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Abstract Quality function deployment (QFD) is a com-

prehensive and systematic method that contributes to

transforming customer requirements (CRs) into appropriate

engineering characteristics (ECs). In QFD, one funda-

mental and crucial step is to derive the importance of ECs.

Since the QFD process involves huge amounts of subjec-

tive perceptions or evaluations made by both customers

and decision-makers, the importance of ECs naturally

becomes fuzzy. This paper focuses on how the importance

of ECs can be correctly measured and rated in fuzzy

environments, and proposes an approach for deriving the

exact expected values and the rankings of the importance

of ECs without any simulations or approximations. A

design case is also illustrated to show the performance of

the proposed method and compare with the traditional h-

cut method. The results show that through our method, not

only can more reasonable and reliable rankings of ECs be

obtained, but also the burden of the complex arithmetic

processes which the approximation or simulation algo-

rithms generally involve can be eliminated. Finally, some

extensive applications of the exact expected values of the

fuzzy importance of ECs are demonstrated including the

determination of the overall customer satisfaction and the

cost–benefit analysis of ECs.

Keywords Quality function deployment � Ranking

engineering characteristics � Triangular fuzzy number �
Exact expected value � Overall customer satisfaction �
Cost–benefit analysis

1 Introduction

Manufacturing enterprises, which are confronted with an

increasing competitive environment in today’s global

market, realize that the efficient products design and

manufacture based on customer needs are crucial for

both of their survival and long-term development. In

essence, if manufacturers were able to develop new

products which satisfy customer preferences, this would

give them a competitive advantage [5]. A widespread

acceptance in the industry to ensure and improve quality

during the product development is the application of

quality function deployment (QFD), which is a proven

customer-oriented planning approach first introduced in

Japan in the late 1960s [1]. It is a comprehensive and

systematic method that devotes to transforming customer

requirements (CRs) to appropriate engineering charac-

teristics (ECs) of the product in order to increase cus-

tomer satisfaction.

The most significant tool of QFD, the house of quality

(HoQ), is a kind of conceptual map that provides means for

interfunctional planning and communications [18]. As is

shown in Fig. 1, the left side of the HoQ is the relative

weights vector of CRs, while the body of the HoQ is the

relationship matrix between CRs and ECs. In addition, the

correlation matrix among ECs is showed on the roof of the

HoQ, and the importance vector of ECs is given on the

bottom of the HoQ. The process of establishing a HoQ is a

quantitative and qualitative analysis procedure, after which
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we can achieve the conversion from customer feedback to

engineering information.

It is generally considered that in the design process,

planners should pay particular attention to engineering

characteristics of a new or existing product or service from

the viewpoints of customer desires. However, due to time

and budget limitations, it is hard to show great concern for

all ECs in the product development. The design team needs

to be able to make trade-offs, while selecting the ECs based

on the order of their relative importance ranking to achieve

more customer satisfaction without violating the business

constraints [22]. Therefore, determining the importance

ranking of ECs is such a core issue towards successful QFD

realization that enterprise resources can then be properly

assigned to ECs. In the meantime, the importance of ECs

and its prioritization are also key results of QFD as they

help the design team select design features without vio-

lating the business constraints including time, budget or

feasible technology and so on [15].

However, the successful implementation of QFD often

requires a significant number of subjective judgements

from both customers in a targeted market and a QFD

design team in a firm [38]. Therefore, in the QFD process,

most of the inputs consist of linguistic data, i.e. the human

perception and evaluation involved in the relative weights

of CRs and the relationships between CRs and ECs, which

are usually subjective and ambiguous. Under the back-

ground, the fuzzy set theory originated by [40] and various

ranking methods for fuzzy numbers [2, 12, 33] provide a

sound theoretical basis for ranking ECs in fuzzy QFD. As

an important branch of QFD study, more and more studies

and researches have been conducted on how to derive the

priority ratings of ECs in fuzzy environments.

On the one hand, many scholars have focused on

deriving the priority rankings of ECs by calculating the

importance of ECs. For example, Khoo and Ho [20]

developed a framework of fuzzy QFD system to handle the

ambiguity involved in the QFD process, and the simple

arithmetic mean was applied to defuzzify the fuzzy num-

bers. Kao and Liu [19] proposed the h-cut representation to

calculate the importance of ECs, and for each membership

value h, a pair of fractional programming problems was

formulated to find the h-cut of the importance of ECs.

These two are original ways to obtain the importance of

ECs. Based on these, Chen et al. [10] calculated the tech-

nical importance of ECs using a fuzzy weighted average

method, and the fuzzy expected value operator proposed by

Liu and Liu [29] was utilized to prioritize ECs. Geng

et al. [16] applied the fuzzy ANP and the modified fuzzy

logarithmic least squares method to determine the technical

importance ratings of ECs. Besides, Chen et al. [7] com-

mended a fuzzy-based quantitative approach to determine

the importance priorities or achievement degrees of ECs. A

procedure for constructing the HoQ in terms of the pro-

posed approach was also presented. Actually, apart from

these, numerous approximation or simulation algorithms

are also frequently utilized in fuzzy QFD [21, 23, 25, 30,

36, 41]. Notably, these approaches suggested various fuzzy

approximations or simulations to determine the importance

of ECs. However, no matter which approach is applied, the

error between the real and approximate value always exists.

Sometimes, it may be extremely large that contributes to

erroneous result. In addition, the computing processes of

these methods are often very complicated.

On the other hand, some studies considered to obtain the

priority ratings of ECs directly without calculating the

importance of ECs. Kwong et al. [24] suggested a fuzzy

group decision-making method which integrated the fuzzy

weighted average method with a consensus ordinal ranking

technique, and then the customers’ preferences on the

ranking of ECs were synthesized via 0–1 integer program-

ming. Yan et al. [39] employed an alternative approach to

prioritize ECs in QFD based on the order-based semantics

of linguistic information and fuzzy preference relations of

linguistic profiles, under uncertain interpretations of cus-

tomers, design team and CRs. Moreover, Fiorenzo et al.

[13] proposed an alternative approach deriving from the

ordinal prioritization method which initially was proposed

by Yager [37] for the prioritization of a set of alternatives

basing on a set of ordered criteria. This method addressed

the problem of aggregating preference orderings of multi-

ple, ordered decision-makers with respect to a set of pos-

sible alternatives. However, although the limitation of

information loss caused by the approximation can be

avoided and the burden of quantifying qualitative concepts

can be eliminated in these methods, and the importance of

ECs is not determined, which would be an inconvenience

for following QFD processes, such as obtaining the overall

customer satisfaction, and determining the target values of

the ECs. Therefore, most approaches for ranking ECs

employed in fuzzy QFD do not work well.

In order to overcome the aforementioned deficiency,

based on the method of Chen et al. [10], this paper aims to

Fig. 1 The house of quality
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devise a method to obtain both the exact expected values and

rankings of the importance of ECs in fuzzy QFD. As the

theoretical basis, we first present a method to provide a general

form on the exact expected value of the product of two non-

negative triangular fuzzy numbers that frequently occur in

applying QFD. Then, based on the general form, we calculate

the exact expected values of the importance of ECs and pri-

oritize ECs in fuzzy QFD, in which the two sets of input data

are expressed as triangular fuzzy numbers (TFNs), namely,

the relative weights of CRs and relationships between CRs and

ECs. Compared with the traditional h-cut method in QFD, our

method can improve the accuracy and reduce the computa-

tional complexity. Additionally, the exact expected values

obtained by our method are much better in reflecting the

average values of the fuzzy importance of ECs, and the final

rankings of ECs are also more reliable. Finally, we show the

extensive applications of the exact expected values of the

importance of ECs, that is, determining the overall customer

satisfaction and cost–benefit analysis of ECs.

The rest of the article is organized as follows. In the next

section, some important concepts of TFN that is used in fuzzy

QFD are introduced. Section 3 presents a method to compute

the exact expected value of the product of two triangular fuzzy

numbers. Afterwards, in Sect. 4, our method is applied to

determine the exact expected value of the importance of ECs

and prioritize ECs in fuzzy QFD. Section 5 illustrates a

numerical example about the design of a flexible manufac-

turing system, and the ranking results are compared with those

obtained by the frequently used h-cut method in QFD. More

than that, some other applications of the exact expected value

of the fuzzy importance of ECs are also presented.

The following list contains all acronyms and abbrevia-

tions which are used in this paper.

• QFD: quality function deployment;

• HoQ: house of quality;

• CR: customer requirement;

• EC: engineering characteristic;

• TFN: triangular fuzzy number;

• FMS: flexible manufacturing system.

2 Distribution and Expected Value of a TFN

Fuzzy set theory has been well developed and applied in a

wide variety of real problems. As the main instrument used

in the fuzzy set theory, a fuzzy number is a mathematical

model of a vaguely perceived quantitative piece of infor-

mation, defined as a function from a possibility space to the

set of real numbers. For practical purposes, TFN as the

most commonly used form of fuzzy numbers have been

applied widely. In this section, we briefly review the con-

cept of TFN which will be adopted to interpret the

fuzziness of CRs and ECs in this paper. Meanwhile, the

expressions of its membership function, credibility distri-

bution, inverse credibility distribution and expected value

are also presented, which will be used in our problem.

2.1 Definition of a TFN

Let H be a nonempty set, PðHÞ the power set of H and Pos

a possibility measure. Then, the triplet ðH;PðHÞ; PosÞ is

called a possibility space. Based on this, we have the fol-

lowing mathematical definition of fuzzy number.

Definition 1 A fuzzy number is defined as a function

from a possibility space ðH;PðHÞ; PosÞ to the set of real

numbers.

Therewith, the membership function of a fuzzy number

can be defined as follows.

Definition 2 Let n be a fuzzy number defined on the

possibility space ðH;PðHÞ; PosÞ: Then its membership

function is derived from the possibility measure by

lðxÞ ¼ Posfh 2 HjnðhÞ ¼ xg; x 2 R: ð1Þ

Let n be a TFN fully determined by a triplet of crisp

numbers as n ¼ ðaL; aC; aUÞ; where aC is the central value

with membership 1 describing the most possible value of n;
and aL and aU indicate the lower and upper limit values of

n, respectively. Thus, the membership function of n can be

given by

lðxÞ ¼

x � aL

aC � aL
; if aL � x\aC

aU � x

aU � aC
; if aC � x� aU

0; otherwise,

8
>>><

>>>:

ð2Þ

which is depicted in Fig. 2. Particularly, we call n ¼
ðaL; aC; aUÞ a symmetric TFN if it satisfies aC � aL ¼
aU � aC.

Fig. 2 The membership function of n ¼ ðaL; aC; aUÞ
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2.2 Credibility Distribution of a TFN

In order to obtain the credibility distribution of a TFN, let

us introduce some related concepts first. Suppose that n is a

fuzzy number with the membership function l. Then, the

possibility of the fuzzy event fn� xg is defined by

Posfn� xg ¼ sup
y� x

lðyÞ; ð3Þ

whereas the necessity of fn� xg is defined as the impos-

sibility of fn\xg, i.e.

Necfn� xg ¼ 1 � Posfn\xg ¼ 1 � sup
y\x

lðyÞ: ð4Þ

Furthermore, Liu and Liu [29] initially suggested that the

credibility of a fuzzy event is defined as the average of its

possibility and necessity. That is, the credibility of fn� xg
is

Crfn� xg ¼ 1

2
ðPosfn� xg þ Necfn� xgÞ: ð5Þ

Subsequently, in order to describe fuzzy numbers, the

concept of the credibility distribution is adopted.

Definition 3 ([26]) The credibility distribution U : R !
½0; 1� of a fuzzy number n is defined by

UðxÞ ¼ Crfh 2 HjnðhÞ� xg: ð6Þ

That is, UðxÞ is the credibility that the fuzzy number n
takes a value less than or equal to x. Liu [27] proved that

the credibility distribution U is a nondecreasing function on

R with Uð�1Þ ¼ 0 and Uðþ1Þ ¼ 1, which can be cal-

culated via the membership function of n as follows.

Theorem 1 ([28]) Let n be a fuzzy number with the

membership function l. Then, its credibility distribution is

UðxÞ ¼ 1

2
sup
y� x

lðyÞ þ 1 � sup
y[ x

lðyÞ
 !

; 8x 2 R: ð7Þ

As for a TFN n ¼ ðaL; aC; aUÞ, to obtain its credibility

distribution UðxÞ, we need to calculate the credibility via

the possibility and necessity by virtue of Eqs. (2)� (5) as

follows:

Posfn� xg ¼
1; if x\aC

�x þ aU

aU � aC
; if aC � x\aU

0; if x� aU;

8
><

>:
ð8Þ

Posfn� xg ¼
0; if x\aL

x � aL

aC � aL
; if aL � x\aC

1; if x� aC;

8
><

>:
ð9Þ

Necfn� xg ¼
1; if x\aL

�x þ aC

aC � aL
; if aL � x\aC

0; if x� aC;

8
><

>:
ð10Þ

Necfn� xg ¼
0; if x\aC

x � aC

aU � aC
; if aC � x\aU

1; if x� aU;

8
><

>:
ð11Þ

Crfn� xg ¼

1; if x\aL

�x þ 2aC � aL

2ðaC � aLÞ ; if aL � x\aC

�x þ aU

2ðaU � aCÞ ; if aC � x\aU

0; if x� aU;

8
>>>>>><

>>>>>>:

ð12Þ

Crfn� xg ¼

0; if x\aL

x � aL

2ðaC � aLÞ ; if aL � x\aC

x þ aU � 2aC

2ðaU � aCÞ ; if aC � x\aU

1; if x� aU:

8
>>>>>><

>>>>>>:

ð13Þ

Then according to Eq. (6), the credibility distribution of n
is obtained as

UðxÞ ¼ Crfn� xg ¼

0; if x\aL

x � aL

2ðaC � aLÞ ; if aL � x\aC

x þ aU � 2aC

2ðaU � aCÞ ; if aC � x\aU

1; if x� aU;

8
>>>>>><

>>>>>>:

ð14Þ

which is depicted in Fig. 3. It can be seen from Fig. 3 that

the credibility distribution of n ¼ ðaL; aC; aUÞ is strictly

increasing in the closed interval ½aL; aU�. If n is an asym-

metric TFN, i.e. aC � aL 6¼ aU � aC, there will be a turning

point ðaC; 0:5Þ.

2.3 Inverse Credibility Distribution of a TFN

Generally speaking, credibility distributions of any fuzzy

numbers are nondecreasing. Moreover, regarding the fuzzy

number with a strictly increasing credibility distribution,

the definition of inverse credibility distribution was pro-

posed by Zhou et al. [42] as follows.

Definition 4 ([42]) Let n be a fuzzy number with a

continuous and strictly increasing credibility distribution

U: Then, the inverse function U�1 is called the inverse

credibility distribution of n:

Note that the inverse credibility distribution U�1 is well

defined on the open interval (0, 1). If required, we may

extend the domain via

J. Liu et al.: An Exact Expected Value-Based Method to Prioritize Engineering Characteristics... 633
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U�1ð0Þ ¼ lim
a#0

U�1ðaÞ; U�1ð1Þ ¼ lim
a"1

U�1ðaÞ: ð15Þ

From Fig. 3, we can see that the credibility distribution of

the TFN n ¼ ðaL; aC; aUÞ is continuous and strictly

increasing at each point x with 0\UðxÞ\1; which follows

immediately that the inverse function U�1ðaÞ exists and is

unique for each a 2 ð0; 1Þ: Thus, the inverse credibility

distribution of n can be deduced through inverse operation

directly and figured out as follows (see Fig. 4):

U�1ðaÞ ¼ 2ðaC � aLÞaþ aL; if 0� a\0:5
2ðaU � aCÞaþ 2aC � aU; if 0:5� a� 1:

�

ð16Þ

Furthermore, as a direct result, the function U�1ð1 � aÞ
can be conducted from Eq. (16) as

U�1ð1 � aÞ ¼ 2ðaU � aCÞð1 � aÞ þ 2aC � aU; if 0� a\0:5

2ðaC � aLÞð1 � aÞ þ aL; if 0:5� a� 1

�

¼ aU � 2ðaU � aCÞa; if 0� a\0:5

2aC � aL � 2ðaC � aLÞa; if 0:5� a� 1:

�

ð17Þ

which will be used in the following context.

2.4 Expected Value of a TFN

The expected value of a fuzzy number is the average value

in the sense of fuzzy measure. For fuzzy numbers, there are

many ways to define an expected value operator. In this

paper, we use the definition of the expected value operator

for fuzzy numbers given by Liu and Liu [29]. This defi-

nition is applicable to not only continuous fuzzy numbers

but also discrete ones.

Definition 5 ([29]) Let n be a fuzzy number. Then, the

expected value of n is defined by

E½n� ¼
Z þ1

0

Crfn� xgdx �
Z 0

�1
Crfn� xgdx ð18Þ

provided that at least one of the two integrals is finite.

Note that Eq. (18) can also be expressed as another

form. Before introducing that, the concepts of the opti-

mistic and pessimistic functions of a fuzzy number are

given.

Definition 6 ([32]) Let n be a fuzzy number on the

possibility space ðH;PðHÞ; PosÞ. Then, the optimistic

function, nsupðhÞ, of n is defined as

nsupðhÞ ¼ supfrjPosfh 2 HjnðhÞ� rg� hg; h 2 ½0; 1�;
ð19Þ

while the pessimistic function, ninfðhÞ, of n is defined as

ninfðhÞ ¼ inffrjPosfh 2 HjnðhÞ� rg� hg; h 2 ½0; 1�:
ð20Þ

By Definition 6, it has been proved by Liu and Liu [32]

that the expected value of n can be calculated as

E½n� ¼ 1

2

Z 1

0

nsupðhÞ þ ninfðhÞ
� �

dh; ð21Þ

which is an equivalent form of Eq. (18). Meanwhile,

Eq. (21) is also a special case of f-weighted possibilistic

mean value of a fuzzy number presented by Fuller and

Majlender [14], that is, 1-weighted possibilistic mean

value. Fore more details, readers can refer to Fuller and

Majlender [14].

As for the TFN n ¼ ðaL; aC; aUÞ; in accordance with

Eqs. (12) and (13), its expected value E½n� can be obtained

as

E½n� ¼
Z þ1

0

Crfn� xgdx �
Z 0

�1
Crfn� xgdx

¼ aL þ 2aC þ aU

4
: ð22Þ

With Eq. (21), the same result can be achieved.

Fig. 3 The credibility distribution of n ¼ ðaL; aC; aUÞ

Fig. 4 The inverse credibility distribution of n ¼ ðaL; aC; aUÞ
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Regarding the independence of fuzzy numbers, it has

been discussed by many researchers from different angles.

In this paper, we focus on the definition together with an

equivalent condition given by Liu and Gao [31] as follows.

Definition 7 ([31]) The fuzzy numbers n1; n2; . . .; nn are

said to be independent if

Cr
\n

i¼1

fni 2 Big
( )

¼ min
1� i� n

Crfni 2 Big ð23Þ

for any sets B1;B2; . . .;Bn of R.

Theorem 2 ([31]) The fuzzy numbers n1; n2; . . .; nn are

independent if and only if

Cr
[n

i¼1

ni 2 Bif g
( )

¼ max
1� i� n

Cr ni 2 Bif g ð24Þ

for any sets B1;B2; . . .;Bn of R.

Subsequently, considering the linearity of expected

value operator, a related theorem has been put forward on

the basis of independence of fuzzy numbers.

Theorem 3 ([32]) Let n and g be independent fuzzy

numbers with finite expected values. Then, for any real

numbers k and d, we have

E½knþ dg� ¼ kE½n� þ dE½g�: ð25Þ

Suppose that n ¼ ðaL; aC; aUÞ and g ¼ ðbL; bC; bUÞ are

two independent TFNs. By applying Eqs. (22) and (25), it

is easy to acquire

E½knþ dg� ¼ kE½n� þ dE½g�

¼ k
4
ðaL þ 2aC þ aUÞ þ d

4
ðbL þ 2bC þ bUÞ:

ð26Þ

3 Expected Value of Product of Two TFNs

It is acknowledged that a fuzzy number created by the

product of two TFNs is no longer a TFN, and its mem-

bership function is nonlinear and complicated. Conse-

quently, it is not easy to get its exact expected value in

most cases. Since our problem refers to the product of two

TFNs, this section focuses on how to obtain the exact

expected value of the product of two TFNs.

3.1 Derivation of the Exact Expected Value

of the Product of Two TFNs

In order to describe our method, a theorem proved by Zhou

et al. [42] is introduced first.

Theorem 4 ([42]) Let n1; n2; . . .; nn be independent fuzzy

numbers with continuous and strictly increasing credibility

distributions U1; U2; . . .;Un, respectively. If the function

f ðx1; x2; . . .; xnÞ is strictly increasing with respect to

x1; x2; . . .; xm and strictly decreasing with respect to xmþ1;

xmþ2; . . .; xn, then the expected value of the fuzzy number

n ¼ f ðn1; . . .; nm; nmþ1; . . .; nnÞ is

E½n� ¼
Z 1

0

f ðU�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1

ð1 � aÞ; . . .;U�1
n ð1 � aÞÞda:

ð27Þ

Then let us discuss the product of two TFNs. Assume

that n1 ¼ ðaL; aC; aUÞ and n2 ¼ ðbL; bC; bUÞ are two TFNs

with credibility distributions U1 and U2, respectively.

Then, according to Definition 5, the expected value of n is

defined by

E½n� ¼ E½n1n2�

¼
Z þ1

0

Cr n1n2 � xf gdx �
Z 0

�1
Cr n1n2 � xf gdx:

ð28Þ

However, if both n1 and n2 are nonnegative TFNs (i.e.

aL � 0 and bL � 0), we can know that n ¼ n1n2 is strictly

increasing with respect to n1 and n2. Since the inputs n1 and

n2 are independent TFNs with inverse credibility distribu-

tions U�1
1 and U�1

2 , based on Theorem 4, the expected

value of n ¼ n1n2 can be calculated by

E½n� ¼
Z 1

0

U�1
1 ðaÞU�1

2 ðaÞda: ð29Þ

Afterwards, by taking inverse credibility distributions

U�1
1 ðaÞ and U�1

2 ðaÞ in Eq. (16) into the above equation, we

obtain

E½n� ¼
Z 1

0

U�1
1 ðaÞU�1

2 ðaÞda

¼
Z 0:5

0

2ðaC � aLÞaþ aL
� �

2ðbC � bLÞaþ bL
� �

da

þ
Z 1

0:5

2ðaU � aCÞaþ 2aC � aU
� �

� 2ðbU � bCÞaþ 2bC � bU
� �

da

¼ 1

6
aLbL þ 2aCbC þ aUbU
� �

þ 1

12
aLbC þ aCbL þ aCbU þ aUbC
� �

:

ð30Þ

In particular, if both n1 and n2 are symmetric TFNs, that is,

aC � aL ¼ aU � aC and bC � bL ¼ bU � bC, Eq. (30) can

be further expressed as

J. Liu et al.: An Exact Expected Value-Based Method to Prioritize Engineering Characteristics... 635

123



E½n� ¼ 1

3
aLbL þ aUbU
� �

þ 1

6
aLbU þ aUbL
� �

: ð31Þ

Remark 1 It should be noted that the exact expected value

of n ¼ n1n2 can also be easily derived from Eq. (21)

applying the well-known Nguyen’s theorem [34] for non-

negative triangular fuzzy numbers. Obviously, the same

result can be obtained via the two different methods.

Remark 2 If n1 is a nonnegative TFN (i.e. aL � 0), and n2

is nonpositive (i.e. bU � 0), we can know that �n2 ¼
ð�bU;�bC;�bLÞ is nonnegative. Then, E½n� ¼ E½n1n2� ¼
�E½n1 � ð�n2Þ�, which can be computed as the product of

two nonnegative TFNs via Eq. (30). Similarly, If both n1

and n2 are nonpositive TFNs, then E½n� ¼ E½n1n2� ¼
E½ð�n1Þ � ð�n2Þ�; which can also be calculated as the

product of two nonnegative TFNs via Eq. (30)

immediately.

Example 1 Let n1 ¼ ð0; 2; 7Þ and n2 ¼ ð1; 2; 10Þ: Then

based on Eq. (30), the expected value of n ¼ n1n2 can be

calculated as

E½n� ¼ 1

6
ð0 � 1 þ 2 � 2 � 2 þ 7 � 10Þ þ 1

12
ð0 � 2 þ 2

� 1 þ 2 � 10 þ 7 � 2Þ
¼ 16:

ð32Þ

Example 2 Let n1 ¼ ð2; 2; 4Þ; n2 ¼ ð2; 3; 6Þ; n3 ¼
ð3; 4; 5Þ; n4 ¼ ð�6;�5; 0Þ; n5 ¼ ð�3;�1;�1Þ; n6 ¼
ð�5;�2;�1Þ and n ¼ 3n1n2 þ n3n4 þ 2n5n6: Then,

according to Theorem 3, we obtain

E½n� ¼ E½3n1n2 þ n3n4 þ 2n5n6�
¼ 3E½n1n2� þ E½n3n4� þ 2E½n5n6�: ð33Þ

Afterwards, based on Eq. (30), Eq. (33) can be calculated

as

E½n� ¼ 3E½n1n2� þ E½n3n4� þ 2E½n5n6�

¼ 3
1

6
ð2 � 2 þ 2 � 2 � 3 þ 4 � 6Þ

�

þ 1

12
ð2 � 3 þ 2 � 2 þ 2 � 6 þ 4 � 3Þ

�

� 1

6
ð3 � 0 þ 2 � 4 � 5 þ 5 � 6Þ

�

þ 1

12
ð3 � 5 þ 4 � 0 þ 4 � 6 þ 5 � 5Þ

�

þ 2
1

6
ð1 � 1 þ 2 � 1 � 2 þ 3 � 5Þ

�

þ 1

12
ð1 � 2 þ 1 � 1 þ 1 � 5 þ 3 � 2Þ

�

¼ 20:5:

ð34Þ

On the whole, our proposed algorithm consists of the fol-

lowing two steps. The first step is deriving the inverse

credibility distribution U�1
i ðaÞ of the TFN ni; i ¼ 1; 2;

via Eq. (16). The second step is deriving the expected

value of n ¼ n1n2 based on Theorem 4. Through the pro-

posed algorithm, Eq. (30) is obtained, which can be con-

sidered as a general form on the expected value of the

product of two nonnegative TFNs.

3.2 Comparisons with the h-Cut Method

In order to obtain the expected value of a fuzzy number

which has a nonlinear and complex membership function,

many previous studies gave advice to provide an approxi-

mation or simulation, typical is the use of the h-cut rep-

resentation of fuzzy sets and interval analysis [10, 19]. For

a comparison purpose, we briefly recall the h-cut method.

As mentioned in Sect. 2.4, the expected value of n can be

calculated via Eq. (21) based on Definition 6. In general,

when the membership function of n is not exactly known,

the fuzzy expected value of n can be obtained by enu-

merating some discrete h values, that is,

E½n� ’ 1

2L

XL

l¼1

nsupðhlÞ þ ninfðhlÞ
� �

; ð35Þ

where nsupðhlÞ and ninfðhlÞ are the optimistic and pes-

simistic functions of n in the hl-cut, l ¼ 1; 2; . . .; L. The

choice of the total number of h values, i.e. L, determines

the closeness of the computational result to the real

expected value. Theoretically, by setting infinite h values,

this approach can obtain the exact expected value of the

product of two TFNs. However, for simplicity, a finite set

of h values which usually contains 11 h values from 0 to 1,

i.e. f0; 0:1; . . .; 0:9; 1g, is selected in many previous

methods.

In order to provide the comparisons of our method

with the h-cut method, Examples 1 and 2 are recalcu-

lated. Tables 1 and 2 list the results of the expected

value of n ¼ n1n2 in Example 1 and n ¼ 3n1n2 þ n3n4 þ
2n5n6 in Example 2 by applying the h-cut method,

respectively.

It can be seen that the results obtained by the two

methods are not the same. In Example 1, the result derived

by our method is 16, whereas the result by the h-cut

method is 16.35. In Example 2, the result derived by our

method is 20.5, whereas that by the h-cut method is 22.8.

Obviously, with the increase of the number of TFNs

ni; i ¼ 1; 2; . . .; n in the function n ¼ f ðn1; n2; . . .; nnÞ;
the difference between the two results obtained by our

method and the h-cut method gradually becomes large. In

fact, it is quite in accord with intuition.
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From the above comparison results, it is clear that (1)

our method can get the exact expected value and thus

improve the accuracy; (2) our method can reduce the

computational complexity compared with the h-cut

method; (3) for the h-cut method, the number of TFNs

ni; i ¼ 1; 2; . . .; n in the function n ¼ f ðn1; n2; . . .; nnÞ has

a negative influence on the accuracy, but it has no influence

on the results obtained by our method.

In some cases, our method can be used in many practical

problems involving the related arithmetic operations on

TFNs such as in QFD. Then in the next section, we will

calculate the exact expected value of the importance of ECs

and prioritize ECs in fuzzy QFD by applying our method.

4 Ranking the Importance of ECs in Fuzzy QFD

In this section, based on the method of Chen et al. [10], we

manage to derive both the exact expected values and the

rankings of the importance of ECs. Instead of using any

fuzzy simulation or approximation algorithms, our method

can obtain the exact expected values of the importance of

ECs with a relatively simple calculation.

The proposed method is composed of three stages. The

first stage is to collect the personal evaluations from target

customers on the importance of CRs and individual

judgements from the product planning team on the rela-

tionships between CRs and ECs. Then, the fuzzy impor-

tance of ECs is derived according to the synthesized

importance of CRs and synthesized relationships between

CRs and ECs. Finally, the final rankings of ECs are

obtained based on the corresponding exact expected values

of their fuzzy importance.

4.1 Collections of Individual Evaluations

and Judgements

Different from traditional QFD, the input data in fuzzy

QFD are expressed in fuzzy numbers rather than crisp

numbers. In order to calculate the importance of ECs, the

two sets of input data should be expressed in fuzzy

numbers, that is, the relative weights of CRs and the

relationship measures between CRs and ECs [8].

The relative weight of each CR is one of the key inputs

in QFD. Generally, the more important a CR is, the higher

weight it should get. Formally, a set of CRs is represented

as

CR ¼ fCR1;CR2; . . .;CRMg: ð36Þ

In general, CRs are gathered by analysing questionnaires

and surveys with regard to the product. The preferences of

different customers on a specific product differ with per-

sonal tastes and individual needs. In order to obtain the

relative weights of CRs, K customers C1;C2; . . .;CK are

surveyed in a target market. The kth customer’s individual

preference on CRm is denoted by Wk
m as shown in Table 3.

In QFD, it is natural and reasonable to suppose that

Wk
m;m ¼ 1; 2; . . .;M; k ¼ 1; 2; . . .;K, are independent

and nonnegative TFNs, denoted by ðaL
mk; aC

mk; aU
mkÞ,

respectively.

Furthermore, the company’s product planning team

should develop a set of ECs to capture the CRs in mea-

surable technical terms. Formally, a set of ECs is collected

from the expert team involved in the design of a particular

product denoted as

EC ¼ fEC1;EC2; . . .;ECNg: ð37Þ

The translating process from CRs to ECs in a QFD problem

is carried out by a product planning team composed with S

experts D1;D2; . . .;DS. Then, the relationship measure

between CRm and ECn with respect to DS is denoted by

Us
mn as shown in Table 3. In QFD, we are similarly allowed

to assume that Us
mn, m ¼ 1; 2; . . .;M; n ¼ 1; 2; . . .;

N; s ¼ 1; 2; . . .; S, are independent and nonnegative

TFNs, denoted by ðbL
mns; bC

mns; bU
mnsÞ, respectively.

4.2 Formulation of the Fuzzy Importance of ECs

To formulate the problem of consensus ranking of the

importance of CRs, by synthesizing the fuzzy weights Wk
m

of K customers, the final importance weight of CRm can be

obtained as

Table 1 The expected value of

n in Example 1 using the h-cut

method

h = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 E[n]

n Sup 70 59.8 50.4 41.8 34 27 20.8 15.4 10.8 7 4 16.35

Inf 0 0.22 0.48 0.78 1.12 1.5 1.92 2.38 2.88 3.42 4

Table 2 The expected value of

n in Example 2 using the h-cut

method

h = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 E[n]

n Sup 102 88.85 76.4 64.65 53.6 43.25 33.6 24.65 16.4 8.85 2 22.8

Inf -4 -3.49 -2.96 -2.41 -1.84 -1.25 -0.64 -0.01 0.64 1.31 2
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Wm ¼ 1

K

XK

k¼1

Wk
m; m ¼ 1; 2; . . .;M ð38Þ

representing a trade-off among the preferences of cus-

tomers surveyed. Since Wk
m; m ¼ 1; 2; . . .;M; k ¼

1; 2; . . .;K; are independent and nonnegative TFNs, the

importance of CRs Wm; m ¼ 1; 2; . . .;M; is also inde-

pendent and nonnegative TFNs, denoted by ðaL
m; aC

m; aU
mÞ:

Similar to the relative weights of CRs, by aggregating

the evaluation of S experts, the final relationship measure

between the mth CR and the nth EC can be derived from

the following equation:

Umn ¼ 1

S

XS

s¼1

Us
mn; m ¼ 1; 2; . . .;M; n ¼ 1; 2; . . .;N;

ð39Þ

representing a balance of the relationship measures

between CRs and ECs judged by all the consulted experts.

Since Us
mn; m ¼ 1; 2; . . .;M; n ¼ 1; 2; . . .;N; s ¼

1; 2; . . .; S; are independent and nonnegative TFNs, the

relationship measures between CRs and ECs, i.e. Umn; m ¼
1; 2; . . .;M; n ¼ 1; 2; . . .;N; are also independent and

nonnegative TFNs, denoted by ðbL
mn; bC

mn; bU
mnÞ:

Now, let us consider the importance of ECs. In this

paper, we assume that there are no correlations among ECs.

Owing to the uncertainties in the product design process,

the relative importance vector of CRs W and the

relationship matrix between CRs and ECs U are fuzzy.

Accordingly, the importance of ECs Y is also fuzzy.

Generally, there are two main forms to be adopted for

the calculation of the importance of ECs. One is that the

fuzzy importance of ECs is computed by multiplying the

relative importance of CRs and the relationships between

CRs and ECs, which is defined by the following equation:

Yn ¼
XM

m¼1

WmUmn: ð40Þ

The other is that the importance of ECs is calculated by the

fuzzy weighted average, which can be expressed as follows:

Yn ¼
PM

m¼1 WmUmn
PM

m¼1 Wm

: ð41Þ

To the second form, i.e. Eq.(41), although it shows the idea

of normalization, the relations among Wm; Umn and Yn are

not be reflected intuitively. Moreover, disadvantages of this

form are apparent in the increased complexity for calcu-

lating the fuzzy importance of ECs. Finally, a critical

drawback is the information loss, since approximation

processes are necessary [39]. For all these reasons we think

that it is more reasonable to apply the first form, that is, the

relative importance of CRs and the relationships between

CRs and ECs are aggregated to determine the fuzzy

importance of ECs. Thus, based on Eq. (40), we have

Y ¼ ðWTUÞT : ð42Þ

Therefore, the fuzzy importance of ECn; denoted by Yn;

can be calculated by

Yn ¼
XM

m¼1

WmUmn; n ¼ 1; 2; . . .;N: ð43Þ

Since Wm and Umn are fuzzy numbers, Yn is also a fuzzy

number.

4.3 Prioritization of the Fuzzy Importance of ECs

Now the problem at hand is how to prioritize these ECs.

Quite a lot of researches have been conducted such as

Fiorenzo et al. [13], Ko and Chen [21], Yan et al. [39] and

Yan and Ma [38] in recent years. However, these methods

either just got the rankings of ECs without calculating the

importance of ECs, or suggested fuzzy approximation to

measure the importance of ECs. It is thus necessary to

develop a robust prioritization approach for deriving both

the importance of ECs and their rankings effectively. Since

it is natural that the fuzzy expected value operator can best

reflect the amount of information conveyed by the under-

lying fuzzy set, a method based on the exact expected value

Table 3 Fuzzy linguistic data of a HoQ

CRs Importance of CRs ECs

EC1 EC2 � � � ECN

CR1 C1 : W1
1 D1 : U1

11 D1 : U1
12

� � � D1 : U1
1N

C2 : W2
1 D2 : U2

11 D2 : U2
12

� � � D2 : U2
1N

..

. ..
. ..

. . .
. ..

.

CK : WK
1 DS : US

11 DS : US
12

� � � DS : US
1N

CR2 C1 : W1
2 D1 : U1

21 D1 : U1
22

� � � D1 : U1
2N

C2 : W2
2 D2 : U2

21 D2 : U2
22

� � � D2 : U2
2N

..

. ..
. ..

. . .
. ..

.

CK : WK
2 DS : US

21 DS : US
22

� � � DS : US
2N

..

. ..
. ..

. ..
. . .

. ..
.

CRM C1 : W1
M D1 : U1

M1 D1 : U1
M2

� � � D1 : U1
MN

C2 : W2
M D2 : U2

M1 D2 : U2
M2

� � � D2 : U2
MN

..

. ..
. ..

. . .
. ..

.

CK : WK
M DS : US

M1 DS : US
M2

� � � DS : US
MN
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of the importance of ECs is proposed in this subsection to

rank ECs in fuzzy QFD.

As is shown in Eq. (43), the expected value of the fuzzy

importance of ECn; i.e. Yn; can be given by

E Yn½ � ¼ E
XM

m¼1

WmUmn

" #

; n ¼ 1; 2; . . .;N: ð44Þ

After that, according to the interpretation above, in the

QFD process, W1U1n;W2U2n; . . .; WMUMn are independent

of each other. Then based on Theorem 3, the expected

value of the fuzzy importance of ECn in Eq. (44) can be

calculated by

E Yn½ � ¼
XM

m¼1

E½WmUmn�; n ¼ 1; 2; . . .;N: ð45Þ

We have already known that W1;W2; . . .;WM ;U1n;

U2n; . . .;UMn are all nonnegative TFNs, then in line with

Eq. (30), we can obtain

E½Yn� ¼
XM

m¼1

E½WmUmn�

¼
XM

m¼1

1

6
ðaL

mbL
mn þ 2aC

mbC
mn þ aU

mbU
mnÞ

�

þ 1

12
ðaL

mbC
mn þ aC

mbL
mn þ aC

mbU
mn þ aU

mbC
mnÞ
�

:

ð46Þ

Obviously, the fuzzy importance of ECs can be ranked

according to their corresponding exact expected value, i.e.

E½Yn�. For example, if E½Ya�[E½Yb�, we say ECa is more

important than ECb, and then ECa can get a higher ranking

than ECb.

4.4 Summary of the Proposed Approach

In summary, our proposed approach for determining the

importance of ECs and their rankings is described as follows.

Step 1: Aggregations of individual evaluations and

judgements.

• Gather CRs and identify customers to be surveyed in

a target market.

• Gather ECs and identify experts involved in the

product planning development.

• Collect the personal linguistic evaluations from

customers on the importance of each CR and the

individual linguistic judgements from experts on the

relationships between CRs and ECs.

Step 2: Formulation of the fuzzy importance of ECs.

• Formulate the synthesized importance of CRs via

Eq. (38).

• Formulate the synthesized relationships between CRs

and ECs via Eq. (39).

• Derive the fuzzy importance of ECs via Eq. (43).

Step 3: Prioritization of the fuzzy importance of ECs.

• Calculate the exact expected value of the fuzzy

importance of ECs via Eq. (46).

• Prioritize ECs according to their exact expected

values of the fuzzy importance of ECs.

So far, the detailed implementation procedure of ranking

the importance of ECs based on the proposed method has

been presented. Since the computing process is easier and

the results are more precise, our method provides a prac-

tical convenience in the whole QFD process.

It should be noted that the differences between our

method and Chen et al.’s [10] method mainly consist of the

following two parts. The one is that our method uses

Eq. (40) which is considered to be more reasonable to

determine the importance of ECs, while Chen et al.’s [10]

method uses Eq. (41) to determine them. The other is that

our method can obtain the exact expected values of the

importance of ECs through Eq. (46), whereas Chen

et al.’s [10] method suggests the use of h-cut to derive their

approximate expected values.

In this section, the relative importance of CRs and the

relationships between CRs and ECs are assumed to be

nonnegative TFNs. Actually, there also exists nonpositive

relations in the QFD matrix. As an example, Cheng and

Chiu [11] considered the negative relationships between

CRs and ECs, since some technical attributes were not

always positively met with all customer needs. In addi-

tion, both positive and negative relations were often taken

into account to estimate the correlations among ECs in

many previous studies. When such situations occur, we

can also calculate the exact expected value of the

importance of ECs in fuzzy QFD according to Eq. (30)

(see Remark 2).

5 Numerical Example

The design case of a flexible manufacturing system (FMS)

[10, 20, 24] is applied in this paper to show the potential

applications of the proposed approach for determining the

importance of ECs and their rankings. In general, CRs are

gathered by analysing questionnaire surveys and interviews

with regard to the product, which is conducted by the

marketing department. Since customers words are too

general or detailed to be directly used as customer

requirements, they are usually organized as a tree-like

hierarchical structure to form various levels of CRs and,

according to the situation, those at a specific level are
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chosen as the final CRs [4, 17]. In this example, eight

major CRs are identified to represent the paramount needs

of the customers, namely, ‘‘high production volume’’

(CR1), ‘‘short setup time’’ (CR2), ‘‘load carrying capacity’’

(CR3), ‘‘user friendliness’’ (CR4), ‘‘associated functions’’

(CR5), ‘‘modularity’’ (CR6), ‘‘wide tool variety’’ (CR7) and

‘‘wide product variety’’ (CR8).

The determination of ECs is usually led by the engi-

neering department. The design team should utilize their

experience and knowledge to collect one or more ECs to

meet each CR. In QFD, ECs may not be specific design

details or solutions, but there must be some characteristics

that can be measured and set target values. In accordance

with the design team’s experience and knowledge, 10

major ECs are identified to meet eight major CRs, namely,

‘‘automatic gauging’’ (EC1), ‘‘the tool change system’’

(EC2), ‘‘tool monitoring system’’ (EC3), ‘‘coordinate mea-

suring machine’’ (EC4), ‘‘automated guided vehicle’’

(EC5), ‘‘conveyor’’ (EC6), ‘‘programmable logic con-

troller’’ (EC7), ‘‘storage and retrieval system’’ (EC8),

‘‘modular fixturing’’ (EC9) and ‘‘robots’’ (EC10). The

design team needs to translate eight CRs into technical

specifications from 10 ECs. Consequently, the design team

needs to prioritize these ECs in developing a new FMS.

The relative weights of CRs are classified into seven

levels to describe the difference of importance, that is, very

unimportant (VN), quite unimportant (QN), unimportant

(N), some important (SI), moderately important (MI),

important (I) and very important (VI). The TFNs (0, 0, 0.2),

(0, 0.2, 0.4), (0.2, 0.35, 0.5), (0.3, 0.5, 0.7), (0.5, 0.65, 0.8),

(0.6, 0.8, 1) and (0.8, 1, 1) are used to quantity these seven

linguistic terms. Figure 5 shows the membership functions

of these TFNs.

Suppose that 10 customers are surveyed in the target

market, represented by Ck; k ¼ 1; 2; . . .; 10. Their per-

sonal evaluations on each CR are summarized in Table 4.

After synthesizing individual weights of the 10

customers on the eight CRs by Eq. (38), the final

relative weights of eight CRs W can be obtained

as W1 ¼ ð0:71; 0:91; 0:98Þ;W2 ¼ ð0:40; 0:58; 0:75Þ, W3 ¼
ð0:61; 0:80; 0:94Þ;W4 ¼ ð0:57; 0:76; 0:88Þ;W5 ¼ ð0:30;

0:47; 0:64Þ;W6 ¼ ð0:47; 0:65; 0:83Þ; W7 ¼ ð0:52; 0:70;

Fig. 5 The triangular fuzzy weights of CRs

Table 4 The relative fuzzy weights of eight CRs assessed by 10 customers

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

C1 I MI VI VI MI MI SI VI

C2 VI SI I I MI MI I VI

C3 VI MI I MI MI I SI VI

C4 VI SI VI MI MI I SI I

C5 VI MI I I MI I SI I

C6 VI SI MI MI MI I SI I

C7 VI SI I I SI MI SI I

C8 I MI MI MI SI I I MI

C9 I MI I I SI MI I MI

C10 MI SI MI MI SI I I MI
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0:86Þ and W8 ¼ ð0:63; 0:82; 0:93Þ; which are shown on the

left wall of the HoQ in Table 5.

Likewise, the relationships between CRs and ECs are

linguistically judged as none (N), weak (W), moderate (M),

strong (S), or very strong (VS), which can be expressed by

the TFNs (0, 0, 0.3), (0, 0.3, 0.5), (0.3, 0.5, 0.7), (0.5, 0.75,

1) and (0.7, 1, 1), respectively, and the membership func-

tions of these TFNs are shown in Fig. 6.

Meanwhile, it is assumed that seven experts, denoted by

Ds; s ¼ 1; 2; . . .; 7, are involved in evaluating the rela-

tionships between CRs and ECs. After aggregating all the

assessments of each expert using Eq. (39), the relationship

matrix between eight CRs and 10 ECs U can be obtained as

shown in the room of the HoQ in Table 5.

5.1 The Proposed Exact Expected Value-Based

Method

Since the relative weights of CRs and the relationship

measures between CRs and ECs are TFNs, the proposed

method is employed to calculate the exact expected value

of the importance of ECs. Firstly, on the basis of Eq. (43),

the fuzzy importance of EC1, denoted by Y1, can be

expressed as

Y1 ¼
X8

m¼1

WmUm1 ¼ W1U11 þ W2U21 þ � � � þ W8U81:

ð47Þ

Since W1;W2; . . .;W8;U11;U21; . . .;U81 are all independent

and nonnegative TFNs, the parameters Wm ¼ ðaL
m; aC

m; aU
mÞ

and Um1 ¼ ðbL
m1; bC

m1; bU
m1Þ, m ¼ 1; 2; . . .; 8 as shown in

Table 5 can be brought into Eq. (46). Thus, we can obtain

the exact expected value of the fuzzy importance of EC1,

i.e. E½Y1� as

E½Y1� ¼
X8

m¼1

1

6
ðaL

mbL
m1 þ 2aC

mbC
m1 þ aU

mbU
m1Þ

�

þ 1

12
ðaL

mbC
m1 þ aC

mbL
m1 þ aC

mbU
m1 þ aU

mbC
m1Þ
�

¼ 3:1184:

ð48Þ

Following the similar calculation of the exact expected

value of the importance of EC1, the exact expected values

of the fuzzy importance of EC2;EC3; . . .;EC10 can also be

obtained. The results are summarized in the first line of

Table 6.

All ECs are sorted in accordance with the values of

E½Yn�. The larger the value of E½Yn� is, the higher priority

ECn can get. Therefore, it can be seen that the ranking of

ECs based on the proposed approach and the stated crite-

rion can be obtained as follows:T
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EC3 	 EC7 	 EC1 	 EC4 	 EC2 	 EC8 	 EC6 	 EC9

	 EC10 	 EC5;

where 	 means ‘‘is more preferred than’’. The second line

of Table 6 shows the above rankings of 10 ECs.

5.2 Comparisons with the h-Cut Method in QFD

In this subsection, since the h-cut is applied by many

previous methods in QFD, particularly by Chen

et al.’s [10] method which is the basis of our method, we

compare our proposed method with the h-cut method in

QFD. Note that in the method of Chen et al. [10], Eq. (2) is

used to determine the fuzzy importance of ECs, which is

considered to be unreasonable as mentioned earlier. Thus, a

direct comparison between our method and Chen

et al.’s [10] method makes no sense. In order to obtain

more meaningful comparison results, we choose Eq. (40)

to determine the importance of ECs in this subsec-

tion. Then, the h-cut method is adopted to calculate the

expected values of the importance of ECs, in which 11 h

values f0; 0:1; . . .; 0:9; 1g are selected and the corre-

sponding expected value of the importance of an EC can be

obtained by Eq. (35). Table 7 shows the rankings of the

fuzzy importance of 10 ECs obtained by the h-cut method

for the design of the FMS.

It can be seen that 10 ECs are prioritized by the h-cut

method as

EC7 	 EC3 	 EC1 	 EC2 	 EC4 	 EC8 	 EC6 	 EC9

	 EC10 	 EC5;

which differs from the rankings obtained by our proposed

method in that the ranking between EC3 and EC7 is

opposite, as well as between EC2 and EC4. Our proposed

method prioritizes these four ECs as EC3 	 EC7 and

EC4 	 EC2, whereas the h-cut method ranks these four

ECs as EC7 	 EC3 and EC2 	 EC4. The results show that

(1) compared with the approximate expected values

obtained by the h-cut method, the exact expected values

obtained by our method are much better in reflecting the

average values of the fuzzy importance of ECs; (2) our

proposed approach prioritizes ECs according to their exact

expected values of the fuzzy importance, whereas the h-cut

method prioritizes ECs based on their approximate

expected values. Thus, the final ranking results derived by

our method are more reliable; (3) compared with the h-cut

method, our method has a relatively easier computing

process, and the final results are more accurate, which is

more suitable for the QFD team to apply to the real work.

5.3 Other Applications of the Exact Expected Value

of the Importance of ECs

In QFD, the expected value of the importance of an EC

plays a significant role. It not only can be used to rank ECs,

but also allows decision-makers to get more useful and

reliable information such as overall customer satisfaction,

marginal benefit of ECs and so on. Under these circum-

stances, combined with the above example of the design of

the FMS, two concrete instances are presented to show its

extensive applications.

Fig. 6 The triangular fuzzy relationship measures between CRs and ECs

Table 6 The fuzzy expected

values and the ordinal ranking

results of the importance of 10

ECs

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

E½Yj� 3.1184 2.9859 3.5507 2.9883 2.0345 2.4867 3.5453 2.7633 2.3992 2.0839

Ranking 3 5 1 4 10 7 2 6 8 9
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5.3.1 Determining the Overall Customer Satisfaction

Facing with fierce competition in marketplaces, companies

try to determine the settings such that the best customer

satisfaction of products could be obtained [6]. The overall

customer satisfaction, S, which indicates the degree of

satisfaction of CRm in comparison with those of the com-

petitors, can be considered as a mathematical aggregation

of Yn; n ¼ 1; 2; . . .;N [9]. In our problem, assume that

four main competitors, i.e. Comp1 (our corporation),

Comp2, Comp3 and Comp4 are considered in the above

example of the design of the FMS, and let X ¼
ðx1; x2; . . .; x10ÞT

be the decision vector of the level of

attainment of ECs, in which xn is the level of attainment of

ECn; 0� xn � 1; n ¼ 1; 2; . . .; 10. Then, technical

measure data have been collected from the company and its

main competitors by testing, and the current target values

of ECs of all competitors can be normalized as follows:

ðX1;X2;X3;X4ÞT

¼

0:42 0:50 0 0:80 0:54 0:85 0:70 0:62 0 0:30

0:86 0:33 0:52 0:90 0:86 0:78 0 0:62 0:70 0:45

0:86 0:64 0:90 0:80 0:50 0:67 0:35 0:50 0:42 0:88

0:54 0 0:67 0 0 0:37 0:90 0:84 0:50 0:70

0

B
B
B
@

1

C
C
C
A
:

ð49Þ

Then the fuzzy expected value of the overall customer

satisfaction, E[S], can be calculated by

E½S� ¼ E½YTX� ¼ E
X10

m¼1

Ynxn

" #

¼
X10

m¼1

E½Yn�xn; ð50Þ

where E½Yn� is the expected value of fuzzy importance of

ECn. Since we have obtained E½Yn� as listed in Table 6, for

convenience of calculation, we normalize E½Yn�; n ¼ 1;

2; . . .; 10. Then, the relative importance of ECn, i.e. the

normalized expected value of Yn, denoted by E½Y 0
n�, can be

expressed as

E½Y 0
n� ¼

E½Yn�
PN

n¼1 E½Yn�
; n ¼ 1; 2; . . .;N; ð51Þ

where 0\E½Y 0
n�\1. For example, the normalized expected

value of Y1, i.e. E½Y 0
1�, can be calculated by

E½Y 0
1� ¼

E½Y1�
E½Y1� þ E½Y2� þ � � � þ E½Y10�

¼ 3:1184

3:1184 þ 2:9859 þ � � � þ 2:0839

¼ 0:1115:

ð52Þ

Likewise, similar calculations for Y 0
2; Y 0

3; . . .; Y 0
10 can be

done and the results are listed in the second line of

Table 8.

Then by using E½Y 0
n�, the expected value of the overall

customer satisfaction can be scaled from 0 to 1 as

Table 7 The ranking results of 10 ECs using the h-cut method

h ¼ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 E½Yj� Ranking

EC1 Sup 4.9951 4.9596 4.7309 4.5072 4.2887 4.0752 3.8668 3.6636 3.4654 3.2722 2.9748 3.1008 3

Inf 1.2282 1.4550 1.6095 1.7707 1.9384 2.1123 2.2939 2.4815 2.6758 2.8767 2.9748

EC2 Sup 4.8332 4.8037 4.5811 4.3630 4.1495 3.9406 3.7362 3.5363 3.3411 3.1503 2.8542 2.9677 4

Inf 1.0918 1.3225 1.4775 1.6394 1.8081 1.9837 2.1661 2.3553 2.5514 2.7544 2.8542

EC3 Sup 5.5064 5.4326 5.2232 4.9921 4.7657 4.5441 4.3271 4.1150 3.9076 3.7049 3.4121 3.5334 2

Inf 1.6011 1.8287 1.9898 2.1573 2.3310 2.5112 2.6976 2.8904 3.0896 3.2951 3.4121

EC4 Sup 4.8435 4.8243 4.5939 4.3688 4.1488 3.9340 3.7243 3.5199 3.3206 3.1265 2.7968 2.9657 5

Inf 1.1072 1.3562 1.5059 1.6620 1.8247 1.9939 2.1696 2.3518 2.5406 2.7358 2.7968

EC5 Sup 3.8247 3.7259 3.4991 3.2780 3.0626 2.8529 2.6488 2.4504 2.2577 2.0707 1.8438 2.0281 10

Inf 0.5674 0.6921 0.8034 0.9201 1.0423 1.1699 1.3029 1.4414 1.5853 1.7346 1.8438

EC6 Sup 4.3541 4.2725 4.0445 3.8218 3.6046 3.3927 3.1863 2.9853 2.7896 2.5994 2.3528 2.4777 7

Inf 0.7801 0.9417 1.0791 1.2230 1.3735 1.5306 1.6942 1.8644 2.0413 2.2247 2.3528

EC7 Sup 5.5695 5.5017 5.2584 5.0204 4.7879 4.5607 4.3388 4.1223 3.9112 3.7055 3.4434 3.5347 1

Inf 1.5812 1.7799 1.9448 2.1164 2.2947 2.4797 2.6714 2.8698 3.0749 3.2866 3.4434

EC8 Sup 4.6648 4.5962 4.3624 4.1340 3.9110 3.6935 3.4813 3.2746 3.0733 2.8774 2.6119 2.7941 6

Inf 1.9300 1.1768 1.3190 1.4675 1.6225 1.7839 1.9517 2.1260 2.3065 2.4935 2.6119

EC9 Sup 4.2364 4.1713 3.9419 3.7179 3.4991 3.2857 3.0776 2.8747 2.6772 2.4850 2.2136 2.3862 8

Inf 0.7329 0.9091 1.0389 1.1749 1.3169 1.4651 1.6195 1.7799 1.9465 2.1192 2.2136

EC10 Sup 3.8547 3.7924 3.5643 3.3418 3.1250 2.9139 2.7084 2.5087 2.3147 2.1264 1.8492 2.0694 9

Inf 0.5486 0.7179 0.8318 0.9513 1.0764 1.2070 1.3432 1.4850 1.6323 1.7852 1.8492
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E½S0� ¼
X10

n¼1

E½Y 0
n�xn; ð53Þ

where E[S0] is the normalized expected value of the overall

customer satisfaction. This facilitates quickly and visually

identifying the highest overall customer satisfaction of

products among the competitors. Table 9 shows the rela-

tive fuzzy expected values and the ranking results of the

overall customer satisfaction for products of the four

competitors.

As can be seen from the ranking results in Table 9, on

the one hand, the existing design of our corporation

(Comp1) currently has a low score of E[S0] (0.4731) and is

ranked third, which means that it is much less competitive.

On the other hand, Comp3 achieves the highest customer

satisfaction (0.6555) among four competitors, so it is

necessary for our company to improve the existing design

in order to enhance its competitiveness and elevate client

satisfaction.

5.3.2 Cost–Benefit Analysis of ECs

In order to complete the assessments and rankings of ECs

more practical, some studies considered the costs of

improvement [3, 35]. Denote that Tn; n ¼ 1; 2; . . .; 10 is

the total cost for improving ECn in the design of the FMS,

which are the crisp numbers and listed in the second line of

Table 10, respectively. Then, the marginal benefit Un of

ECs can be calculated through the ratio between benefit

and cost, which is expressed by

Un ¼ Yn

Tn

; n ¼ 1; 2; . . .; 10: ð54Þ

Since the importance of ECn, i.e. Yn is a fuzzy number, in

order to get the cost–benefit analysis results, defuzzified

values should be calculated. Due to its information rich-

ness, the expected value of Yn, E½Yn�, is usually utilized to

defuzzify the fuzzy number. Then, the marginal benefit Un

can be obtained by

Un ¼ E½Yn�
Tn

; n ¼ 1; 2; . . .; 10: ð55Þ

In accordance with Eq. (55), the final marginal benefits of

ECs and their rankings are shown in the last two rows of

Table 10.

In particular, the greater the Un value, the higher the

improvement priority of the corresponding EC. Table 9

indicates that EC7 which gets the highest score is the one

which has the highest impact on CRs, and should be a top

priority by the corporation to enhance both customer sat-

isfaction and comprehensive benefits. Moreover, contrast

that with the previous ranking results of the fuzzy impor-

tance of ECs in Table 5. When the total cost for improving

ECs is not an issue, EC3 gains the highest priority. Yet

because improving the load carrying capacity (EC3) of the

FMS carries a very high capital cost, it has a lower mar-

ginal benefit and ranks only the 7th in Table 9. Hence, in

economic terms, the firm should not put more energy and

efforts on EC3 in line with the cost–benefit analysis of

ECs.

Table 8 The normalized fuzzy

expected values of the

importance of 10 ECs

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

E½Yj� 3.1184 2.9859 3.5507 2.9883 2.0345 2.4867 3.5453 2.7633 2.3992 2.0839

E½Y 0
j � 0.1115 0.1068 0.1270 0.1069 0.0728 0.0889 0.1268 0.0988 0.0858 0.0745

Table 10 Costs and marginal

benefits of ECs
EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

E½Yn� 3.1184 2.9859 3.5507 2.9883 2.0345 2.4867 3.5453 2.7633 2.3992 2.0839

Tn 0.55 0.725 0.9 0.75 0.4 0.85 0.6 0.55 0.725 0.9

Un 5.6699 4.1185 3.9452 3.9844 5.0863 2.9254 5.9089 5.0242 3.3093 2.3154

Ranking 2 5 7 6 3 9 1 4 8 10

Table 9 The relative fuzzy expected values of the overall customer

satisfaction

Comp1 Comp2 Comp3 Comp4

E[S0] 0.4731 0.5803 0.6555 0.4705

Ranking 3 2 1 4
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6 Conclusions

One of the core problems of QFD is the determination of

the importance of ECs, which can provide essential infor-

mation to a design team to carry out resource allocation

and product planning. In fuzzy QFD, the relative weights

of CRs and the relationship measures between CRs and

ECs are often expressed as fuzzy numbers, while TFN as

one of the most common types of fuzzy numbers has been

applied by many researchers, and was also adopted to

measure the fuzziness of CRs and ECs in this paper.

To sum up, our contributions to the related research area

mainly lie in the following three aspects. First of all, we

proposed a method to calculate the exact expected value of

the product of two TFNs, which has higher accuracy and

easier computing process. In addition, we applied this

method to derive the exact expected values of the fuzzy

importance of ECs and the rankings of ECs. The perfor-

mance of this method was well certified by a practical

product development example. Compared with the h-cut

method, our method obviously gave a more reliable rank-

ing result of ECs. Finally, we demonstrated the widespread

use of the exact expected values of the importance of ECs

through some concrete instances, namely, determining the

overall customer satisfaction and cost–benefit analysis of

ECs in fuzzy QFD.

In the future research, deep research is needed to take

into account the correlations among ECs and the more

benchmarking information compared to competitors to

enrich our study in the area of determination of the

importance of ECs and its applications. In addition, it

should be noted that our consideration was only confined to

TFNs. The proposed approach can be extended to the

trapezoidal fuzzy number or other types of fuzzy numbers.
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