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Abstract In this paper, a new notion of (v-consistent) L*-

closure L-system is proposed where L is a complete

residuated lattice and � is a truth stresser on L. The one-to-

one correspondence between (v-consistent) L*-closure

L-systems and (v-consistent) L*-closure operators is

established. Furthermore, the notion of v-consistent

L*-closure system is introduced. It is shown that the notion

of (v-consistent) L*-closure L-system provides an alterna-

tive way to characterize (v-consistent) L*-closure systems.

Finally, the category of (v-consistent) L*-closure system

spaces is introduced in virtue of the notion of continuous

mapping. It is shown that the categories of L*-closure

L-system spaces, L*-closure spaces and L*-closure system

spaces are isomorphic with each other.

Keywords Complete residuated lattice � Truth stresser �
Closure operator � Closure system

1 Introduction

Closure operators and closure systems play an important

role in many mathematics areas such as analysis, topology,

logic, and geometry. In the classical setting, the close

relationship between closure operators and closure systems

has been investigated [8, 9]. In the framework of fuzzy set

theory, the investigation of closure operators and closure

systems may be traced back to the study of several special

cases such as fuzzy subalgebra and fuzzy topology [2, 7,

18, 19]. Afterwards, Biacino and Gerla [3, 13] studied

fuzzy closure operators and fuzzy closure systems them-

selves where the truth value structure is fixed to the unit

interval [0, 1].

Fuzzy closure operators and closure systems have been

studied in more general settings. For instance, Bělohlávek

[4–6] generalized the notions of closure operator and clo-

sure system using complete residuated lattices as the truth

value structures. Moreover, the one-to-one correspondence

between fuzzy closure operators and closure systems has

been established. In addition, Georgescu and Popescu [11,

12] presented analogous results in the non-commutative

fuzzy framework where the truth value structure is a gen-

eralized residuated lattice. In another direction, there also

have been a lot of works on generalizing fuzzy closure

operators and closure systems onto the fuzzy partially

ordered sets [14, 15, 21].

Recently, Fang and Yue [10] proposed a more general

notion of (v-consistent) L-fuzzy closure system which can

be viewed as an extension of Bělohlávek’s fuzzy closure

system. It provides another way to think about the notion of

fuzzy closure operator. However, as shown by Fang and

Yue, one weakness is that the correspondence between L-

fuzzy closure systems and fuzzy closure operators is not

one-to-one. This suggests that there may be more satis-

factory notions of fuzzy closure system in order to char-

acterize fuzzy closure operators.

In this paper, we propose a new notion of (v-consistent)

L*-closure L-system which can be viewed as an alternative

of fuzzy closure systems introduced by Bělohlávek [6]. To
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demonstrate its capability of characterizing (v-consistent)

fuzzy closure operators, we verify the bijective corre-

spondence between (v-consistent) L*-closure L-systems

and (v-consistent) L*-closure operators. Moreover, we

introduce the notions of v-consistent L*-closure system and

continuous mapping between L*-closure systems. It is

shown that the categories of L*-closure L-system spaces,

L*-closure spaces and L*-closure system spaces are iso-

morphic with each other from the categorical viewpoint.

This paper is organized as follows. In Sect. 2, we recall

some preliminary notations and the notion of (v-consistent)

L*-closure operator. In Sect. 3, we propose the new con-

cept of (v-consistent) L*-closure L-system and establish a

one-to-one correspondence between (v-consistent) L*-clo-

sure L-systems and (v-consistent) L*-closure operators. In

Sect. 4, we introduce the notion of v-consistent L*-closure

system and show that there exists a one-to-one corre-

spondence between (v-consistent) L*-closure L-systems

and (v-consistent) L*-closure systems. In Sect. 5, we

introduce the concept of continuous mapping between L*-

closure system spaces and prove that the categories of (v-

consistent) L*-closure L-system spaces, (v-consistent) L*-

closure system spaces and (v-consistent) L*-closure spaces

are isomorphic with each other.

2 Preliminary

Truth value structures play an important role in fuzzy logic

[17]. Throughout this paper, we use complete residuated

lattices as truth value structures. Formally, a complete

residuated lattice is a structure L = ðL;^;_;�;!; 0; 1Þ
such that: ðL;^;_; 0; 1Þ is a complete lattice where 0 is the

least element and 1 is the greatest element; ðL;�; 1Þ is a

commutative monoid, i.e., � is commutative associative

operator on L, and x� 1 ¼ x holds for any x 2 L; x� y!
z, x� y� z holds for any x; y; z 2 L.

Let L be a complete residuated lattice. Given x; y; z 2 L

and fxigi2I � L, where I is an index set, the following

properties will be needed in the sequel:

ð1Þ0! x¼ 1 ð2Þ1! x¼ x

ð3Þx�y) x� z�y� z ð4Þx�y) z! x�z! y

ð5Þx�y) x! z�y! z ð6Þx�y iff x! y¼ 1

ð7Þx�ðx! yÞ�y ð8Þx�ðx! yÞ! y

ð9Þx!ðy! zÞ¼ y!ðx! zÞ
¼ ðx� yÞ! z ð10Þx!ð

V
i2I xiÞ¼

V
i2Iðx! xiÞ

ð11Þx�ð
V

i2I xiÞ�
V

i2Iðx� xiÞ

For more properties of complete residuated lattices one can

refer to [20].

Recall that in [6], the notion of truth stresser was used to

express the meaning ’’(very) true’’ in the study of fuzzy

closure operators. Formally, a truth stresser on a complete

residuated lattice L is a unary function � : L �! L which

sends any element a 2 L to a� 2 L. In this paper, we only

need the following properties of truth stresser: for any

a; b 2 L,

(1) 1� ¼ 1; (2) a� � a; (3) ða! bÞ� � a� ! b�.
It is easy to verify that the following consequences

follows immediately from (1)–(3):

(4) a� b) a� � b�; (5) a� � b� � ða� bÞ�.
Particularly, if � satisfies a� ¼ a for any a 2 L, then � is

called the identity on L. In the sequel of this paper, we will

always use the notation � to denote a general truth stresser

unless otherwise specified. More properties of truth stresser

can be referred to [16].

Now we recall some common notations in the frame-

work of fuzzy set theory. Let X be a universe. The

notation LX denotes the family of all L-sets on X. Given

a 2 L, L-set va is defined by vaðxÞ ¼ a for any x 2 X. For

a 2 L and A 2 LX , L-set a� A is defined by ða� AÞðxÞ ¼
a� AðxÞ for any x 2 X, and a! A by ða! AÞðxÞ ¼ a!
AðxÞ for any x 2 X. Given A;B 2 LX , A � B means

AðxÞ�BðxÞ for any x 2 X. The subsethood degree

S(A, B) is defined by SðA;BÞ ¼
V

x2X AðxÞ ! BðxÞ. It is

obvious that A � B is equivalent to SðA;BÞ ¼ 1. For any

family fAigi2I � LX , L-sets
S

i2I Ai and
T

i2I Ai are given

pointwisely, i.e., for any x 2 X,
S

i2I AiðxÞ ¼
W

i2I AiðxÞ
and

T
i2I AiðxÞ ¼

V
i2I AiðxÞ.

We recall the notion of L*-closure operator which may

be initially developed in [6].

Definition 2.1 Let C : LX �! LX be a mapping, v 2 L

and A;A1;A2 2 LX . Consider the following conditions:

(LC1) A � CðAÞ;
(LC2) SðA1;A2Þ� � SðCðA1Þ;CðA2ÞÞ;
(LC3) CðAÞ ¼ CðCðAÞÞ;
(LC4) v� CðAÞ � Cðv� AÞ.

Then C is called an L*-closure operator on X if it satisfies

(LC1)-(LC3). An L*-closure operator satisfying (LC4) is

said to be v-consistent.

In the sequel, if C is an (v-consistent) L*-closure oper-

ator on X, then the pair (X, C) is called an (v-consistent)

L*-closure space on X.

3 L*-closure L-systems and L*-closure Operators

In this section, we propose a new notion of L-fuzzy closure

system, namely, L*-closure L-system, and investigate the

fundamental properties. We show that there is a one-to-one

correspondence between (v-consistent) L*-closure L-sys-

tems and (v-consistent) L*-closure operators.
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Definition 3.1 Let k : LX �! L be an L-set on LX and

v 2 L. Then k is called an L*-closure L-system on X if for

any A 2 LX , there exists ~A 2 LX such that

(LLS1) kðAÞ ¼ Sð~A;AÞ;
(LLS2)kð~AÞ ¼ SðA; ~AÞ� ¼ 1;

(LLS3)for any B 2 LX , if kðBÞ ¼ 1, then

SðA;BÞ� � Sð~A;BÞ.
If, in addition, for any A 2 LX ,

(LLS4) kðAÞ� kðv! AÞ,
then k is called a v-consistent L*-closure L-system on X.

For any L*-closure L-system k on X, the L-set ~A in the

sense of Definition 3.1 is called the closure of A with

respect to k.

In the sequel, if k is an (v-consistent) L*-closure L-

system on X, then the pair ðX; kÞ is called an (v-consistent)

L*-closure L-system space on X.

Remark 3.1 It is not difficult to verify that the closure of

A with respect to an L*-closure L-system k is unique.

Indeed, suppose that both ~A and ~A0 are L*-closures of A 2
LX with respect to k. Since kð~A0Þ ¼ 1, it holds that

SðA; ~A0Þ� � Sð~A; ~A0Þ by Definition 3.1(LLS3). As

SðA; ~A0Þ� ¼ 1, it follows that Sð~A; ~A0Þ ¼ 1. On the other

hand, Sð~A0; ~AÞ ¼ 1 can be proved similarly. Thus, we have
~A ¼ ~A0.

Example 3.1 Consider the singleton X ¼ fxg and the real

interval L ¼ ½0; 1	 with the Łukasiewicz t-norm �
defined by s� t ¼ max fsþ t � 1; 0g and the associated

implication ! defined by s! t ¼ min f1� sþ t; 1g. It

is easy to check that ðL;^;_;�;!; 0; 1Þ is a complete

residuated lattice. In this case, the family of all L-sets on

X are exactly fva j a 2 Lg. Let � be the identity on L,

i.e., for any a 2 L, a� ¼ a. Define a mapping k : LX �!
L by letting kðvaÞ ¼ 1

2
þ a for any a 2 ½0; 1

2
Þ and kðvaÞ ¼

1 for any a 2 ½1
2
; 1	. It is trivial to check that k is an L*-

closure L-system on X. Particularly, the closure of va for

any a 2 ½0; 1
2
Þ with respect to k is va1

2
; and the closure of

va for any a 2 ½1
2
; 1	 with respect to k is v1. Moreover,

if we choose v ¼ 1
2
, then we can readily check that k is

v-consistent.

Proposition 3.1 Let k be an L*-closure L-system on

X. Then for any A;B 2 LX , we have SðA;BÞ� � Sð~A; ~BÞ.

Proof Suppose A;B 2 LX . As SðB; ~BÞ� ¼ 1, we have

SðA;BÞ� ¼ SðA;BÞ� � SðB; ~BÞ� � ðSðA;BÞ� SðB; ~BÞÞ� �
SðA; ~BÞ�. Since kð~BÞ ¼ 1, it follows that SðA; ~BÞ� � Sð~A; ~BÞ
from Definition 3.1(LLS3). Thus, we have SðA;BÞ� �
Sð~A; ~BÞ. h

Proposition 3.2 If k is an L*-closure L-system on X, then

kðv1Þ ¼ 1 and
V

i2I kðAiÞ� kð
T

i2I AiÞ holds for any family

fAigi2I � LX .

Proof By Definition 3.1(LLS2), we have Sðv1; ev1Þ ¼ 1

which implies ev1 ¼ v1. By Definition 3.1(LLS1), it holds

that kðv1Þ ¼ Sð ev1 ; v1Þ ¼ 1.

For any family fAigi2I � LX , we have
V

i2I Sð eAi ;AiÞ ¼
V

i2I
V

x2X
eAiðxÞ ! AiðxÞ

�
V

i2I
V

x2Xð
V

j2I
eAjðxÞ ! AiðxÞÞ

¼
V

x2X
V

i2Ið
V

j2I
eAjðxÞ ! AiðxÞÞ

�
V

x2Xð
V

i2I
eAiðxÞ !

V
i2I AiðxÞÞ

�
V

x2Xð g
T

i2I AiðxÞ ! ð
T

i2I AiÞðxÞÞ
¼ Sð g

T
i2I Ai ;

T
i2I AiÞ

This implies that
V

i2I kðAiÞ� kð
T

i2I AiÞ. h

From Proposition 3.2, we can easily see that our pro-

posed notion of L �-closure L-system is a special cases of

L-fuzzy closure systems which were introduced in [10].

The following example shows that the inverse of Propo-

sition 3.2 does not hold necessarily.

Example 3.2 Let X ¼ fxg be a single-point set, L the real

interval [0, 1] with the Łukasiewicz t-norm � and the

implication ! as given in Example 3.1 and � the identity

on L. Define a mapping k : LX �! L by kðAÞ ¼ 1 if A ¼
v1=2; v1 and kðAÞ ¼ 0 otherwise. It is trivial to check that k

satisfies kðv1Þ ¼ 1 and
V

i2I kðAiÞ� kð
T

i2I AiÞ for any

family fAigi2I � LX . However, k is not an L*-closure

L-system. Indeed, for A ¼ v1=3, there does not exist any

L-set ~A 2 LX such that kðv1=3Þ ¼ Sð~A; v1=3Þ and kð~AÞ ¼ 1.

Theorem 3.1 Let k be an L-set on LX. Then the following

are equivalent:

(1) k is an L*-closure L-system on X.

(2) For any A 2 LX, it holds that kðA0Þ ¼ 1 and

kðAÞ ¼ SðA0;AÞ, where

A0 ¼
\

Ai2LX ;kðAiÞ¼1

SðA;AiÞ� ! Ai:

Proof ð1Þ ) ð2Þ : Let k be an L*-closure L-system on

X. We want to prove A0 is exactly the closure of A with

respect to k, i.e., A0 ¼ ~A. On the one hand, suppose Ai 2 LX

and kðAiÞ ¼ 1. By Definition 3.1(LLS3), we have

SðA;AiÞ� � Sð~A;AiÞ which implies that SðA;AiÞ� � ~AðxÞ !
AiðxÞ for any x 2 X. This implies that ~AðxÞ� SðA;AiÞ� !
AiðxÞ for any x 2 X, which means ~A � SðA;AiÞ� ! Ai.

Hence, ~A � A0. On the other hand, since
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kð~AÞ ¼ SðA; ~AÞ� ¼ 1, we have A0ðxÞ� SðA; ~AÞ� ! ~AðxÞ ¼
1! ~AðxÞ ¼ ~AðxÞ for any x 2 X, which implies A0 � ~A.

Therefore, A0 ¼ ~A. By Definition 3.1(LLS1) and (LLS2),

we obtain kðA0Þ ¼ 1 and kðAÞ ¼ SðA0;AÞ.
ð2Þ ) ð1Þ : To prove k is an L*-closure L-system on X,

we only need to verify that A0 satisfies (LLS1)–(LLS3).

First, it is clear that kðAÞ ¼ SðA0;AÞ and kðA0Þ ¼ 1 by

hypothesis. Second, to prove SðA;A0Þ� ¼ 1, we have the

following equivalences: SðA;A0Þ ¼ 1 iff for any x 2 X,

AðxÞ�
V

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! AiðxÞ iff for any

Ai 2 LX with kðAiÞ ¼ 1, AðxÞ� SðA;AiÞ� ! AiðxÞ, i.e.,

SðA;AiÞ� �AðxÞ ! AiðxÞ which immediately follows from

SðA;AiÞ� � SðA;AiÞ and SðA;AiÞ�AðxÞ ! AiðxÞ. Finally,

suppose B 2 LX and kðBÞ ¼ 1. We have: SðA;BÞ� �
SðA0;BÞ iff for any x 2 X, SðA;BÞ� �A0ðxÞ ! BðxÞ iff

SðA;BÞ� � A0ðxÞ�BðxÞ, i.e., SðA;BÞ� �
V

Ai2LX ;kðAiÞ¼1 SðA;
AiÞ� ! AiðxÞ�BðxÞ which is true. Indeed, since kðBÞ ¼ 1,

SðA;BÞ� �
V

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! AiðxÞ� SðA;BÞ� � ðS
ðA;BÞ� ! BðxÞÞ�BðxÞ. Therefore, k is an L*-closure

L-system on X. h

Proposition 3.3 Let k be an L*-closure L-system on

X. Then for any A 2 LX , we have

\

Ai2LX ;kðAiÞ¼1

SðA;AiÞ� ! Ai ¼
\

B2LX
kðBÞ � SðA;BÞ�

! B ¼
\

A�Ai;kðAiÞ¼1

Ai:

Proof We first prove
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai ¼T
A�Ai;kðAiÞ¼1 Ai. On the one hand, it is easy to see that

A � Ai is equivalent to SðA;AiÞ� ¼ 1. It thus follows that
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai �
T

A�Ai;kðAiÞ¼1 Ai. On the

other hand, since SðA; ~AÞ� ¼ 1, we have A � ~A,

which implies that
T

A�Ai;kðAiÞ¼1 Ai � ~A. Since ~A ¼
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai by the proof of Theorem 3.1,

we have
T

A�Ai;kðAiÞ¼1 Ai �
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai.

Therefore,
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai ¼
T

A�Ai;kðAiÞ¼1 Ai:

Now we prove
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai ¼
T

B2LX kðBÞ� SðA;BÞ� ! B. On the one hand, as

fSðA;AiÞ� ! Ai jAi 2 LX; kðAiÞ ¼ 1g � fkðBÞ � SðA;BÞ�

! B jB 2 LXg, we have
T

B2LX kðBÞ � SðA;BÞ� ! B �
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai. On the other hand, it suffices

to prove ~A �
T

B2LX kðBÞ � SðA;BÞ� ! B by Theorem 3.1.

In this end, for any B 2 LX ,

~A� kðBÞ� SðA;BÞ� ! B , kðBÞ� SðA;BÞ� � ~A� B

, Sð~B;BÞ� SðA;BÞ� � ~A� B

ðbecause kðBÞ ¼ Sð~B;BÞ
by Definition 3:1ðLLS1ÞÞ
, Sð~B;BÞ� SðA;BÞ��Sð~A;BÞ

The last inequality holds because SðA;BÞ� � Sð~A; ~BÞ by

Proposition 3.1. h

Given an L*-closure L-system k, we can naturally define

an operator Ck : L
X �! LX by

CkðAÞ ¼ ~A

where ~A is the closure of A with respect to k. By Propo-

sition 3.3, Ck can be defined equivalently by

CkðAÞ ¼
\

Ai2LX ;kðAiÞ¼1

SðA;AiÞ� ! Ai:

Proposition 3.4 If k is an (v-consistent) L*-closure L-

system on X, then Ck is an (v-consistent) L*-closure

operator.

Proof Suppose k is an L*-closure L-system on X. For

(LC1), suppose A 2 LX , we have SðA;CkðAÞÞ ¼ SðA; ~AÞ ¼
1 which immediately follows from SðA; ~AÞ� ¼ 1 and

SðA; ~AÞ� � SðA; ~AÞ.
For (LC2), suppose A1;A2 2 LX . Because SðA2;fA2Þ�

¼ 1, we have SðA1;A2Þ� ¼ SðA1;A2Þ� � SðA2;fA2Þ� �
ðSðA1;A2Þ � SðA2;fA2ÞÞ� � SðA1;fA2Þ�. Since kðfA2Þ ¼ 1, it

follows from Definition 3.1(LLS3) that SðA1;fA2Þ�

� SðfA1 ;fA2Þ. Therefore, SðA1;A2Þ� � SðfA1 ;fA2Þ, i.e.,

SðA1;A2Þ� � SðCkðA1Þ;CkðA2ÞÞ.
For (LC3), suppose A 2 LX . By Definition 3.1(LLS2), it

is obvious that Sð~A; ~~AÞ ¼ 1. Moreover, since kð~AÞ ¼ 1, by

Definition 3.1(LLS3), 1 ¼ Sð~A; ~AÞ� � Sð~~A; ~AÞ. This implies

Sð~~A; ~AÞ ¼ 1. We thus have ~A ¼ ~~A, i.e., CkðAÞ ¼ CkCkðAÞ.
For (LC4), suppose k is a v-consistent L*-closure

L-system on X. For any A 2 LX and x 2 X, we have

CkðAÞðxÞ ¼
V

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! AiðxÞ
�
V

Ai2LX ;kðAiÞ¼1 SðA; v! AiÞ� ! ðv! AiÞðxÞ
¼
V

Ai2LX ;kðAiÞ¼1 Sðv� A;AiÞ� ! ðv! AiðxÞÞ
¼
V

Ai2LX ;kðAiÞ¼1 v! ðSðv� A;AiÞ� ! AiðxÞÞ
¼ v!

V
Ai2LX ;kðAiÞ¼1 Sðv� A;AiÞ� ! AiðxÞ

¼ v! Ckðv� AÞðxÞ:
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This implies that CkðAÞ � v! Ckðv� AÞ, i.e., v� CkðAÞ
� Ckðv� AÞ. h

Given an L*-closure operator C on X, define an L-set kC
on LX by

kCðAÞ ¼ SðCðAÞ;AÞ:

Proposition 3.5 If C is an (v-consistent) L*-closure

operator, then kC is an (v-consistent) L*-closure L-system.

Proof Suppose C is an L*-closure operator. For any

A 2 LX , we prove that C(A) satisfies conditions (LLS1)-

(LLS3) in Definition 3.1. First, (LLS1) is clear from the

definition of kC. For (LLS2), by Definition 2.1(LC3),

kCðCðAÞÞ ¼ SðCCðAÞ;CðAÞÞ ¼ 1. In addition, since

A � CðAÞ, we have SðA;CðAÞÞ� ¼ 1. Finally, for (LLS3),

suppose B 2 LX and kCðBÞ ¼ 1, then SðCðBÞ;BÞ ¼ 1. As

SðB;CðBÞÞ ¼ 1, it follows that B ¼ CðBÞ. By Definition

2.1(LC2), we have SðA;BÞ� � SðCðAÞ;CðBÞÞ ¼SðCðAÞ;BÞ.
Suppose C is a v-consistent L �-closure operator. From

the proof above, we only need to prove kCðAÞ� kCðv! AÞ
for any A 2 LX . By the definition of kC, it is equivalent to

prove that for any A 2 LX , SðCðAÞ;AÞ� SðCðv! AÞ; v!
AÞ iff for any x 2 X, SðCðAÞ;AÞ�Cðv! AÞðxÞ ! ðv!
AÞðxÞ iff SðCðAÞ;AÞ � Cðv! AÞðxÞ� ðv! AÞðxÞ iff v�
SðCðAÞ;AÞ � Cðv! AÞðxÞ�AðxÞ which is true. In fact,

v�SðCðAÞ;AÞ�Cðv!AÞðxÞ �SðCðAÞ;AÞ�Cðv�ðv!AÞÞðxÞ
�SðCðAÞ;AÞ�CðAÞðxÞ
�AðxÞ:

h

From Proposition 3.4 and Proposition 3.5, we have the

following theorem.

Theorem 3.2 Let k be an (v-consistent) L*-closure

L-system on X and C an (v-consistent) L*-closure operator

on X. Then k ¼ kCk and C ¼ CkC , i.e., mappings k 7!Ck

and C 7!kC form a one-to-one correspondence between (v-

consistent) L*-closure L-systems on X and (v-consistent)

L*-closure operators on X.

Example 3.3 The L*-closure operator associated with the

L �-closure L-system given in Example 3.1 is precisely the

mapping on LX which sends va to va for any a 2 ½1
2
; 1	 and

va to v1
2

for any a 2 ½0; 1
2
Þ. Moreover, it is routine to check

that this L*-closure operator is v-consistent for v ¼ 1
2
.

From Proposition 3.2 and Theorem 3.2, we immediately

have the following result.

Corollary 3.1 Let C be an L*-closure operator on X.

Then Cðv1Þ ¼ v1 and for any family fAigi2I � LX ,

^

i2I
SðCðAiÞ;AiÞ� S C

\

i2I
Ai

 !

;
\

i2I
Ai

 !

:

4 L*-closure Systems

In this section, we first introduce the notion of v-consistent

L*-closure system based on the notion of L*-closure sys-

tem introduced by Bělohlávek in [6]. Then we study the

connection between (v-consistent) L*-closure L-systems

and (v-consistent) L*-closure systems. It is shown that a

one-to-one correspondence can be established between

them.

Definition 4.1 Let } � LX and v 2 L. Then } is called an

L*-closure system on X if for any A 2 LX ,
\

Ai2}
SðA;AiÞ� ! Ai 2 }:

If, in addition, for any A 2 LX ,

v�
\

Ai2}
SðA;AiÞ� ! Ai �

\

Ai2}
Sðv� A;AiÞ� ! Ai;

then } is called a v-consistent L*-closure system on X.

For any L*-closure system } on X, the L-set
T

Ai2} SðA;AiÞ� ! Ai is called the closure of A with respect

to }.

In the sequel, if } is an (v-consistent) L*-closure system

on X, then the pair ðX; }Þ is called an (v-consistent) L*-

closure system space on X.

The following proposition gives an equivalent charac-

terization of the notion of L*-closure system.

Proposition 4.1 [14] Let } ¼ fAigi2I be a subset of LX .

Then } is an L*-closure system on X if and only if for any

A 2 LX , there exists A0 2 } such that SðA;A0Þ ¼ 1 and

SðA;AiÞ� � SðA0;AiÞ for any i 2 I.

Now we discuss the relationship between L*-closure

systems and L �-closure L-systems. Given an L*-closure

L-system k on X, define a system }k by

}k ¼ fAi 2 LX j kðAiÞ ¼ 1g:

By Theorem 3.1, it is easy to see that }k is an L*-closure

system.

Conversely, given an L*-closure system } on X, define a

mapping k} : LX �! L by

k}ðAÞ ¼ S
\

Ai2}
SðA;AiÞ� ! Ai;A

 !

:

Proposition 4.2 If } is an (v-consistent) L*-closure sys-

tem, then k} is an (v-consistent) L*-closure L-system.
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Proof Suppose } is an L*-closure system. Given A 2 LX ,

denote A0 ¼
T

Ai2} SðA;AiÞ� ! Ai. In order to prove k} is

an L*-closure L-system, we need to check that A0 satisfies

conditions (LLS1)-(LLS3) in Definition 3.1.

From the definition of k}, (LLS1) is clear.

For (LLS2), we observe that
T

Ai2} SðA;AiÞ� ! Ai ¼ A

for any A 2 }. Therefore, we have k}ðA0Þ ¼ Sð
T

Ai2}
SðA0;AiÞ� ! Ai;A0Þ ¼ SðA0;A0Þ ¼ 1:

In addition, we have

SðA;A0Þ� ¼ 1 , SðA;A0Þ ¼ 1

, A� A0

,ð8x2 XÞAðxÞ�
V

Ai2} SðA;AiÞ� ! AiðxÞ
, ð8x2 XÞAðxÞ�SðA;AiÞ� ! AiðxÞ
, ð8x2 XÞSðA;AiÞ��AðxÞ! AiðxÞ:

Since the last statement is obvious, we have SðA;A0Þ� ¼ 1.

Suppose B 2 LX and k}ðBÞ ¼ 1. Denote B0 ¼
T

Ai2}
SðB;AiÞ� ! Ai. It is easy to verify that SðB;B0Þ ¼ 1. Since

SðB0;BÞ ¼ k}ðBÞ ¼ 1, we have B ¼ B0 2 }. Therefore, for

(LLS3), we only need to prove SðA;BÞ� � SðA0;B0Þ, i.e.,

SðA;BÞ� � Sð
T

Ai2} SðA;AiÞ� ! Ai;
T

Ai2} SðB;AiÞ� ! AiÞ
which is equivalent to SðA;BÞ� �

V
Ai2} SðA;AiÞ� !

AiðxÞ�
V

Ai2} SðB;AiÞ� ! AiðxÞ for any x 2 X.

For the last inequality, it suffices to check that for any

j 2 I with Aj 2 },
V

Ai2} SðA;BÞ
� � ðSðA;AiÞ� ! AiðxÞÞ�

SðB;AjÞ� ! AjðxÞ which is equivalent to SðB;AjÞ� �
V

Ai2} SðA;BÞ
� � ðSðA;AiÞ� ! AiðxÞÞ�AjðxÞ which is true

because

SðB;AjÞ� �
V

Ai2} SðA;BÞ
� � ðSðA;AiÞ� ! AiðxÞÞ

�
V

Ai2} SðB;AjÞ� � SðA;BÞ� � ðSðA;AiÞ� ! AiðxÞÞ
�
V

Ai2} SðA;AjÞ� � ðSðA;AiÞ� ! AiðxÞÞ
� SðA;AjÞ� � ðSðA;AjÞ� ! AjðxÞÞ
�AjðxÞ:

Suppose } is a v-consistent L*-closure system. From the

proof above, we only need to prove k}ðAÞ� k}ðv! AÞ for

any A 2 LX . By the definition of k}, we need to prove

Sð
T

Ai2} SðA;AiÞ� ! Ai;AÞ� Sð
T

Ai2} Sðv! A;AiÞ� !
Ai; v! AÞ. Since Sð

T
Ai2} Sðv! A;AiÞ� ! Ai; v! AÞ ¼

Sðv�
T

Ai2} Sðv! A;AiÞ� ! Ai;AÞ, it suffices to prove

v�
T

Ai2} Sðv! A;AiÞ� ! Ai �
T

Ai2} SðA;AiÞ� ! Ai

which is true. Indeed, for any x 2 X,

ðv�
T

Ai2} Sðv!A;AiÞ� !AiÞðxÞ ¼ v�
V

Ai2}Sðv!A;AiÞ�

!AiðxÞ
�
V

Ai2}Sðv�ðv!AÞ;AiÞ�

!AiðxÞ
�
V

Ai2}SðA;AiÞ� !AiðxÞ
¼ ð
T

Ai2} SðA;AiÞ� !AiÞðxÞ:

h

Proposition 4.3 If k is an (v-consistent) L*-closure L-

system, then }k is an (v-consistent) L*-closure system.

Proof Suppose k is an L*-closure L-system. It is easy to

see that }k is an L*-closure system by Theorem 3.1.

Now suppose k is a v-consistent L*-closure L-system.

We need to check that for any A 2 LX , v�
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� ! Ai �
T

Ai2LX ;k ðAiÞ ¼ 1Sðv� A;

AiÞ� ! Ai which is equivalent to
T

Ai2LX ;kðAiÞ¼1

SðA;AiÞ� ! Ai � v!
T

Ai2LX ;kðAiÞ¼1 Sðv� A;AiÞ� ! Ai

which is true. Indeed,
T

Ai2LX ;kðAiÞ¼1 SðA;AiÞ� !Ai �
T

Ai2LX ;kðAiÞ¼1 SðA;v!AiÞ�

! ðv!AiÞ
¼
T

Ai2LX ;kðAiÞ¼1 Sðv�A;AiÞ�

! ðv!AiÞ
¼ v!

T
Ai2LX ;kðAiÞ¼1 Sðv�A;AiÞ�

!Ai:

h

Based on Proposition 4.2 and Proposition 4.3, it is easy

to get the following theorem.

Theorem 4.1 Let k be an (v-consistent) L*-closure L-

system on X and } an (v-consistent) L*-closure system on

X. Then k ¼ k}
k
and } ¼ }k}

, i.e., mappings k 7!}k and

} 7!k} form a one-to-one correspondence between (v-

consistent) L*-closure L-systems on X and (v-consistent)

L*-closure systems on X.

Example 4.1 The L*-closure system associated with the

L*-closure L-system given in Example 3.1 is exactly the

family } ¼ fva j a 2 ½12 ; 1	g. It is routine to check that this

L*-closure system is v-consistent for v ¼ 1
2
. Moreover, we

can readily check that: for any a 2 ½0; 1
2
Þ, the closure of

A ¼ va is v1
2
; and for any a 2 ½1

2
; 1	, the closure of A ¼ va is

v1.
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5 The Category of L*-closure L-system Spaces

Let k
X

and k
Y

be L*-closure L-systems on X and Y re-

spectively. A mapping f : X �! Y is said to be continuous

from ðX; k
X
Þ to ðY ; k

Y
Þ if k

Y
ðWÞ� k

X
ðf ðWÞÞ holds for any

W 2 LY , where f ðWÞ ¼ W 
 f . The category of L*-clo-

sure L-system spaces with continuous mappings being

morphisms is denoted as CLSS. Given a fixed element

v 2 L, the category of v-consistent L*-closure L-system

spaces with continuous mappings being morphisms is

denoted as cCLSS. Suppose CX and CY are L*-closure

operators on X and Y respectively. A mapping f : X �! Y

is said to be continuous from ðX;CXÞ to ðY ;CYÞ if

CXðf ðWÞÞ � f ðCYðWÞÞ holds for any W 2 LY . The

category of L*-closure spaces with continuous mappings

being morphisms is denoted as CS. The category of v-

consistent L*-closure spaces with continuous mappings

being morphisms is denoted as cCS.

Based on the relationship between L*-closure systems,

L*-closure L-systems and L*-closure operators obtained in

Sects. 3 and 4, a natural question arises that whether we can

develop continuous mappings between L*-closure system

spaces. In this respect, we give the following definition.

Definition 5.1 Let ðX; }
X
Þ and ðY; }

Y
Þ be L*-closure

system spaces. A mapping f : X �! Y is said to be con-

tinuous if for any W 2 LY ,
\

Ai2}X

Sðf ðWÞ;AiÞ� ! Ai �
\

Bi2}Y

SðW ;BiÞ� ! f ðBiÞ:

In the following, the category of L*-closure system

spaces with continuous mappings being morphisms is

denoted as CSS. The category of v-consistent L*-closure

system spaces with continuous mappings being morphisms

is denoted as cCSS.

It is easy to see that all categories mentioned above are

concrete categories. Moreover, categories cCLSS, cCS,

and cCSS are subcategories of CLSS, CS, and CSS,

respectively. In the sequel of this section, we will only

focus on the interrelations of these categories instead of

categorical properties of themselves. One can refer to [1]

for more content about concrete categories.

Proposition 5.1 Let ðX;CXÞ and ðY ;CYÞ be L*-closure

spaces. If f is a continuous mapping from ðX;CXÞ to

ðY;CYÞ, then f is continuous from ðX; k
CX
Þ to ðY; k

CY
Þ.

Proof Suppose W 2 LY , we need to prove k
CY
ðWÞ�

k
CX
ðf ðWÞÞ, i.e., SðCYðWÞ;WÞ� SðCXðf ðWÞÞ; f ðWÞÞ

which is true. Indeed,

SðCYðWÞ;WÞ ¼
V

y2Y CYðWÞðyÞ ! WðyÞ
�
V

x2X CYðWÞðf ðxÞÞ ! Wðf ðxÞÞ
�
V

x2X CXðf ðWÞÞðxÞ ! f ðWÞðxÞ
¼ SðCXðf ðWÞÞ; f ðWÞÞ:

h

Proposition 5.2 Let ðX; k
X
Þ and ðY ; k

Y
Þ be L*-closure L-

system spaces. If f is a continuous mapping from ðX; k
X
Þ to

ðY; k
Y
Þ, then f is continuous from ðX;Ck

X
Þ to ðY ;Ck

Y
Þ.

Proof Suppose W 2 LY , we need to prove Ck
X
ðf ðWÞÞ

� f ðCk
Y
ðWÞÞ, which is true. In fact, we have

Ck
X
ðf ðWÞÞ ¼

T
Ai2LX ;kX ðAiÞ¼1 SðW 
 f ;AiÞ� !Ai

�
T

Bi2LY ;kY ðBiÞ¼1 SðW 
 f ;Bi 
 f Þ� ! ðBi 
 f Þ
�
T

Bi2LY ;kY ðBiÞ¼1 SðW ;BiÞ� ! ðBi 
 f Þ
¼ ð
T

Bi2LY ;kY ðBiÞ¼1 SðW ;BiÞ� !BiÞ 
 f
¼ f ðCk

Y
ðWÞÞ:

h

Proposition 5.3 Let ðX; k
X
Þ and ðY ; k

Y
Þ be L*-closure L-

system spaces. If f is a continuous mapping from ðX; k
X
Þ to

ðY; k
Y
Þ, then f is continuous from ðX; }k

X
Þ to ðY; }k

Y
Þ.

Proof Suppose W 2 LY , we have
T

Ai2}kX
Sðf ðWÞ;AiÞ� !Ai ¼

T
Ai2}kX

SðW 
 f ;AiÞ� !Ai

�
T

Bi2}kY
SðW 
 f ;Bi 
 f Þ�

! ðBi 
 f Þ
�
T

Bi2}kY
SðW ;BiÞ� ! ðBi 
 f Þ

¼
T

Bi2}kY
SðW ;BiÞ� ! f ðBiÞ:

This means that f is continuous from ðX; }k
X
Þ to ðY ; }k

Y
Þ. h

Proposition 5.4 Let ðX; }
X
Þ and ðY; }

Y
Þ be L*-closure

system spaces. If f is a continuous mapping from ðX; }
X
Þ to

ðY; }
Y
Þ, then f is continuous from ðX; k}

X
Þ to ðY ; k}

Y
Þ.

Proof Suppose W 2 LY , we need to prove

k}
Y
ðWÞ� k}

X
ðf ðWÞÞ. Indeed, we have

k}
X
ðf ðWÞÞ ¼ Sð

T
Ai2}X

SðW 
 f ;AiÞ� ! Ai;W 
 f Þ
� Sð

T
Bi2}Y

SðW ;BiÞ� ! Bi 
 f ;W 
 f Þ
¼ Sðð

T
Bi2}Y

SðW ;BiÞ� ! BiÞ 
 f ;W 
 f Þ
� Sð

T
Bi2}Y

SðW ;BiÞ� ! Bi;WÞ
¼ k}

Y
ðWÞ:

h
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From Theorem 3.2, Theorem 4.1 and Propositions 5.1–

5.4, we have the following result.

Theorem 5.1 (1) The categories CS, CSS and CLSS are

isomorphic with each other; (2) The categories cCS, cCSS

and cCLSS are isomorphic with each other.

6 Conclusions

In this paper, we first proposed the notion of (v-consistent)

L*-closure L-system where L is a complete residuated

lattice and * is a truth stresser on L. We investigated the

relationship between (v-consistent) L*-closure L-systems

and (v-consistent) L*-closure operators. Our results show

that a one-to-one correspondence can be established

between these two structures. Furthermore, we proposed

the notion of v-consistent L*-closure system and showed

that the notion of (v-consistent) L*-closure L-system pro-

vides an alternative way to characterize (v-consistent) L*-

closure systems. Finally, we put (v-consistent) L*-closure

system spaces into categories in virtue of the notion of

continuous mapping and proved that the categories of (v-

consistent) L*-closure L-system spaces, (v-consistent) L*-

closure spaces and (v-consistent) L*-closure system spaces

are isomorphic with each other. Our results verify the

capability of our proposed notion of (v-consistent) L*-

closure L-system in characterizing fuzzy closure systems

existing in the literature.
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