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Abstract Cloud is a collection of resources such as

hardware, networks, servers, storage, applications, and

interfaces to provide on-demand services to customers.

Since access to cloud is through internet, data stored in

clouds are vulnerable to attacks from external as well as

internal intruders. In order to preserve privacy of the data

in cloud, several intrusion detection approaches, authenti-

cation techniques, and access control policies are being

used. The common intrusion detection systems are pre-

dominantly incompetent to be used in cloud environments.

In this paper, the usage of type-2 fuzzy neural network

based on genetic algorithm is discussed to incorporate

intrusion detection techniques into cloud. These systems

are intelligent to gain knowledge of fuzzy sets and fuzzy

rules from data to detect intrusions in a cloud environment.

Using a standard benchmark data from a cloud intrusion

detection dataset experiments are done, tested, and com-

pared with other existing approaches in terms of detection

rate accuracy, precision, recall, MSE, and scalability.

Keywords Clustering algorithms � Fuzzy neural

networks � Genetic algorithm � Hybrid intelligent systems �
Intrusion detection

1 Introduction

In this present era of computing, information is a major

asset for every organization. From the local area network to

the currently available highly connected internet, the world

is being benefited from the easiness of data storage and

access. With the introduction of cloud computing, main-

tenance of data has also become a simple task. However,

this flexibility introduces a problem of data security as a

major issue. This is due to the fact that intruders and

hackers are also enjoying technologies for their security-

threatening activities. And also, by subscribing to the

cloud, cloud consumers permit external sources to hold

control of their data. This creates room for hurdles. So data

security and privacy are very serious problems in the vic-

tory of an industry process. Hence, organizations are using

different solutions to achieve data security.

An efficient intrusion detection system should be fast,

self-monitored, fault tolerant, easily configurable, difficult

to cheat, available without interruption, and free from false

errors with an overhead as minimum as possible. Its aim is

to evaluate information systems and to perform early

detection of malicious activity for reducing the security

risk to an acceptably low level. High false-positive alarm

rate may disrupt information availability, whereas high

false-negative alarm rate may result in serious damage to

the protected systems in the form of inappropriate access to

sensitive information and data damaging. The performance

of IDS is based on the amount of sufficient log data, its

continuous updates on them, and the correct and quick

detection of intrusion from the comparison between current

activity of the user and the historical data.

The rest of this paper is organized as follows: Sect. 2

outlines IDS in cloud. The concept of genetic algorithm-

based fuzzy neural architecture in intrusion detection is
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described in Sect. 3 and our proposed method is described

in Sect. 4. Results of experiments are presented and ana-

lyzed in Sect. 5. At last, Sect. 6 concludes our work.

2 Intrusion Detection in Cloud

For the purpose of achieving a green world and also due to

the invention of new technologies, paper-work is vanishing

from existence and the concept of digital data is introduced

and is gaining importance. But these digital data may

require hardware, software, and networks for their storage

and access which may lead to practical complexities. A

potential solution to these issues is a cloud storage service.

This service offers several benefits including user-friendly

access, maintenance and sharing of large volume of data,

synchronization of various devices, and more importantly,

cost efficiency. Large amount of sensitive information can

be stored on computers. This information stored on the

cloud may be precious to others with malicious motive. So

cloud providers follow various methodologies to solve

these issues. But, any unauthorized element including a

provider should not gain access to cloud storage, since a

small damage or loss of data may be a potential harm to its

owner. Firewalls and encryption are the most commonly

used technologies for providing security and privacy. But

they may not be of enough efficiency to protect data against

intrusions. However, they can be used at the earlier part of

the intrusion detection process.

Machine learning is one of the methods adopted to guide

the system for detecting intrusions. A grid and cloud

computing intrusion detection system is proposed in [1] to

detect intrusions by employing an artificial neural network

for teaching the system. An IDS with the central man-

agement approach [2] has been developed to address

heterogeneity and virtualization features of cloud com-

puting. In [3], a model based on hypervisor has been pro-

posed for protecting the system from diverse attacks in the

infrastructure layer which improves the system. An indi-

vidual IDS is suggested in [4] where a single controller

manages the instances of IDS, exploiting the knowledge-

base and ANN pattern matching techniques. The fully

distributed intrusion detection system developed in [5]

implements a hybrid approach for detecting intrusions

using host and network-based audit information for cloud

computing. Numerous cloud intrusion detection techniques

function on different layers of clouds independently [6].

Autonomic clouds have emerged as an outcome of

integrating autonomic computing and cloud computing,

yielding in stable and friendly cloud architectures and

deployments. So they have contemporarily fascinated

researchers to compose cloud intrusion detection engines

with negligible human intervention. Network virtualization

concept is handled in [7] for a cloud-based intrusion

detection and prevention system without any control over

the host. Table 1 portrays the drawbacks of current intru-

sion detection solutions, whereas our proposed method

accomplishes the following benefits:

2.1 Clustering and Concept Learning

Based on mentioned criteria, grouping of elements is done

through which the system can be trained to classify intru-

sion detection dataset into five groups (one group of normal

Table 1 Existing intrusion detection approaches

Approach Drawback

Snort Slow in processing packets

Suricata Increased resource consumption and false-positive rate

Bro IDS Requires expertise technical knowledge

Security Onion Possesses the disadvantages of all its constituent technologies

Next-generation intrusion detection expert system (NIDES) Unsatisfactory performance in observing collaborative and long-duration

penetration attacks

Distributed intrusion detection system (DIDS) If Resource access is accomplished via an unsupervised domain, two related

sessions of the same user cannot be mapped

State transition analysis tool (STAT) and USTAT Weak in detecting DoS and masquerading attacks. Moreover, it requires an

additional rule-based misuse/anomaly intrusion detection system

Tripwire If used alone, it cannot provide complete security. So it has to be used along with

other security-related tools

Graph-based intrusion detection system (GrIDS) If used alone, it cannot provide complete security

Thumbprinting Utilization of various encryption methodologies is restricted
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patterns and four groups of intrusive patterns). This is

achieved through data reduction, data analysis, and data

classification.

2.2 Predictive Learning

From the temporal intrusion detection dataset and several

sequences of resource access events, the system learns

intrusive and non-intrusive behaviors of users. This is done

by understanding even small changes that occur in the

behavior of users, which could be impossible in expert

systems.

2.3 Modularity

We have used the structured methodology for intrusion

detection with four phases, where each phase gathers its

input from its previous phase. However, the processing of

each phase is completely isolated from the remaining

phases which could avoid unexpected operational and

configuration errors. Its modular nature makes system

development, system debugging, and system administra-

tion simple and dynamic.

3 Fuzzy Neural Network Based on Genetic
Algorithm

An artificial neural network (ANN) is a way of reasoning

inspired by principles of neurons in the central nervous

system of living things. It is a set of one or more layers of

nodes interconnected by directed, weighted links, and

trained with desired input–output patterns through which it

can learnweights on the links that provide the correct outputs

for the training and similar inputs. So it can be used to create a

decision support system (DSS) when sufficient training

examples exist. Fuzzy logic is a technique for the represen-

tation and handling of imprecise and vague information

through a fuzzy rule-based system. In spite of this benefit, it

typically consumes much time for designing and tuning the

membership functions. Moreover, it does not contain a

competent learning algorithm to minimize output errors. So

neural network can be used for this same task to get benefited

from learning, adaptation, fault tolerance, parallelism, and

generalization. But it suffers from relatively slow learning

process. To complement each of the above individual sys-

tems with their advantages, fuzzy neural systems or neuro-

fuzzy models were developed as intelligent hybrid systems

which are successful in several real-world applications.

Neural fuzzy systems may take up type-1 fuzzy sets,

which characterize uncertainties using numbers in the

range [0, 1]. But, it needs each and every element of the

universal set to be associated with a specific real number.

On the other hand, type-2 fuzzy sets model uncertainties by

expressing their membership functions as type-1 fuzzy sets.

They are of three dimensions in which the last dimension is

the membership degree of each point on its two-dimen-

sional domain. A type-2 fuzzy neural network (T2FNN)

incorporates a type-2 fuzzy process as its antecedent and a

two-layer neural network as its consequent [8]. A general

T2FNN is complex due to the complication of type

reduction process and they are not easy to follow for a

variety of reasons. An algorithm for computing the centroid

of an interval type-2 fuzzy set is developed in [9]. Here, the

third dimension does not contribute any new information

since its value is same in all points. Hence, the third

dimension is disregarded. Further, making inference from

interval type-2 fuzzy set is simple. Therefore, the interval

T2FNN (IT2FNN) [10] can be adopted to simplify the

computational process.

In the field of intrusion detection, the use of FNN alone

is satisfactory for detecting repeated or more-frequent

attacks, such as DoS and probing attacks. But it cannot

effectively achieve high detection rates for less-frequent

attacks, such as R2L and U2R attacks. When K-NN is used

alone for anomaly intrusion detection, only 91 % accuracy

is achieved in [11]. This inconsistency occurs due to the

difference in number of records available in an intrusion

detection dataset, related to the more-frequent and less-

frequent attacks. Since more-frequent attacks have loads of

records in an intrusion detection dataset, FNN learns them

accurately and produces exact results. But due to the small

number of records corresponding to the less-frequent

attacks, FNN cannot be trained accurately for their detec-

tion. So it is essential to combine FNN with another

methodology which can compensate this crisis.

Genetic algorithm (GA) is a global optimal search

approach that makes use of operations found in natural

evolution. They work sound on mixed-value, combinatorial

problems and offer a suitable technique to problems that

require an efficient searching. They are less vulnerable to

getting caught at local optima than gradient search meth-

ods. But, if genetic algorithm is used independently in

intrusion detection, it too does not provide satisfactory

results. But in [12], GA produces improved detection rate

for U2R attacks which motivated us to combine GA with

NN. So GA can be combined with fuzzy neural networks

for achieving satisfactory detection rates in both more- and

less-frequent attacks by refining the structure and/or

parameters of the underlying FNN. The fundamental con-

cept is to preserve a population of chromosomes for sym-

bolizing candidate solutions to the problem being studied.

This population matures by time in the course of selection,

crossover, and mutation to find the best one(s). In [13], an

iterative approach is suggested where each individual

produces one rule.
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There are various GA-based algorithms to evolve the

parameters of membership functions and the number of

fuzzy rules. For a GA-based algorithm employed in fuzzy

neural networks, the initial network structure is more often

given initially. Then GA is adopted for enhancing the

systems topology through membership functions and/or

fuzzy rules. A fuzzy neural network is used in [14] to

extract Mamdani-type fuzzy rules [15] from the input–

output space in three stages. But this approach requires

fuzzy partitions of input and output spaces in advance. The

parameters of membership functions and the number of

fuzzy rules are developed in [16] by encoding them to form

a complex and long chromosome. But, the number of fuzzy

sets for each variable must be provided as earlier infor-

mation and needs the maximum acceptable number of

fuzzy rules.

4 Proposed Intrusion Detection System

In our work, a cloud intrusion detection system (CIDS) is

designed for infrastructure-as-a-service (IaaS) model for

achieving cloud user security. This system is modeled as a

Fuzzy Neural Network based on Genetic Algorithm.

Figure 1 shows our proposed system of intrusion detection

in cloud environment. This proposed approach consists of

four phases, namely Clusters formation, Extraction of ini-

tial fuzzy rules, Fuzzy rulebase optimization, and Param-

eters refinement. A method based on GA is applied for

fuzzy rulebase optimization and a neural fuzzy system with

dynamical optimal learning algorithm is used for parame-

ters refinement. The completion of phase IV results in the

formation of rulebase which can be used for detecting

intrusions in real time. So, whenever the cloud user tries to

access the service, his/her pattern of activity is audited

across fuzzy rulebase. Inference from this comparison is

used in making decisions regarding intrusions and normal

activities.

4.1 Clusters Formation

Fuzzy rule extraction methods depend on clustering in the

dataset. Each cluster should effectively classify a region in

the input data space that can enclose a sufficient amount of

data to hold the presence of a fuzzy input/output relation-

ship. The Fuzzy C means algorithm [17] and Kohonen’s

Self-Organizing Map [18] are familiar clustering algo-

rithms. But their goodness relies upon the initial values of

the number of cluster centers and their locations. Mountain

method [19] is proposed for their estimation. In spite of its

simplicity and effectiveness, it has exponential growth of

computation with the size of the problem. In subtractive

clustering [20], without any initial guess, all data points are

regarded as cluster centers. But the trouble is that at times

the real cluster center may not be pinpointed to one of the

data points. And also, if the neighborhood radius is too

small, the effect of neighboring data points will be ignored.

If it is large, it will include all data points in its neigh-

borhood. Still, this method provides a high-quality

approximation with shortened computations. K-means

clustering [21] achieves better accuracy than other clus-

tering techniques. FCM clustering also achieves accuracy

close to K-means clustering. But it is computationally

slower due to the complications involved in its fuzzy

measures calculations. In our work, for phase I of Fig. 1,

we use modified K-means algorithm [22] to separate the

training dataset into several clusters through symmetry

distance between patterns. The similarity between each

pattern and each existing cluster is computed to determine

whether the pattern has to be associated with an already

existing cluster or with a new cluster. To create new

clusters, Minkowski distance [23] is used rather than

Euclidean distance used in [22].

Let the training dataset contain k number of records

a1; a2; . . .; ak where each record aj has r patterns

p1j; p2j; . . .; prj
� �

. Each record aj; 1� j� k, indicates an

attack type and is associated with an output dj. This dj
denotes the type of an attack that should be detected suc-

cessfully for an input record aj during training and testing.

Let n be the number of clusters, where clusters are repre-

sented by C1;C2; . . .;Cn. Initially no clusters exist.

Through the process of training only, clusters are formed

based on the similarity between records. Each Ci has mean

mi ¼ m1i;m2i; . . .;mki½ �, deviation qi ¼ q1i; q2i; . . .; qki½ �;
and a height hi that is the mean of expected outputs of

patterns enclosed in Ci. Let Si be the number of training

patterns available in Ci. The following is an algorithm used

in our work for cluster formation:

1. Select K patterns at random and initialize their cluster

centroids as C1;C2; . . .;Ck.

2. Use traditional K-means clustering for initializing

centroids of all clusters.

3. When they converge or a prespecified terminating

condition is fulfilled, goto next step.

4. For pattern x, find the cluster centroid by

k� ¼ argmin
K

i¼1
dS x;Cið Þ, where dSðx;CiÞ is the symmetry

distance between a pattern x and Ci.

5. If this calculated distance is less than a prespecified

distance, assign x to Ck� .

6. Else assign x to the cluster Ck� , by calculating k� ¼

argmin
K

i¼1
dM x;Cið Þ where dMðx;CiÞ is the Minkowski

distance between x and Ci.
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Fig. 1 Proposed model for cloud intrusion detection system
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7. Calculate the updated centroid of K clusters by

Ck t þ 1ð Þ ¼ 1
Nk

P

i2Uk tð Þ
xi. Here, at time t, Uk tð Þ is a

collection of patterns in kth cluster and Nk is the

cardinality of Uk.

8. If the clusters are modified or the current iteration

number is less than the predefined limit, goto (3). Else,

stop.

The above algorithm results in a collection of clusters

after the completion of processing all training patterns.

Type-2 fuzzy TSK rules are then constructed from these

clusters.

4.2 Fuzzy Rules Extraction

For extracting fuzzy rules from a dataset (for phase II

shown in Fig. 1), several methods were proposed. A fuzzy

partitioning method is proposed in [24] to create a set of

fuzzy rules. This method segregates the input space into a

group of subspaces. But it has increased complexity in

terms of speed. In [25], a combination of unsupervised

clustering and gradient descent approach is explained for

the same purpose. But, for enormous volume of patterns, it

is also a time-consuming method. Another method [26]

extracts fuzzy rules by first splitting the output space into

several clusters. Then, based on the expected output,

training patterns are attached to clusters. In this way, par-

titioning of input space is done. But this method suffers

from clusters overlapping. A genetic algorithm-based

approach is given in [27] to generate rules from datasets.

At first all data are normalized into the range [0, 1] and

then each cluster Ci is converted into a type-2 fuzzy rule of

the form

If a1 is ~A1i and a2 is ~A2i and . . .and ak is ~Aki Then b is

ci ¼ x0i þ x1ia1 þ � � � þ xkiak, where ~A1i; ~A2i; � � � ~Aki are

type-2 fuzzy sets for a1; a2; . . .; ak and each x is a rule

weight of real type. The membership function of

~Aij,1� i� k, is l ~Aij
aið Þ ¼ gauss u; gauss ai;m

p
ij; r

p
ij

� �
; rsij

� �
,

where u 2 0; 1½ �. Each rule includes mean, deviation, and

the scaled deviation as its antecedent parameters and the

rule weight as its consequent parameters. The weight is tied

to a rule to determine a degree of fulfillment by multiplying

with antecedents.

4.3 Fuzzy Rulebase Optimization

The generated T2FNN is based on neurons. Each neuron

possesses a center vector and a width vector, thus sym-

bolizes one cluster in the input space. This initial structure

of a T2FNN may be redundant and may lead to unneces-

sary rules in the extracted set of fuzzy rules. Hence, for

optimizing the topology of initial network structure, GA is

recommended. This optimizes fuzzy rulebase (for phase III

of Fig. 1) by identifying the least important fuzzy rules.

GAs represent data as chromosomes. The fitness value of a

chromosome should be a function of both the number of

fuzzy rules and the network performance [28] for selecting

the best individuals. The process is rerun for several gen-

erations until reaching the individual(s) that firmly

accommodate the desired condition [29].

1. Initialize population by selecting random individuals.

2. Repeat

a. For the size of the population

i. Select two individuals as parent1¼w1;w2;...;

wlen and parent2¼x1;x2;...;xlen by standard

roulette wheel selection, where len is the

number of fuzzy rules in the initial rulebase.

ii. Apply the following crossover to produce

a child as child ¼ o1; o2; . . .; olen, for i ¼
1; 2; . . .; len:

oi ¼
pi; if wi ¼ xi

oi; if wi 6¼ xi and s� 0:5

�oi; if wi 6¼ xi and s\0:5

8
><

>:
:

Here, s is a random number.

iii. Apply mutation to the child with mutation

rate as 0.1.

iv. Calculate the fitness values for

child fCð Þ; parent1 fP1ð Þ and parent2 fP2ð Þ as
f ¼ 1

RMSD2þ 1

1þlen�ctlenð Þ2
,

where ctlen is the number of fuzzy rules in

the current rulebase and RMSD is the root-

mean-square deviation.

v. Calculate dP1 as the Minkowski distance

between parent1 and child.

vi. Similarly, calculate dP2 between parent2
and child.

vii. If dP2 [ dP1, and fC [ fP1, replace parent1
with child. Else if dP2 � dP1 and fC [ fP2,

replace parent2 with child.

b. End For

3. Until the maximum number of generations is reached.

4. Extract the best individuals as a final solution.

This phase is concluded with the compact set of type-2

fuzzy rules by eliminating least significant fuzzy rules.

S. Raja, S. Ramaiah: An Efficient Fuzzy-Based Hybrid System to Cloud Intrusion Detection 67

123



4.4 Refinement of Fuzzy Rules

This phase is included in our proposed system to refine the

parameters of generated fuzzy rules. A self-evolving

IT2FNN is proposed in [30] which combines online clus-

tering and rule-ordered Kalman filter algorithm. Gradient

descent backpropagation and gradient descent with adap-

tive learning rate backpropagation are suggested in [31] to

refine parameters. We proceed to improve the accuracy of

these fuzzy rules through dynamical optimal learning

algorithm. In all iterations of training, we begin to improve

antecedent parameters by keeping consequent parameters

as constant. After that, consequent parameters are refined

by holding antecedent parameters as constant. This

refinement technique is repeated until this phase results in

preferred approximation precision. As mentioned earlier,

consequent parameters are kept as fixed initially and

IT2FNN is used with gradient descent learning to optimize

antecedent parameters. By using BP method, for k input–

output training patterns pj : dj
� �

; j ¼ 1; 2; . . .; r, the fol-

lowing function of mean square error (MSE) is considered:

ej ¼
1

2
y pj
� �

� dj
� �2

: ð1Þ

Equation (1) is our objective function that is to be minimized

(optimized). Here, y pj
� �

is the actual output for jth pattern. We

use Eq. (2) to refine mean and a similar type of equation is used

to refine standard deviation by keeping the weight as fixed.

mi
j1 lþ 1ð Þ

¼ mi
j1 lð Þ �

a y plð Þ � dlð Þ pjl � mi
j1

� �
N mi

j1; r
i
j; pjl

� �

2ri2j

0

@

�

Qt
q¼1
q6¼j

�u ~Ai
q

 !

x1i � y1ð Þ

PL
i¼1 �g

i þ
PM

i¼Lþ1 g
i

� �

1

CCCCA
: ð2Þ

Equations (3) and (4) are used to tune consequent param-

eters by keeping antecedent parameters fixed. If i[ L,

x1i lþ 1ð Þ

¼ x1i lð Þ � a
y plð Þ � dlð Þ

2

� 	

�
Qt

q¼1 �u ~Ai
qPL

i¼1 �g
i þ
PM

i¼Lþ1 g
i

 !

: ð3Þ

If i[ L,

x1i lþ 1ð Þ ¼ x1i lð Þ � a
y plð Þ � dlð Þ

2

� 	

�
Qt

q¼1 u ~Ai
qPL

i¼1 �g
i þ
PM

i¼Lþ1 g
i

 !

; ð4Þ

where a is the learning rate parameter, M is the total

number of rules in the rule base, t is the number of inputs to

rule i, u ~Ai
q
pj
� �

is the lower bound membership value of

fuzzy sets ~A� qi, �u ~Ai
q
pj
� �

is the upper membership value of

fuzzy sets ~A� qi, and � is the product t norm. Here, iter-

ative Karnik–Mendel method is used to acquire L and R

values. Here,

N mi
j; r

i
j; pj

� �
¼ exp � 1

2

pj � mi
j

rij

 !2
0

@

1

A ð5Þ

gi ¼ uAi1
p1ð Þ � uAi2

p2ð Þ � � � � � uAin
pnð Þ ¼

Yt

q¼1

uAi
q
pq
� �

ð6Þ

and

�gi ¼ �uAi1
p1ð Þ � �uAi2

p2ð Þ � � � � � �uAin
pnð Þ ¼

Yt

q¼1

�uAi
q
pq
� �

: ð7Þ

Similarly consequent parameters are optimized by fixing

antecedent parameters as constant. After the system is

trained, it can be used for detecting intrusions in real time.

When the cloud user requires access to the service, his/her

pattern of activity is checked against fuzzy rulebase.

Inference from this comparison is used in making decisions

regarding intrusions, after type reduction and

defuzzification.

5 Experimental Results

Our CIDS consists of two entities, namely Cloud and

Consumer. We define Cloud as an entity which hosts user’s

data and acts as Infrastructure-as-a-service (IaaS) provider.

Consumers are defined as entities which request services

from the Cloud. We have created the Cloud environment

with the machine configured with Intel core 2 Duo CPU,

2.5 GHz, 4 GB memory, and GNU = Linux kernel 2.6. 32.

This Cloud is designed using Eucalyptus [32] for facili-

tating Consumer to avail IaaS services. We conducted

experiments using Cloud Intrusion Detection Dataset

(CIDD) [5] in three steps labeled, training, validation, and

testing. In training, fuzzy rules are extracted and optimized

by our proposed IDS architecture using the training data to

achieve maximum accuracy on the dark data. The valida-

tion step is to assess how precisely a system will act upon

in practice. This method observes the error on validation

dataset and terminates system training when this error

starts to increase. In the testing phase, the test data are

passed through the saved trained model to detect intrusions.

The cloud intrusion detection dataset consists of con-

nection records for describing normal and intrusive

accesses. Each such record has 41 features for describing a
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total of 24 attack types. These attack types are grouped into

four main categories of attacks: denial-of-service (DoS),

probe, remote-to-local (R2L), and user-to-root (U2R), as

shown in Table 2. The original dataset is of size 744 MB

with 4,940,000 records, where each record defines a

specific attack. Using all 41 features could result in a big

IDS model with increased computation time, which could

be an overhead for online detection. Moreover, if the

dataset contains unrelated features, analysis will be difficult

to detect suspicious behaviors. CIDS must therefore reduce

the amount of data to be processed. By using an intelligent

input feature selection [33], the number of features is

reduced to 12 and shown in Table 3. Features in the

datasets are of different forms such as symbolic, discrete,

and continuous. Most pattern classification methods are not

capable to process data in such a format. So each feature is

linearly scaled to the range [0, 1] by preprocessing. We

selected 20,000 records made at random in which 12,000

are normal and 8000 are intrusive. Training, validation, and

testing enclose 11,982, 4810. and 3208 samples, respec-

tively. Since the dataset has five diverse classes, we carried

out a five-class binary classification.

Experiments are conducted for the threshold values of

0.05, 0.10, 0.15, and 0.20. These thresholds are considered as

mutation rates. To get away from local minima, we have used

these di_erent error threshold values randomly in our exper-

iments. The results are observed at the end of phases III and

IV which are given in figures from 2 to 5. Figure 2 explains

the accuracy obtained at the end of phase III for training

dataset and Fig. 3 explains the same for the test dataset.

Using the same training and test datasets, results are

obtained at the completion of phase IV. These results are

explained in Figs. 4 and 5 and we found significant

improvement in detection accuracy which shows the

importance of parameter refinement phase in our proposed

intrusion detection process. The average detection rates for

each category of pattern during testing and training are

shown in Table 4. It is inferred that the proposed approach

achieves the accuracy of 98.70 % during training phase and

98.49 % during testing phase. Moreover, we obtained 0.99

and 0.98 classification rates during training and testing,

respectively.

Since we found that our cloud intrusion detection system

achieves better results with parameters refinement phase,

Table 2 Types of attacks

Attack Description

Denial-of-Service (DoS) An attacker forges some resource overloaded and refuses to handle genuine user requests

Probing An attacker examines a network of computers to gather vulnerability information for abuse

Remote-to-local (R2L) An attacker first sends packets to a machine over a network, then takes benefit of the machines weakness

to illegitimately gain access as a legitimate user

User-to-Root (U2R) An attacker initially accesses resources as a normal user and then exploits vulnerability to expand to root

access to the system

Table 3 List of features considered in the proposed method

Feature Type Description

service Discrete/integer/nominal Service on destination (e.g., TCP, UDP, telnet, ftp)

src_bytes Continuous/real/numeric Number of bytes sent from source to destination

dst_bytes Continuous/real/numeric Number of bytes sent from destination to source

logged_in Discrete/integer/binary 1, if logged in successfully; 0, if not

count Continuous/real/numeric Number of connections to the same host as the current connection in the past two

seconds

srv_count Continuous/real/numeric Number of connections to the same service as the current connection in the past two

seconds

serror_rate Continuous/real/numeric Percentage of connections with SYN errors

srv_rerror_rate Continuous/real/numeric Percentage of connections with REJ errors

srv_diff_host_rate Continuous/real/numeric Percentage of connections to different hosts

dst_host_count Continuous/real/numeric Count of connections that hold the same destination host

dst_host_srv_count Continuous/real/numeric Count of connections that hold the same destination host and the same service

dst_host_diff_ srv_ rate Continuous/real/numeric Percentage of different services on the current destination host
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Fig. 2 Training set detection rate—without parameters refinement

Fig. 3 Test set detection rate—without parameters refinement
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Fig. 4 Training set detection rate—with parameters refinement

Fig. 5 Test set detection rate—with parameters refinement
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the following tables were given by considering measure-

ments obtained after parameters refinement phase.

We conducted experiments for various population sizes

(200, 400, and 600). Table 5 gives detection accuracies

during training for every combination of threshold value

and number of generations. Similar types of experiments

were conducted during testing and the results are shown in

Table 6.

From these measurements, we infer that lower popula-

tions present good accuracies with lower threshold values,

whereas higher populations achieve good results with

moderately higher threshold values. Additionally, lower

populations exhibit likely equal performance irrespective

of the number of generations. Analogous experiments are

conducted for different number of generations (200, 500,

1000, and 2000). Results are shown in Tables 7 and 8.

Their observations imply that lower number of generations

produces good accuracies with lower populations and

higher thresholds. On the other hand, higher number of

Table 4 Detection accuracy Pattern Detection rate (%)

Training Testing

Normal 97.22 98.16

Probe 99.80 99.88

DoS 97.77 96.17

U2R 99.65 99.03

R2L 99.08 99.22

Table 5 Training accuracy

based on population size
No.of gen Population size = 200 Population size = 400 Population size = 600

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

200 99.2 98.7 98.3 99.5 98.8 99.2 99.5 98.9 99.2 99.4 97.9 98.5

500 99.2 98.7 99.0 98.4 99.6 99.5 99.1 99.2 98.5 98.8 97.6 97.8

1000 99.3 99.1 99.2 98.6 98.6 97.6 97.6 97.9 98.3 97.5 98.2 98.1

2000 99.0 98.7 99.1 99.0 98.8 98.1 98.4 98.1 99.3 99.4 99.0 98.8

Table 6 Testing accuracy

based on population size
No.of gen Population size = 200 Population size = 400 Population size = 600

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

200 99.0 98.4 98.1 99.3 98.7 99.2 99.2 98.8 98.9 99.0 97.7 98.1

500 99.1 98.4 98.8 98.2 99.5 99.4 99.0 99.1 98.3 98.6 97.4 97.5

1000 99.0 98.9 98.9 98.5 98.2 97.2 97.2 97.4 97.9 97.1 98.9 98.6

2000 98.8 98.5 98.8 98.9 98.5 97.8 98.0 97.7 99.1 99.0 98.7 98.6

Table 7 Training accuracy based on number of generations

Pop size No. of gen = 200 No. of gen = 500 No. of gen = 1000 No. of gen = 2000

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

200 99.2 98.7 98.3 99.5 99.2 98.7 99.0 98.4 99.3 99.1 99.2 98.6 99.0 98.7 99.1 99.0

400 98.8 99.2 99.5 98.9 99.6 99.5 99.1 99.2 98.6 97.6 97.6 97.9 98.8 98.1 98.4 98.1

600 99.2 99.4 97.9 98.5 98.5 98.8 97.6 97.8 98.3 97.5 98.2 98.1 99.3 99.4 99.0 98.8

Table 8 Testing accuracy based on number of generations

Pop size No. of gen = 200 No. of gen = 500 No. of gen = 1000 No. of gen = 2000

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

200 99.0 98.4 98.1 99.3 99.1 98.4 98.8 98.2 99.0 98.9 98.9 98.5 98.8 98.5 98.8 98.9

400 98.7 99.1 99.2 98.8 99.5 99.4 99.0 99.1 98.2 97.2 97.2 97.4 98.5 97.8 98.0 97.7

600 98.9 99.0 97.7 98.1 98.3 98.6 97.4 97.5 97.9 97.1 98.9 98.6 99.1 99.0 98.7 98.6
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generations brings fine accuracies for lower populations

and lower thresholds.

Table 9 shows MSE values obtained from training phase

and testing phase for various values of h, which gives the

average MSE of 2.001 and 2.6768 during training and

testing, respectively.

Tables 10 and 11 show the confusion matrix during

training and testing, respectively. From these tables, it is

inferred that, though we have some detection degradation

for DoS and R2L attacks, our system behaves perfectly in

identifying probe and U2R attacks. Further its true negative

prediction is increased by 0.8354 % during testing.

We analyzed the rate of recall, precision, accuracy, and

F1 score for training and testing and the results are given in

Table 12. Further, we compared them with that of other

methods. This comparison shows that the proposed system

can achieve good results in the field of cloud intrusion

detection.

Results of using NN and GA individually in identifying

different types of attacks in intrusion detection are shown

in Table 13 along with the results of our proposed method

which shows that our proposed method behaves well in

identifying all four types of attacks with an average

detection rate of 98.598 %.

To show the effectiveness of our proposed cloud

intrusion detection system, we conducted similar experi-

ments using UCS (supervised learning classifier system)

[37] and NICE (Network Intrusion detection and Coun-

termeasure sElection in virtual network systems) [39] for

detecting intrusions in a cloud environment. The results of

comparison are made by varying number of jobs and

number of nodes (scalability) and they are explained as

follows:

Further, Table 14 gives the average success rate of

intrusion detection when a single framework is adopted in

various researches. In all these cases, the achieved detec-

tion rate is less than the average detection rate (98.598 %)

of our proposed method which shows the importance of our

hybrid technique.

Rates of error in detecting intrusions (false negatives

and false positives) during training are shown in Fig. 6 for

the three intrusion detection approaches (UCS, NICE, and

Proposed method). From this figure, it is inferred that all

the three methods achieve approximately similar error rate

for less number of jobs. But our proposed method gives

lower error rate than that of remaining two methods and

this accuracy improvement is achieved through the appli-

cation of our hybrid method, whereas UCS and NICE

employ single methodology.

As shown in Fig. 7, the percentages of CPU (resource)

utilization for different number of jobs under the three

different methods are compared. In all three methods, CPU

usage is almost identical for less number of jobs. As the

number of jobs tends to increase, UCS, NICE, and pro-

posed methods exhibit different performances in CPU

utilization and our proposed hybrid intrusion detection

Table 10 Confusion matrix—training

Actual class Detection accuracy of predicted class (%)

Normal Probe DoS U2R R2L

Normal 97.2446 0.6359 1.5684 0.2543 0.2967

Probe 0 100 0 0 0

DoS 1.0750 0.6639 97.7658 0.1581 0.3372

U2R 0 0 0 100 0

R2L 0 0 0 0 100

Table 11 Confusion matrix—testing

Actual

class

Detection accuracy of predicted class (%)

Normal Probe DoS U2R R2L

Normal 98.08 0.64 0.96 0.16 0.16

Probe 0 100 0 0 0

DoS 2.193167 1.180936 96.16196 0.84353 0.379587

U2R 0 0 0 100 0

R2L 0 0 0.60241 0 99.39759

Table 12 Comparison with other approaches

Rate Proposed method As in [34] As in [35] As in [12]

Training Testing

Recall 0.9894 0.9799 0.8610 0.9499 0.9199

Precision 0.9932 0.9953 0.8861 0.9280 0.9903

Accuracy 0.9861 0.9801 0.7989 0.9004 0.9282

F1 score 0.9883 0.9875 0.8734 0.9388 0.9538

Table 9 Training and testing MSE based on threshold h

h Training MSE Testing MSE

0.05 1.17 1.75

0.10 2.05 2.91

0.15 2.46 3.09

0.20 2.32 2.96
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approach consumes less CPU time than that of other two

methods. It saves 28 % of CPU time than NICE and 33 %

of CPU time than UCS in the field of cloud intrusion

detection during training phase.

To show the speed of computation, we varied the

number of nodes in a cloud for same number of jobs. For

each of the three frameworks, average execution time

during training is measured. Figure 8 shows the results of

these experiments incorporating intrusion detection in a

cloud environment. The experimental results prove that the

speed of the proposed method is directly proportional to the

size of the cloud and when we double the number of nodes

for similar set of jobs, its speed up ratio is also increased by

a factor of 2.15 approximately. Further, it has improved

speed up ratio than that of NICE for larger number of nodes

in a cloud. This shows the commendable scaling tendency

of our proposed method toward large networks. But for

small number of nodes, NICE produces better speed up

ratio. But this deviation is only about 0.07. But still, this

issue of our proposed method has to be addressed in future.

Table 13 Results of using NN

or GA alone in intrusion

detection

Actual class Detection accuracy of predicted class (%)

FNN [36] ANN [37] ANN [38] GA [35] GA [12] Proposed NN ? GA

Normal 95.89 99.38 96.4 69.5 96.14 97.69

Probe 81.61 75.36 85.7 71.1 85.77 99.84

DoS 97.00 96.77 97.5 99.4 96.68 96.97

U2R 14.91 21.52 48.0 18.9 75.71 99.34

R2L 6.90 3.10 95.0 5.4 30.3 99.15

Average 59.262 59.226 84.52 52.86 76.92 98.598

Table 14 Comparison of average intrusion detection rates under

various non-hybrid frameworks

Method Average detection rate (%)

Multilayer perception 77.41

ART-1 97.42

ART-2 97.19

SOM 95.74

GA classifier 92.94

Proposed method 98.598

Fig. 6 Comparison of error rate under different number of jobs
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6 Conclusion

In this paper, we have proposed a methodology for mod-

eling IDS in a cloud. The intrusion detection training

dataset is partitioned into several clusters with similar

patterns belonging to the same cluster using modified

K-Means algorithm with Minkowski distance. Each of the

resulting clusters is defined with the membership function

by statistical mean and deviation which results in a type-2

fuzzy TSK-rule. A fuzzy neural network is established

correspondingly and the compact fuzzy rulebase is con-

structed by applying genetic algorithm. Then the associated

parameters are refined by dynamical optimal learning.

Later, for every new input from the test dataset, a crisp

Fig. 7 Comparison of CPU utilization under different number of jobs

Fig. 8 Comparison of speedup ratio under different number of nodes
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output is obtained by integrating the inferred results of all

the rules. This result is then compared with the desired

result based on which detection rates are calculated. The

proposed scheme enables cloud users to avail cloud ser-

vices without worrying about intrusions when they wish to

switch to cloud data centers. Since the achieved results are

optimum as compared to other approaches in the field of

attack detection, we trust that our proposed model provides

a convincing method.
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