63 ¼ 0 1

�0:69 �0:225

� �
;

�A24 ¼ �A33 ¼ �A44 ¼ �A53 ¼ 0 1

�0:1875 �0:225

� �
;

�A34 ¼ �A43 ¼ 0 1

�0:02 �0:225

� �
;

�B11 ¼ �B12 ¼ � � � ¼ �B64 ¼ ½ 0 1 �T :

The continuous-time T–S fuzzy system can be converted

into the discrete T–S fuzzy system by using zero-order hold

over the sampling period Ts ¼ 0:2. The discrete T–S fuzzy

model is as follows:

Region Rule j : If xðkÞ 2 Sj; then

Local Fuzzy Rule LRjs:

If x1ðkÞ is Mjs1; x2ðkÞ is Mjs2; then xðk þ 1Þ
¼ AjsxðkÞ þ BjsuðkÞ

; ð45Þ

where j ¼ 1; 2; 3; . . .; 6, s ¼ 1; 2; 3; 4,

A11 ¼ A62 ¼ 0:9696 0:1980

�0:3024 0:9696

� �
;

A12 ¼ A21 ¼ A52 ¼ A61 ¼ 0:9862 0:1991

�0:1374 0:9862

� �
;

A22 ¼ A31 ¼ A42 ¼ A51 ¼ 0:9963 0:1998

�0:0375 0:9963

� �
;

A32 ¼ A41 ¼ 0:9996 0:2000

�0:004 0:9996

� �
;

A13 ¼ A64 ¼ 0:9701 0:1936

�0:2957 0:9265

� �
;

A14 ¼ A23 ¼ A54 ¼ A63 ¼ 0:9864 0:1947

�0:1343 0:9426

� �
;

A24 ¼ A33 ¼ A44 ¼ A53 ¼ 0:9963 0:1953

�0:0366 0:9524

� �
;

A34 ¼ A43 ¼ 0:9996 0:1955

�0:0039 0:9556

� �
;

B11 ¼ B62 ¼ 0:0199

0:1980

� �
;

B12 ¼ B21 ¼ B52 ¼ B61 ¼ 0:02

0:1991

� �
;

B32 ¼ B41 ¼ 0:02

0:2

� �
;

B22 ¼ B31 ¼ B42 ¼ B51 ¼ 0:02

0:1998

� �
;

B13 ¼ B64 ¼ 0:0196

0:1936

� �
; B34 ¼ B43 ¼ 0:0197

0:1955

� �
;

B14 ¼ B23 ¼ B54 ¼ B63 ¼ 0:0197

0:1947

� �
;

B24 ¼ B33 ¼ B44 ¼ B53 ¼ 0:0197

0:1953

� �
:

The input constraint limits the performance of the control

system and may affect its stability. For a control system,

smaller input constraints might lead to more conservative

stabilization conditions. First, by decreasing the input

constraints, this example demonstrates the relaxation of the

proposed theorem and the input constraint may affect the

stability of the control system. Lemma 1 and Theorem 1 both

can give feasible solutions for this example under �u� 0:9409.

However, Theorem 2 can give feasible solutions for this

example under �u� 0:8560. If the input constraint of this

system is too small, such as �u ¼ 0:9, neither Lemma 1 nor

Theorem 1 can be used to stabilize this system. Obviously,

Theorem 2 is more relaxed than Theorem 1 and Lemma 1 due

to the consideration of the possible switching subregions.

Next, the control design under uðkÞk k2\�u ¼ 0:9 shows the

effectiveness of the proposed Theorem 2.

Consider the initial condition xð0Þ inside the considered

state space x1ðkÞ 2 ½�1:5 1:5� and x2ðkÞ 2 ½�1:5 1:5�,
that is, xð0Þk k2\�x0 ¼

ffiffiffiffiffiffiffi
4:5

p
. Then, the d1 ¼ d2 ¼ 1 and

d3 ¼ 2 are obtained by (24)–(27) with uðkÞk k2\�u ¼ 0:9.

Hence, X ¼ 1; 1h i;f 1; 2h i; 2; 1h i; 2; 2h i; 2; 3h i;
3; 1h i; 3; 2h i; 3; 3h ig. From Theorem 2, the control

design is as follows:

K11 ¼ K61 ¼ ½ 0:1756 0:5135 �;
K12 ¼ K62 ¼ ½�0:2869 0:3673 �;

K13 ¼ K63 ¼ ½ 0:1732 0:4981 �;
K14 ¼ K64 ¼ ½�0:1804 0:4271 �;

K21 ¼ K51 ¼ ½ 0:3366 0:4761 �;
K22 ¼ K52 ¼ ½ 0:0570 0:5146 �;

K23 ¼ K53 ¼ ½ 0:3531 0:4444 �;
K24 ¼ K54 ¼ ½ 0:0868 0:5038 �;
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K31 ¼ K41 ¼ ½ 0:3846 0:4536 �;
K32 ¼ K42 ¼ ½ 0:3331 0:4746 �;

K33 ¼ K43 ¼ ½ 0:4108 0:3974 �;
K34 ¼ K44 ¼ ½ 0:3529 0:4408 �:

In addition,

P1 ¼ P6 ¼ 0:3192 0:0679

0:0679 0:3503

� �
;

P2 ¼ P5 ¼ 0:3076 0:0887

0:0887 0:3666

� �
;

P3 ¼ P4 ¼ 0:2958 0:1027

0:1027 0:3713

� �
:

Figure 4 shows the state responses of the control design.

The square markers denote the different initial conditions

xð0Þ as follows:

½ 1:25 0 �T ; ½ �1:25 0 �T ; ½ 0 1:25 �T ; ½ 0 �1:25 �T :

The simulation demonstrates the effectiveness of

Theorem 2.

5 Conclusion

In this paper, the relaxation of stabilization conditions for

the discrete T–S fuzzy system with input constraints has

been investigated. The piecewise Lyapunov function is

adopted to derive relaxed stabilization conditions. The

stabilization conditions are reduced under the consideration

of possible switching subregions. The stabilization condi-

tions are further relaxed by integrating interactions of the

fuzzy subsystems within two subregions into a single

matrix. However, the reduction of the stabilization condi-

tions may be little if the successive switching subregions

have too many possibilities. The proposed estimation for

the possible switching subregions can be applied to the

discrete T–S fuzzy systems with constraints on the control

input.
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