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Abstract This paper develops an approach for solving

intuitionistic fuzzy linear fractional programming problem

(IFLFPP). The cost of the objective function, the resources,

and the technological coefficients are taken to be triangular

intuitionistic fuzzy numbers. Here, the IFLFP problem is

transformed into an equivalent crisp multi-objective linear

fractional programming problem (MOLFPP). By using

fuzzy mathematical programming approach, the trans-

formed MOLFPP is reduced into a single objective linear

programming problem (LPP) which can be solved easily by

suitable LPP algorithm. The proposed procedure is illus-

trated by a numerical example.

Keywords Triangular intuitionistic fuzzy number �
Linear programming problem � Multi-objective linear

programming problem � Fuzzy Mathematical

programming � Membership function

1 Introduction

In various fields, production planning, financial and corpo-

rate planning, marketing and media selection, university

planning and student admissions, health care and hospital

planning, etc. often face problems to take decisions that

optimize profit/cost, department/equity ratio, inventory/

sales, actual cost/standard cost, output/employee,

student/cost, nurse/patient ratio, etc. Such problems can be

solved efficiently through linear fractional programming

problems (LFPPs). The coefficients of LFPPs are assumed to

be exactly known. However, in practice the coefficients

(some or all) are not exact due to the errors of measurement

or vary with market conditions or some uncontrollable

problems (Climate, Traffic, Customers awareness, etc.). In

this complex system, it is very common to hesitate the

decision makers (DMs) in predicting their aspiration level of

objective function as well as the parameters of the problem.

In such cases, a DM has to suffer through uncertainty with

hesitation. These situations can be modeled efficiently

through intuitionistic fuzzy linear fractional programming

problems (IFLFPPs).

Many researchers have investigated different kinds of

fuzzy linear fractional programming problems (FLFPPs) so

far. The FLFPP can be classified into two categories such as

LFPP with fuzzy goals and LFPP with fuzzy coefficients.

Most of the FLFPPs can bemodeled and solved by fuzzy goal

programming approach [1–8], but very few authors consid-

ered FLFPP where coefficients are fuzzy numbers. Mehra

et al. [9] proposed a method to compute an ða; bÞ accept-
able optimal solution where a; b 2 ½0; 1� are the grades of

satisfaction associated with the fuzzy objective function and

with the fuzzy constraints, respectively. Pop and Stancu-

Minasian [10] analyzed a method to solve the fully fuzzified

LFP problem, where all the variables and parameters are

represented by triangular fuzzy numbers. Most of the work

listed above deal with fuzziness either in the constraint

inequalities and/or in the aspiration levels of the DMs.

Veeramani and Sumathi [11] proposed a method for solving

FLFPP where the cost of the objective function, the resour-

ces, and the technological coefficients are triangular fuzzy

numbers. To the best of our knowledge, no work has been

studied on intuitionistic fuzzy linear fractional programming
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with intuitionistic fuzzy coefficients. In this paper, we con-

sider the IFLFPP with cost, technological coefficient, and

resources are triangular intuitionistic fuzzy numbers. First,

the given IFLFPP is transformed into a deterministic multi-

objective LFPP (MOLFPP). By using fuzzy mathematical

programming approach, the transformed MOLFPP is

reduced to a single objective LPP.

The paper is organized as follows: Sect. 2 deals with

some definitions from literature [12, 13]. In Sect. 3, we

discussed about LFPP with Charnes and Cooper’s trans-

formation and deals with fuzzy mathematical programming

approach for solving MOLFPP. In Sect. 4, we have pro-

posed IFLFPP with solution procedure. We have illustrated

our methodology by suitable numerical example in Sect. 5

followed by conclusion in Sect. 6.

2 Some Definitions

Definition 1 Let X be a universe of discourse. Then an

intuitionistic fuzzy set (IFS) ~AI in X is defined by a set of

ordered triples ~AI ¼ f\x; l ~AI ðxÞ; m ~AI ðxÞ[ : x 2 Xg, where
l ~AI ; m ~AI : X ! ½0; 1� are functions such that 0� l ~AI ðxÞþ
m ~AI ðxÞ� 1; 8x 2 X. The value l ~AI ðxÞ represents the degree of
membership and m ~AI ðxÞ represents the degree of non-mem-

bership of the element x 2 X being in ~AI . hðxÞ ¼ 1�
l ~AI ðxÞ � m ~AI ðxÞ is degree of hesitation of the element x 2 X

being in ~AI .

Definition 2 An IFS ~AI ¼ f\x; l ~AI ðxÞ; m ~AI ðxÞ[ : x 2
Xg is called an intuitionistic fuzzy number (IFN) if the

following hold:

– There exists m 2 R such that l ~AI ðmÞ ¼ 1 and m ~AI ðmÞ ¼
0 ( m is called the mean value of ~AI),

– l ~AI and m ~AI are piecewise continuous functions from

R to the closed interval [0, 1] and 0� l ~AI ðxÞþ
m ~AI ðxÞ� 1; 8x 2 R, where

l ~AI ðxÞ ¼

g1ðxÞ; m� a� x\m

1; x ¼ m

h1ðxÞ; m\x�mþ b

0; otherwise;

8
>><

>>:

and

m ~AI ðxÞ ¼
g2ðxÞ; m� a0 � x\m; 0� g1ðxÞ þ g2ðxÞ� 1

0; x ¼ m

h2ðxÞ; m\x�mþ b0; 0� h1ðxÞ þ h2ðxÞ� 1

1; otherwise:

8
>>><

>>>:

Here m is the mean value of ~AI ; a and b are the left and

right spreads of membership function l ~AI , respectively;

a0 and b0 are the left and right spreads of non-mem-

bership function m ~AI , respectively; g1 and h1 are

piecewise continuous, strictly increasing, and strictly

decreasing functions in ½m� a;mÞ and ðm;mþ b�,
respectively; g2 and h2 are piecewise continuous,

strictly decreasing, and strictly increasing functions in

½m� a0;m� and ½m;mþ b0�, respectively. The IFN ~AI is

represented by ~AI ¼ ðm; a; b; a0; b0Þ.

Definition 3 A triangular intuitionistic fuzzy number

(TIFN) ~AI is an IFN with the membership function l ~AI and

non-membership function m ~AI given by

l ~AI ðxÞ ¼

x� a

b� a
; a\x� b

1; x ¼ b
c� x

c� b
; b� x\c

0; otherwise;

8
>>><

>>>:

and

m ~AI ðxÞ ¼

b� x

b� a0
; a0\x� b

0; x ¼ b
x� b

c0 � b
; b� x\c0

1; otherwise;

8
>>>><

>>>>:

where a0 � a� b� c� c0. This TIFN is denoted by
~AI ¼ ða; b; c; a0; b; c0Þ.

Definition 4 Arithmetic operations on TIFNs:

Let ~AI ¼ ða1; a2; a3; a01; a2; a03Þ and ~BI ¼ ðb1; b2; b3; b01;
b2; b

0
3Þ:

Addition ~AI � ~BI ¼ ða1 þ b1; a2 þ b2; a3 þ b3; a
0
1þ

b01; a2 þ b2; a
0
3 þb03Þ:

Subtraction ~AI � ~BI ¼ ða1 � b3; a2 � b2; a3 � b1; a
0
1 �

b03; a2 � b2; a
0
3 � b01Þ:

Multiplication ~AI � ~BI ¼ ðl1; l2; l3; l01; l2; l03Þ; where l1 ¼
minfa1b1; a1b3; a3b1; a3b3g; l3 ¼ maxfa1b1; a1b3; a3b1; a3
b3g

l01 ¼ minfa01b01; a01b03; a03b01; a03b
0
3g; l03 ¼ maxfa01b01; a01b03;

a03b
0
1; a

0
3b

0
3g, l2 ¼ a2b2.

Division ~AIø ~BI ¼ ða1=b3; a2=b2; a3=b1; a01=b03; a2=b2;
a03=b

0
1Þ:

Scalar multiplication

1. k ~AI ¼ ðka1; ka2; ka3; ka01; ka2; ka03Þ; k[ 0:

2. k ~AI ¼ ðka3; ka2; ka1; ka03; ka2; ka01Þ; k\0:

Definition 5 Ordering of TIFNs: Let ~AI ¼ ða1; a2; a3;
a01; a2; a

0
3Þ and ~BI ¼ ðb1; b2; b3; b01; b2; b03Þ, and we define

the ordering based on the components of TIFNs as

follows:
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(i) ~AI 	 ~BI ) ða1 	 b1; a2 	 b2; a3 	 b3; a
0
1 	 b01; a

0
3

	 b03Þ
(ii) ~AI � ~BI ) ða1 � b1; a2 � b2; a3 � b3; a

0
1 � b01; a

0
3

� b03Þ
(iii) ~AI ¼ ~BI ) ða1 ¼ b1; a2 ¼ b2; a3 ¼ b3; a

0
1 ¼ b01;

a03 ¼ b03Þ
(iv) minð~AI ; ~BIÞ ¼ ~AI , If ~AI � ~BI or ~BI 	 ~AI

(v) maxð~AI ; ~BIÞ ¼ ~AI , If ~AI 	 ~BI or ~BI � ~AI .

3 Linear Fractional Programming Problem
(LFPP)

In this section, the general form of LFPP is discussed. Also,

Charnes and Cooper’s [14] linear transformation is sum-

marized. The general LFPP can be written as

Max ZðxÞ ¼
P

cjxj þ p
P

djxj þ q
¼ cTxþ p

dTxþ q
¼ NðxÞ

DðxÞ ;

s:t: x 2 S ¼ fx 2 Rn : Ax ¼ b; x	 0g
ð3:1Þ

where j ¼ 1; 2; . . .; n;A 2 Rm
n; b 2 Rm; cj; dj 2 Rn, and

p; q 2 R: For some values of x, D(x) may be zero. To avoid

such cases, we require either fAX ¼ b; x	 0;DðxÞ[ 0g or

fAx ¼ b; x	 0;DðxÞ\0g: For convenience here, we con-

sider the first case, i.e.,

fAx ¼ b; x	 0;DðxÞ[ 0g: ð3:2Þ

Definition 6 ([11]) The two mathematical programming

ðiÞMaxFðxÞ; subject to x 2 S andðiiÞMax GðxÞ; subject to x
2 U will be said to be equivalent iff there is a one to one

map f of the feasible set of (i), onto the feasible set of (ii),

such that FðxÞ ¼ Gðf ðxÞÞ for all x 2 S.

Theorem 1 ([14, 15]) Equivalence of LFP and LP.

Assume that no point (y, 0) with y	 0 is feasible for the

following LPP:

Max cTyþ pt;

s:t: dTyþ qt ¼ 1;

Ay� bt ¼ 0;

t	 0; y	 0; y 2 Rn; t 2 R:

ð3:3Þ

Now, assume the condition (3.2), i.e., fAx ¼ b; x

ge0;DðxÞ[ 0g; then the LFP (3.1) is equivalent to linear

program (3.3).

3.1 Concave–Convex Problems

Consider the fractional programming

Max
NðxÞ
DðxÞ ;

s:t:Ax� b; x	 0;

x 2 M ¼ fx : Ax� b; x	 0;DðxÞ[ 0g:

ð3:4Þ

Let us consider the following two related problems:

Max tNðy=tÞ;
s:t:Aðy=tÞ � b� 0;

tDðy=tÞ ¼ 1;

t[ 0; y	 0;

ð3:5Þ

and

Max tNðy=tÞ;
s:t:Aðy=tÞ � b� 0;

tDðy=tÞ� 1;

t[ 0; y	 0;

ð3:6Þ

where (3.5) is obtained from (3.4) by the transformation

t ¼ 1=DðxÞ; y ¼ tx and (3.6) differs from (3.5) by replacing

the equality constraint tDðy=tÞ ¼ 1 by an inequality con-

straint tDðy=tÞ� 1.

Definition 7 ([15]). The program (3.4) will be said to be

standard concave–convex fractional programming problem

(SCCFP) if N(x) is concave on M with NðsÞ	 0 for some

s 2 M and D(x) is convex and positive on M.

Theorem 2 ([15]) Let for some s 2 M, NðsÞ	 0, and if

(3.4) reaches a (global) maximum at x ¼ x�, then (3.6)

reaches a (global) maximum at a point ðt; yÞ ¼ ðt�; y�Þ,
where y�=t� ¼ x� and the objective functions at these

points are equal.

Theorem 3 ([15]) If (3.4) is a SCCFP which reaches a

(global) maximum at a point x�, then the corresponding

transformed problem (3.6) attains the same maximum value

at a point ðt�; y�Þ, where x� ¼ y�=t�. Moreover (3.6) has a

concave objective function and a convex feasible set.

Instead of this, if in (3.4), N(x) is concave, D(x) is

concave and positive on M, and N(x) is negative for each

x 2 M, then Maxx2M
NðxÞ
DðxÞ , Minx2M

�NðxÞ
DðxÞ , Maxx2M

DðxÞ
�NðxÞ,

where �NðxÞ is convex and positive. Now, with the

application of Theorem 1 and under the present hypotheses,

the fractional program (3.4) transformed to the following

LPP:

Max tDðy=tÞ;
s:t:Aðy=tÞ � b� 0;

� tNðy=tÞ� 1;

t[ 0; y	 0:

ð3:7Þ
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3.2 Multi-Objective Linear Fractional Programming

Problem (MOLFPP)

The general MOLFPP may be written as

Max ZðxÞ ¼ ½Z1ðxÞ; Z2ðxÞ; . . .; ZKðxÞ�;
s:t: x 2 M ¼ fx : Ax� b; x	 0g:

ð3:8Þ

with b 2 Rm;A 2 Rm
n, and ZiðxÞ ¼ cixþpi
dixþqi

¼ NiðxÞ
DiðxÞ ; ci; di 2

Rn and pi; qi 2 R; i ¼ 1; 2; . . .;K:

Let I be the index set such that I ¼ fi : NiðxÞ	 0for x 2
Mg and Ic ¼ fi : NiðxÞ\0for x 2 Mg, where I [ Ic ¼ f1; 2;
. . .;Kg. Let D(x) be positive on M where M is non-empty

and bounded. For simplicity, let us take the least value of

1=ðdixþ qiÞ and 1=½�ðcixþ piÞ� is t for i 2 I and i 2 Ic,

respectively, i.e.,

\

i2I

1

ðdixþ qiÞ
¼ t and

\

i2Ic

�1

ðcixþ piÞ
¼ t;

which is equivalent to

\ 1

ðdixþ qiÞ
	 t for i 2 I and

\ �1

ðcixþ piÞ
	 t for i 2 Ic:

ð3:9Þ

By using the transformation y¼ txðt[0Þ, Theorems 2 and

3, and using (3.9), MOLFPP (3.8) may be written as follows:

Max fiðy; tÞ ¼ ftNiðy=tÞ for i 2 I;

tDiðy=tÞ for i 2 Icg
s:t: tDiðy=tÞ� 1; for i 2 I;

� tNiðy=tÞ� 1; for i 2 Ic;

Aðy=tÞ � b� 0;

t; y	 0:

ð3:10Þ

3.2.1 Fuzzy Mathematical Programming Approach for

Solving MOLFPP

In an extension of classical linear programming with

objective functions represented by fuzzy numbers, the

complete solution set (y, t) from well-defined membership

function lDðy; tÞ ¼
TK

i¼1 liðy; tÞ, Zimmermann [16] proved

that if lDðy; tÞ has a unique maximum value lDðy�; t�Þ
¼ MaxlDðy; tÞ, then ðy�; t�Þ which is an element of com-

plete solution set (y, t) can be derived by solving a classical

linear programming with one variable k. The complete

solution set is composed of all those solution vectors which

result lDðy; tÞ[ 0. If no solution vector (y, t) can result

lDðy; tÞ[ 0, we say that the complete solution set does not

exist [15]. If a complete solution set contains all solutions

vectors with lDðy; tÞ[ 0 and if an ðy�; t�Þ with the unique

lDðy�; t�Þ ¼ MaxlDðy; tÞ exists, it must be included in the

complete solution set. If i 2 I, then membership function of

each objective function can be written as

liðtNiðy=tÞÞ ¼
0; if tNiðy=tÞ� 0;
tNiðy=tÞ

Zi
; if 0� tNiðy=tÞ� Zi;

1; if tNiðy=tÞ	 Zi:

8
><

>:

ð3:11Þ

If i 2 Ic, then membership function of each objective

function can be written as

liðtDiðy=tÞÞ ¼
0; if tDiðy=tÞ� 0;
tDiðy=tÞ

Zi
; if 0� tDiðy=tÞ� Zi;

1; if tDiðy=tÞ	 Zi:

8
><

>:

ð3:12Þ

Using Zimmermann’s min operator, the model (3.10)

transformed to the crisp model as

Max k;

s:t: liðtNiðy=tÞÞ	 k for i 2 I

liðtDiðy=tÞÞ	 k for i 2 Ic

tDiðy=tÞ� 1; for i 2 I;

� tNiðy=tÞ� 1; for i 2 Ic;

Aðy=tÞ � b� 0;

t; y	 0:

ð3:13Þ

4 Intuitionistic Fuzzy Linear Fractional
Programming Problem (IFLFPP)

In a fractional programming problem, the parameters can be

uncertain due to various uncontrollable factors. Also the DM

may hesitate in predicting the values of the parameters. Thus,

the modeling of the problem constitutes uncertainty with

hesitation. Thus, intuitionistic fuzzy parameters are the best

candidates to deal such situations. We use TIFNs as

parameters in this section. This problem differs from the

crisp problem by parametric values. In crisp or non-fuzzy

models, the parameters are known exactly, whereas in this

section, the parameters are uncertain quantities.

In this section, we develop a procedure for solving

IFLFPP where the cost of the objective function, the

resources, and the technological coefficients are TIFNs. Let

us consider the IFLFPP:

Max ~ZðxÞI ¼
P

~cj
Ixj � ~pI

P
~dj
Ixj � ~qI

s:t:
X

~aij
Ixj � ~bIi ; i ¼ 1; 2; . . .;m;

xj 	 0; j ¼ 1; 2; . . .; n:

ð4:1Þ

We assume that ~cj
I ; ~pI ; ~dj

I ; ~qI ; ~aij
I and ~bIi are TIFNs for each

i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n. Therefore, the problem

(4.1) can be written as
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Max ~ZðxÞI ¼
P

ðcj1; cj2; cj3; c0j1; cj2; c0j3Þxj � ðp1; p2; p3; p01; p2; p03Þ
P

ðdj1; dj2; dj3; d0j1; dj2; d0j3Þxj � ðq1; q2; q3; q01; q2; q03Þ
s:t:

X
ðaij1; aij2; aij3; a0ij1; aij2; a0ij3Þxj �ðbi1; bi2; bi3; b0i1; bi2; b0i3Þ; i ¼ 1; 2; . . .;m;

xj 	 0; j ¼ 1; 2; . . .; n:

ð4:2Þ

Using the concept of componentwise optimization, the

problem (4.2) reduces to an equivalent MOLFPP as

follows:

Max Z1ðxÞ ¼
P

cj1xj þ p1
P

dj3xj þ q3
;

Max Z2ðxÞ ¼
P

cj2xj þ p2
P

dj2xj þ q2
;

Max Z3ðxÞ ¼
P

cj3xj þ p3
P

dj1xj þ q1
;

Max Z4ðxÞ ¼
P

c0j1xj þ p01
P

d0j3xj þ q03
;

Max Z5ðxÞ ¼
P

c0j3xj þ p03
P

d0j1xj þ q01
;

s:t:
X

aij1xj � bi1;
X

aij2xj � bi2;
X

aij3xj � bi3;
X

a0ij1xj � b0i1;
X

a0ij3xj � b0i3;

xj 	 0; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

ð4:3Þ

Let us assume that Z1; Z2; Z3; Z4 and Z5 	 0 for the feasible

region. Hence, by using the above procedure, the MOLFPP

can be converted into the following MOLPP:

Max Z1ðy; tÞ ¼
X

cj1yj þ p1t;

Max Z2ðy; tÞ ¼
X

cj2yj þ p2t;

Max Z3ðy; tÞ ¼
X

cj3yj þ p3t;

Max Z4ðy; tÞ ¼
X

c0j1yj þ p01t;

Max Z5ðy; tÞ ¼
X

c0j3yj þ p03t;

s:t:
X

dj3yj þ q3t� 1;
X

dj2yj þ q2t� 1;
X

dj1yj þ q1t� 1;
X

d0j3yj þ q03t� 1;
X

d0j1yj þ q01t� 1;
X

aij1yj � bi1t� 0;

X
aij2yj � bi2t� 0;

X
aij3yj � bi3t� 0;

X
a0ij1yj � b0i1t� 0;

X
a0ij3yj � b0i3t� 0;

t; yj 	 0; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

ð4:4Þ

Solving the transformed MOLPP for each objective function,

we obtain Z�
1 ; Z

�
2 ; Z

�
3 ; Z

�
4 , and Z�

5 . Using the membership

function defined in (3.11) and (3.12), the above model reduces

to

Max k;

s:t:
X

cj1yj þ p1t � Z�
1k	 0;

X
cj2yj þ p2t � Z�

2k	 0;
X

cj3yj þ p3t � Z�
3k	 0;

X
c0j1yj þ p01t � Z�

4k	 0;
X

c0j3yj þ p03t � Z�
5k	 0;

and constraints of (4.4).

ð4:5Þ

4.1 Algorithm

The proposed approach for solving IFLFPP can be sum-

marized as follows:

Step 1 The IFLFPP is converted into MOLFPP using

componentwise optimization of intuitionistic fuzzy numbers.

Step 2 The MOLFPP is transformed into MOLPP using

the method proposed by Charnes and Cooper.

Step 3 Maximize each objective function Ziði ¼ 1; 2; 3;

4; 5Þ, subject to the given set of constraints. Let Z�
i ði ¼

1; 2; . . .; 5Þ be the maximum value of Ziði ¼ 1; 2; 3; 4; 5Þ;
respectively.

Step 4 Examine the nature of Z�
i ði ¼ 1; 2; 3; 4; 5Þ. If

Z�
i 	 0 (for some i), then i 2 I, and if Z�

i \0(for some i),

then i 2 Ic.

Step 5 If i 2 I, then we may assume the maximum

aspiration level is Z�
i and if i 2 Ic, then we may assume the

maximum aspiration level is �1=Z�
i .

Step 6 Using the membership function defined in (3.11)

and (3.12), the MOLPP reduces to the crisp model which

can be solved using suitable algorithm.

5 Numerical Example

A company manufactures 3 kinds of products P1;P2, and

P3 with profit around 8, 7, and 9 dollars per unit, respec-

tively. However, the cost for each one unit of the products

is around 8, 9, and 6 dollars, respectively. Also it is
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assumed that a fixed cost of around 1.5 dollars is added to

the cost function due to expected duration through the

process of production. Suppose the raw materials needed

for manufacturing the products P1;P2, and P3 are about

4, 3, and 5 units per pound, respectively. The supply for

this raw material is restricted to about 28 pounds. Man-

hours availability for product P1 is about 5 hours, for

product P2 is about 3 hours, and that for P3 is about 3 hours

in manufacturing per units. Total man-hours availability is

around 20 hours daily. Determine how many products of

P1;P2, and P3 should be manufactured in order to maxi-

mize the total profit. Also during the whole process, the

manager hesitates in prediction of parametric values due to

some uncontrollable factors.

Let x1; x2, and x3 units be the amount of products P1;P2,

and P3; respectively to be produced. In the problem, all

parameters are with fuzziness and hesitation. So, after

prediction of estimated parameters, the above problem can

be formulated as the following IFLFPP:

Max ~ZðxÞI ¼
~8Ix1 þ ~7Ix2 þ ~9Ix3

~8Ix1 þ ~9Ix2 þ ~6Ix3 þ ~1:5I
;

s:t: ~4Ix1 þ ~3Ix2 þ ~5Ix3 � ~28I ;

~5Ix1 þ ~3Ix2 þ ~3Ix3 � ~20I ;

x1; x2; x3 	 0:

ð5:1Þ

with ~8I ¼ ð7; 8; 9; 6; 8; 10Þ; ~9I ¼ ð8; 9; 10; 8; 9; 11Þ; ~7I ¼
ð6; 7; 8; 5; 7; 10Þ; ~6I ¼ ð4; 6; 8; 4; 6; 8Þ; ~1:5I ¼ ð1; 1:5; 2; 1;
1:5; 2:5Þ; ~4I ¼ ð3; 4; 5; 2; 4; 6Þ; ~3I ¼ ð2; 3; 4; 1:5; 3; 4:5Þ;
~5I ¼ ð4; 5; 6; 3; 5; 7Þ; ~28I ¼ ð25; 28; 30; 24; 28; 32Þ; and
~20I ¼ ð18; 20; 22; 16; 20; 24Þ.

This problem is equivalent to the following MOLFPP:

Max Z1ðxÞ ¼
7x1 þ 6x2 þ 8x3

9x1 þ 10x2 þ 8x3 þ 2
;

Max Z2ðxÞ ¼
8x1 þ 7x2 þ 9x3

8x1 þ 9x2 þ 6x3 þ 1:5
;

Max Z3ðxÞ ¼
9x1 þ 8x2 þ 10x3

7x1 þ 8x2 þ 4x3 þ 1
;

Max Z4ðxÞ ¼
6x1 þ 5x2 þ 8x3

10x1 þ 11x2 þ 8x3 þ 2:5
;

Max Z5ðxÞ ¼
10x1 þ 10x2 þ 11x3

6x1 þ 8x2 þ 4x3 þ 1
;

s:t: 3x1 þ 2x2 þ 4x3 � 25;

4x1 þ 3x2 þ 5x3 � 28;

5x1 þ 4x2 þ 6x3 � 30;

2x1 þ 1:5x2 þ 3x3 � 24;

6x1 þ 4:5x2 þ 7x3 � 32;

4x1 þ 2x2 þ 2x3 � 18;

5x1 þ 3x2 þ 3x3 � 20;

6x1 þ 4x2 þ 4x3 � 22;

3x1 þ 1:5x2 þ 1:5x3 � 16;

7x1 þ 4:5x2 þ 4:5x3 � 24;

x1; x2; x3 	 0:

ð5:2Þ

Using the transformation, the problem (5.2) is equivalent to

following MOLPP:

Max Z1ðy; tÞ ¼ 7y1 þ 6y2 þ 8y3;

Max Z2ðy; tÞ ¼ 8y1 þ 7y2 þ 9y3;

Max Z3ðy; tÞ ¼ 9y1 þ 8y2 þ 10y3;

Max Z4ðy; tÞ ¼ 6y1 þ 5y2 þ 8y3;

Max Z5ðy; tÞ ¼ 10y1 þ 10y2 þ 11y3;

s:t: 9y1 þ 10y2 þ 8y3 þ 2t� 1;

8y1 þ 9y2 þ 6y3 þ 1:5t� 1;

7y1 þ 8y2 þ 4y3 þ t� 1;

10y1 þ 11y2 þ 8y3 þ 2:5t� 1;

6y1 þ 8y2 þ 4y3 þ t� 1;

3y1 þ 2y2 þ 4y3 � 25t� 0;

4y1 þ 3y2 þ 5y3 � 28t� 0;

5y1 þ 4y2 þ 6y3 � 30t� 0;

2y1 þ 1:5y2 þ 3y3 � 24t� 0;

6y1 þ 4:5y2 þ 7y3 � 32t� 0;

4y1 þ 2y2 þ 2y3 � 18t� 0;

5y1 þ 3y2 þ 3y3 � 20t� 0;

6y1 þ 4y2 þ 4y3 � 22t� 0;

3y1 þ 1:5y2 þ 1:5y3 � 16t� 0;

7y1 þ 4:5y2 þ 4:5y3 � 24t� 0;

y1; y2; y3 	 0; t[ 0:

ð5:3Þ

Solving each objective at a time, we get Z1 ¼ 0:9360; Z2 ¼
1:0530; Z3 ¼ 1:1700; Z4 ¼ 0:9360; Z5 ¼ 1:2870. Now

using fuzzy approach, the problem reduced to the following

LPP:

Max k

s:t: 7y1 þ 6y2 þ 8y3 � 0:9360k	 0;

8y1 þ 7y2 þ 9y3 � 1:0530k	 0;

9y1 þ 8y2 þ 10y3 � 1:1600k	 0;

6y1 þ 5y2 þ 8y3 � 0:9360k	 0;

10y1 þ 10y2 þ 11y3 � 1:2870k	 0;

and constraints of (5.3):

ð5:4Þ

Solving by LINGO, we have y1 ¼ 0; y2 ¼ 0; y3 ¼
0:1170; k ¼ 1; t ¼ 0:2559E � 01. The solution of the
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original problem is obtained as x1 ¼ 0; x2 ¼ 0; x3 ¼
4:57; ~ZI ¼ ð0:9481; 1:422; 2:370; 0:935; 1:422; 2:607Þ:

6 Conclusion

In this paper, a method for solving the IFLFPPs where the

cost of the objective function, the resources, and the

technological coefficients are TIFNs is proposed. In the

proposed method, IFLFPP is transformed to a MOLFPP

and the resultant problem is converted to a LP problem,

using fuzzy mathematical programming method. In future,

the proposed approach can be extended for solving LFPPs,

where the cost of the objective function, the resources, and

the technological coefficients are trapezoidal intuitionistic

fuzzy numbers or non-linear membership functions, and for

solving multi-objective IFLFPPs.
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