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Abstract In this paper, fuzzy cellular neural network
with distributed delays is investigated. By using Gaines and
Mawhin’s continuation theorem of coincidence degree
theory and the method of Lyapunov function, some suffi-
cient conditions for the existence and global exponential
stability of periodic solution of such fuzzy cellular neural
networks with distributed delays are established. An
example is given to illustrate the feasibility of our main
theoretical findings. Finally, the paper ends with a brief
conclusion. Some interesting numerical simulations that
complement our analytical findings.
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1 Introductions

It is well known that the cellular neural networks (CNNSs)
are formed by many units called cells [1]. There are two
basic CNNs. One is traditional CNNs which were first
introduced by Chua and Yang [2, 3] and another is fuzzy
CNNs (FCNNs) [4, 5] which integrate fuzzy logic into the
structure of traditional CNNs and maintain local connect-
edness among cells. Different from previous CNNs,
FCNNSs have fuzzy logic between their template and input
and/or output besides the “sum of product” operation.
During the last decades, many researchers reveal that
FCNNSs have their potential in image processing and pat-
tern recognition. In hardware implementation, time delays
are inevitably occur due to the finite switching speed of the
amplifiers and communication time. The qualitative
research and analysis of FCNNs with delays have been
investigated by numerous authors and much richer
dynamics has been reported. For example, Wang and Ding
[6] focused on the synchronization for delayed non-au-
tonomous reaction—diffusion fuzzy cellular neural net-
works. Syed Ali and Balasubramaniam [7] considered the
global asymptotic stability of stochastic fuzzy cellular
neural networks with multiple discrete and distributed
time-varying delays. Long and Xu [8] studied the global
exponential p-stability of stochastic non-autonomous Tak-
agi-Sugeno fuzzy cellular neural networks with time-
varying delays and impulses. Rakkiyappan et al. [9]
investigated the sampled-data state estimation for Marko-
vian jumping fuzzy cellular neural networks with mode-
dependent probabilistic time-varying delays. Yang et al.
[10] gave a theoretical study on the exponential stability of
impulsive stochastic fuzzy cellular neural networks with
mixed delays and reaction—diffusion terms, Gan [11]
made a discussion on the exponential synchronization of
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stochastic fuzzy cellular neural networks with reaction—dif-
fusion terms via periodically intermittent control. Balasubra-
maniam et al. [12] presented the dynamical behaviors of
interval fuzzy cellular neural networks with mixed delays
under impulsive perturbations. Gan et al. [13] dealt with the
exponential synchronization of stochastic fuzzy cellular neu-
ral networks with time delay in the leakage term and reac-
tion—diffusion. Han [14] analyzed the global exponential
stability of delayed fuzzy cellular neural networks with
Markovian jumping parameters. Wang and Ding [15] estab-
lished the conditions for synchronization for delayed non-
autonomous reaction—diffusion fuzzy cellular neural net-
works. For more research on the dynamical behavior of fuzzy
cellular neural networks, one can see [7, 16-37, 46-48].

It must be pointed out that neural networks usually have
a spatial nature due to the presence of an amount of parallel
pathways of variety of axon sizes and length. A distribution
of conduction velocities along these pathways will lead to a
distribution of propagation delays. Thus, the time-varying
delays and continuous distributed delays are more appro-
priate to fuzzy cellular networks [38—42]. In this paper, we
consider the fuzzy cellular neural networks with distributed
delays as follows

dX,'i (t) m

T: +Za1j t)ﬁ(yj t) +Zbu .u/ +I()
+ AL lau(t)f, Tk f)f(y;(V))var Ty (1) (1)
+V’" 1 By t)f, it = s)fi(i(s ))dS+V’" (1),
B oyt +Zc,, D880) + YO0 + 400
+ AL m/,, f, Tk(t gz(xt(v))d?JrA Mji(0) (1)
VI 0(1) [ Kt — s)gilgi(s ))derV,: N/'i(t).ui(t)7
(1.1)
where a,-(t) >0, bj(l) >0, a,‘j(l) >0, b,j( ) >0, i=

1,2,..,n,j=1,2,...,m, xi(t) and y/(r) stand for the
activations of the i-th neuron in the X-layer and j-th neuron in
the Y-layer, respectively, at time #; A and V denote the fuzzy
AND and fuzzy OR operations, respectively; f;,j = 1,2, ...,
m, and g;, i = 1, 2, ..., n, are the signal transmission func-
tions; o;(f) and f;(¢) are the elements of fuzzy feedback MIN
and fuzzy feedback MAX in the X-layer at time #; T;(¢) and
H,(?) are the elements of fuzzy feed-forward MIN and fuzzy
feed-forward MAX in the X-layer at time £; v,;(¢) and 0;() are
the elements of fuzzy feedback MIN and fuzzy feedback
MAX in the Y-layer at time ¢, respectively; M;(f) and
N;i(?) are the elements of fuzzy feed-forward MIN and fuzzy
feed-forward MAX in the Y-layer at time #, respectively; ;.
and ;) stand for the external inputs at time #; I,(¥) and
J(¢) are the bias of the i-th neurons in the X-layer and the bias
of the j-th neurons in the Y-layer at time ¢, respectively;
ki(s) > 0is the feedback kernel, defined on the interval [0, 7]
when 7 is a positive finite number or [0, co] while 7 is infinite.
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Kernels satisfy [ k;( sds=1,i=1,2,.
n, j=12,....m
Throughout this paper, we always make the following

assumptions:
(Hl) ai(t)a bj(t)a aij(t)v bij(t)v Cj‘(t)7 dji(t)v ‘xij(t)7 ﬁij(t)v Vji

(1), 0;i(r), Tyj(1),Hy(t), Mji (), N;i(t), Ii(¢), J;(¢) are continu-
ous m-periodic functions.

s)ds =1, fo

(H2) f(.) and g(.) are Lipschitz continuous on R with

I,j=1,2,...m and L i=1.2,
,n and Jj( ) =8i(0) =0, ie., for all x,y € R, one has

M M| <Ll =, lgix) — &) < Lfk = yl.

(H3) There exist constants Fj > 0 and Gi > 0 such that

)| <Fj,1g(0)|<Gi for i=1,2,..,nj=12,...,m

and x,y € R.

Lipschitz constants

The principle object of this article is to explore the
dynamics of system (1.1). That is, we will apply the
Mawhin’s continuous theorem [43] and the method of
Lyapunov function to study the existence and global
asymptotic stability of periodic solutions of system (1.1).

The remainder of the paper is organized as follows: in
Sect. 2, applying the coincidence degree and the related
continuation theorem, some sufficient conditions for the
existence of periodic solution of difference equations are
established. Using the method of Lyapunov function, a
series of sufficient conditions for the global asymptotic
stability of the system are obtained in Sect. 3. In Sect. 4,
we give an example and its numerical simulations which
show the feasibility of the main results. The paper ends
with a brief conclusion in Sect. 5.

2 Existence of Periodic Solutions

For convenience in the following discussing, we always
use the notations:

[~ = min [f(1)],

€0,

=2 [T rwaist = ([ |dt),

where (1) is an ®-periodic function defined on R. For any
solutions

(1) = (x(0)" ()"

[T = max [f(z)],

t€[0,0)

= (xl(t)7x2(t)7 . '7xn(t)7yl (Z)7y2(t)7 . 'aym(t))T
and
() = @0y’

= (x}(£),25(0), - ., x5 (0), V(0,958 - V()
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of system (1.1), we define

@707 =5 = 3 mas o0 0
+Z,?§z§] )=

In order to obtain the existence of periodic solutions of
(1.1), we shall first make the following preparations.

Let X, Y be normed vector spaces, L : DomL C X — Y
be a linear mapping, N : X — Y be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codimImL < + oo is closed in Y. If
L is a Fredholm mapping of index zero and there exist
continuous projectors P: X — Y and Q : X — Y such that
ImP = KerL, ImL = KerQ = Im(I — Q). It follows that
L|DomL N KerP: (I — P)X — ImL is invertible. We denote
the inverse of that map by Kp. If Q is an open bounded
subset of X, the mapping N will be called L-compact on Q
if ON(Q) is bounded and Kp(I — Q)N: Q — X is compact.
Since ImQ is isomorphic to KerLZ, there exists an isomor-
phism J: ImQ — KerL.

Lemma 2.1 ([43] Continuation Theorem) Let L be a

Fredholm mapping of index zero and N be L-compact on Q.
Suppose

(@)  For each A € (0,1), every solution x of Lx = /Nx is
such that x ¢ 0Q,;
(b) ONx #0 for each x € KerLN0Q and deg{JON,

QnKerL,0} # 0.

Then the equation Lx = Nx has at least one solution
lying in DomL N Q.

Lemma 2.2 Aperiodic solution (x*T(t),y*T(t))T of system
(1.1) is said to be globally exponentially stable if there exist
constants 7 >0 and M>1 such that |x;(t) — x;(1)|

SMH((ﬁTmDT)T—(X*T— T THe*""’ for all t>0,i=
1727...,}1, ’yj( y] ’<MH d) (,D) _(‘x*T _y*T)T

lle=", for all t >0, i=1,2,..
system (1.1).

., n, for any solution of

Lemma 2.3 Let x and y be two states of system (1.1).
Then

[ 25(0)8(0) = A1) 0)

< 3 I - 50
and

‘ Iﬂu J lﬁl/ gj ‘ Z!BU ||gJ |

In the following, we will ready to establish our result.

Theorem 2.1 Suppose that the conditions (HI)—(H3)
hold, then system (1.1) has at least one w periodic solution.

Proof Let
X:Z:{z:(xl,xz,...,xn,yl,yg,...,ym)T 2.1)
€ C(R,R™) : z(t + w) = z(1)}
and define
zl| = max |x;(¢)| + max |y;(t)], z€X or Z.
el =3 s, 0]+ 3 s )
(2.2)
O

Equipped with the above norm ||.||, X and Z are Banach
spaces. Let

(L2)(1) =u =

and

du

< (2.3)

(N2),(1) = —ae)xle) + iau(t)fj(yj(t)) + 3 by () + 1i(1)

T ot fr it —s f/ y,(sg)ds—}—/\ (1) (1)
V’”lﬁ,, ) ik < (1 — s U(Y))ds+vm1sz() (1),
=b;(0)y;(1) + ch,-(z)g,(x,(z)) X} dii(t) (1) + (1)

+ Ay i) f; Ki(t = 5)gi(xi(s))ds -+ AL Mii (1) i (1)

VI 05(1) f Kt = s)gilgi(s))ds + VI Ni(1) (1),

(2.4)

(N2),.1(1) =

where z€ X and i =1,2,...,n, j=1,2,...,m. Then it
is trivial to see that L is a bounded linear operator and
KerL =17, ImL =12, and dimKerL =n+m
= codim ImL, then it follows that L is a Fredholm mapping
of index zero. Define

] (0]
:—/ t)dt, z € X, Qz——/ z(r)dt,z € Z.
o Jo

It is not difficult to show that P and Q are continuous
projectors such that ImP = KerL, ImL = KerQ = Im(I/
—Q). Furthermore, the generalized inverse (to L) Kp:
ImL — KerPﬂDomL exists and is given by Kp(z) =

o z(s o Jo z(s)ds. Obviously, ON and Kp(I —
Q)N are contlnuous. Smce X is a Banach space, using the
Ascoli-Arzela theorem, it is not difficult to show that

Kp(I — Q)N(Q) is compact for any open bounded set Q C
X. Moreover, QN (Q_) is bounded. Thus, N is L-compact on

Q with any open bounded set Q C X.
Now we are at the point to search for an appropriate
open, bounded subset Q for the application of the
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continuation theorem. Corresponding to the operator

equation Lx = ANx, 4 € (0, 1), we have
dx; (1
%—) —a;( +Za,, +Zb,, ()

Lo (1) S Ik = s)fi0i(s ))derA}”: 5 (1)1 (1)

+V}"=1/J'U(t)fmkj(l—s)f( j(5))ds + Vit Hy (1) (1)

i) _ 0+ Y a0 + Y onlo)+
AL 3(0) 1ol = )i (5))ds + AL M) )
VI 0i(0) [} kit — 5)gi(gi(s ))ds+V?1N/i(I)#i(Z):|~

@5)

Suppose that z(¢) = (x1(£), x2(), . . ., x,(£),  y1(8),y2(2),

- ¥m(2))" € X is an arbitrary solution of system (2.5) for
a certain 4 € (0, 1), integrating (2.5) over [0, w], we obtain

m

+ ZT bi(t) (1) + Ii(1)
(j(s))ds + AL Ty (8) (1)

s))ds + \/j'-”_lH,-j(t)uj(t)} dr,

j(;) a;(t)x;(t)dt = fo |:i a(1)f; (y;(1))
OCU [t T
+ VI [3,/ t)fr kit = s)fi (s
J by = 2 [2 Vel (e )) + 3080+ 50
A 1) = 9081 (5))ds -+ A M)

+V, 1 jl ]; T gt gl( ))der\/}’le,»(t)u,(t)} dr

(2.6)

In view of the hypothesis that z = {z()} € X, there exist
&, n € [0, w] such that

1€[0,0]
yi(n) = tei[%fw]{}’j(t)} (i=12,..,nj=12,...,m)
(2.7)
From the first equation of (2.6), we have
a;ox; (& f/ [Zau ()i (s (2 by (1) (1)
j=1

+ L@+ A

oc,](l) /ti ki(t — s)f;(y;(s))ds
~ a0 [ (= (0

VB0 [ 0= 0509)as
v B0 [ o= s

mnt]

which leads to

Hdt (2.8)
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xi(8) <

m
(35 e ) oo

J=1

8l =

+ +), ] —
+(T5 +Hy )| =K (2.9)

where i =1,2,...,
we have

o= [ [

+ (0] +

n. From the second equation of (2.6),

Z le gl xl
N1 7;i(t) /ti ki(t — 5)gi(x;(s))ds

jl l’tl

— A0 [ K= o)

+ \/l’leej,-(t) /ti k,-(t—s)gi(x,-(s))ds

VL 04(0) /l i(t — $)2:(0)ds

Nji () (1) Hdt,
(2.10)

+ | N M (0] + [V

which leads to
1 n n

2 : + + + 2 : o +
bj - (Cji + ’yﬂ + Ojl)Gl + — djl 'ui + J]

yi(n) < =

(v 4N )| = 211)

where j=1,2,...,m. Setting t,0 =0 and #,4; = @ and
according to (2.5), (2.9) and (2.11), we have

/ w|x,-(t)|dt§2 / % (1) de< / w|ai(t)||xi(t)|d[
k=1vK—

-/ > (0l ars [ liola

v j’_ilﬂa,.j(t)+|aij<r>|+|ﬁi,-<r>|>] 03(1)) 1t
+/0("(|A;"1 (0 VI Hy (O 1)) i

(Fote) ([ e) ([0t
[ wontar) +Z(/ 0far)

X </ Ifi (v; (1))] dt> +va o+l o

X
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+ (1 + 1 Yo < afllxl v
+ Z \/E(a; + o + B;)Fj + Zb;ujw +I o
= =1
+ +\,
+ (Tij +Hij)uj » (2.12)

Multiplying both sides of system (2.5) by x,(¢) and
integrating over [0,w], we derive

e md = - [ ane
0,/0 {(0)%:(1)dr )/0 i(1)x; (1)de
+g/0 Zaij(t)ﬁ(yj(t))xi(f)df
+/1/ -
0
.

0

/\’” Lo (1 )/ti ki(t — s)ﬁ(yj(s))ds}x,'(t)dt

v;;lﬁ,,(t) /t kit — s)ﬁ(yj(s))ds}x,-(t)dt

w2 [T b0+ 1)+ 42T 000
+ v]f”:l H,-j(t)uj(t)] x;(¢)de
(2.13)

It follows from (2.13) and Lemma 2.3 that

@ m

/ 2 (0)ldr < / > IO s 0l
G
[
|
/

B ()11 (v (1)) | (1)l

+ /(/)
S o)) + 1 >|> e 1)

. (
0 j=1
(0]
+/0 AT (0] (1)

< {Z (a5 + ) +me (73 + 85w + 17
=

va( [ wF)

bei(1)]dr

/ Kot — 51 (3(5))ds

+

O(,,
n Bt / Kt — )6 (3(5))ds| (1)

ib

Jj=

S)

0)|lxi(r)]dr

+

S

+

IH,/ ,uj ‘\x, )|de

S

Ms

g (1) 15 05 (0) |dt+/ Z\au )1 05(0)) )

S

~.
I

\Ms

S

|+ VI () (0] (1)

(2.14)

Then we get

1 m
il < [Z (af + o+ 85 )My +Zbuu,

i |j=1

(T + HY )i+ 1 [Vo = 01.(2.15)

Thus it follows from (2.12) and (2.15) that

(0] m
/0 (0l <af O/ + Y V(a4 + B )F,
=1

+ + +\,,+
+Zbuﬂjw+l o+ (T +H) )ufo

(2.16)

Setting 7o = 0 and #,.; = ® and according to (2.5),
(2.11) and (2.16), we have

g+l ot w
/ |y;(¢)]dt < Z/_l |Yj(f)|df§/0 |b; (1) |]y;(1)|dz
o [ olmla [

<[ Z ()] + )] + w,»,»(r))] e ()lde
[ (1A M0l + 1V M)
<( [ morar) ([ |y,-<z>|2dr) )

3 ([ ewoter) ([ ratsontar)
3 ([ mtotar) ([Tlatsonrar)
3 ([ rar) ([Tlaora)

Y vuro+fo+ (M 48] )0
i=1

<Bf IV + 3 Vo +3f +05)G
i=1

n
+ Zd;ufw +J o+ (MJ+ + N;)ufco.
i=1

(2.17)

Multiplying both sides of system (2.5) by y;(#) and
integrating over [0,w], we derive
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- [0] ' . _ 0] ' 2
0_/0 i(#)y;(t)de )/0 bj(t)yj (r)dt
w1 [ st

1 7w [ ko= atusnas |y
2 [ v / K = 9 x))s 3 0

”/o Zd,, )0(0) + Jj(0) + Ny M (01 1)

+ Visy Ni(0) (1) | y;(£)dr.

(2.18)
It follows from (2.18) and Lemma 2.3 that

/|yj JJdr < /z| )i e (0) Ly (1)l
[ [ ke stes
+/Ow VI 0;:(0) /I:Tki(l‘—s)gi(xi(s))ds
[ > di0)le) + 50
+/O“’w1 R (0) VN0 (0) 1)
<[ Z|c,, )i Ca0)) ()t

v/ “im, ()1 0)) s 0

+/O“’i|e,, (0l (1)) )t

<[ <;|clji<r>|ui<r>|+|1j<r>|> (0l

[ L O 0] 4V N0 ) by
< [z (e #7500+ Dt (490 )

i=1

va( [ bior) -

Then we get

ly;(1)|dt

[y (2)de

lyj(2)|d

+
+,

(2.19)
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n

> ( +95 + 9*)61' - zn:d;u,
i=1

i=1

il < —
y]z b

(2.20)

+ (M 4N i+ |V =

Thus, it follows from (2.17) and (2.20) that

/|yj |dr<b+s\/_+2\/_( +y],+0;)c;

+ Zld;yl»w +J o+ (M;[ + Nf[),ufw
(2.21)

In view of (2.16) and (2.21), there exist positive con-
stants  y;(i =1,2,...,n) such that |x;(¢)|<y;, i=
1,2,..,n, for t€[0,w] and |yj(t)| <y J=1,2,

.,m, for t € [0, w]. Obviously, y;(i = 1,2,...,n+ m) are
independent of the choice of 4 € (0, 1). Take

n+m

A= ZX:’*Xo,
i-1

where y, is taken sufficiently large such that

m m
min @A > max [Z lag|Fy + Y byl + |1
= —1

1<i<n 1<i<

D Tiw + D Hyu + 3 (|7l + 1By
i=1 i=1 j=1

1<j<m 1<

M N+ (5] + 16
i=1 i=1 i=1

min bA > max |:Z|CII|G+Z|thuz|+|J|

Let
Q= {z= (01 (1), x2(0), - ., xa (1), 31.(8), 2(0), - - s (1)
c Rn+m|
HZ” = H(-xlvx27' c Xy Y1, Y2, "7ym)||T<A}’ then it is

easy to see that Q is an open, bounded set in X and verifies
requirement (a) of Lemma 2.1. When z € 0Q NKerL, z =
(X1,%2, o oy Xy V1, V2, - .,ym)T is a constant vector in
R"™™ with

lll] = Per| + Feaf - -+ el + [+ [y2l + - 4 [y

Then

QNZ:QN(xlax27'"7-xn7ylay27"'7ym)T
rad rad = a T
= (fl7f27'"7fn7fn+1afn+27"')ﬁl+m) )
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where

f-:—ax,—}—Z uf/yj +Zb1/,uj+l
! 1
L / o= 0s)ds - [ ATy O
_ [';T 1 ()
vy [ =y + o [ o0,
-1
Fury = =biy + Y Gigilw) + Y dpg; +;
i=1 i=1
t 1 @]
+ /\?:1 “7]1/ ki(l — s)gi(x,-(s))ds + 5/0 A?:lei(l)ui(t)dl
e U
VL [t SetaNas o [ VLN om0
t—1 0

Thus,

n

llonzl| ="

i=1

éixi—z Ilf/(y/) Z I/Nj_ii

J=1 J=1

— g [ bty [ T
/

vy [ - -
Zdllﬂr - J
AL [ e 9o = [ AL Moo

o Jy

=

+ E/y/ ﬁ/lg: xx

i=1

_ 1 1 (0]
iy O [ = 9o - [V N
> Zu,|x,| - Z {Z |ay|F; +Z|b,]u [+1; +Z Tin

=1 |j=1

4>

ey [ =0y = A / it =520

- Z
+ Zl;ijlyj\l - Z {Z |eilGi + Z (dig,| + 173 + > M}
I j i i=1 i=1

m
m

*Z
> Saisl - 3 S 3 Bl 4

i=1 [j=1

By / (=Y 0(9)ds = VL, Ik-<z — f(0)ds
o+ anﬂ/;u,-* +
i=1

ot
N / (1 — )8 (s))ds — AL 7 / i(t — 5)g4(0)ds
T -1

13
VLG / ble = )i =V [ o= )i 0)ds
T -1

m

o ZHW +Z(\&.;,-|+\/?,-,-|>ﬁ

i=1

Z i1yl 72 |:Z‘CJ"G +Z‘d/x”1| + ‘-I|

Jj=1 i=1

n

M M,+Z

i+ Z (“7/[|+‘é/‘i‘)c

m

> rmn a,|x,|7 ,max [Z ai|F; +Z\b,,/1/\+|l\
<n =
#3Ti S+ 3 ahe
+ mm bylyj| — max [Z [¢i|Gi +Z Idjips;| + | ;]

i=1
+Z;Mﬁu7 +;N_;ur +;<w,-,»| +10:)Gi| >0

Therefore, ONz = ON(x1,X2,...,Xn, V1,2, - .,ym)T #+
(0,...,0,0,...,0)T for (xl,xz,...,xn,yl,yg,...,ym)T
€ 0Q N KerL. So the condition (b) of Theorem 2.1 holds
true.

Now let us consider homotopic ¢(x1,x2,. .., Xu, V1,2,

o Ymy 1) = UONz+ (1 — p)Gz, u € |0,1], where Gz =
(=@1X1, « oy —@nXns —b1y1, - . ., —byym)". Letting J = I be
the identity mapping and by direct calculation, we get

.on KerLZ; 0}
T.QnKerL; 0}

deg{JQN(Xl,Xz, s Xn, Y1,Y2, - - ~,ym)
=deg{ON(X1,X2, ., Xn, V1,Y2; -« s Ym)

= deg{(X1,X2, -, X, Y1, Y25 - - o Ym, 1) ; QN KerL; 0}
= deg{P(X1,X2, - - s Xns V1,25 - - o Ym; 0)7; Q N KerL; 0}
—a; O 0 0 0 0 7
0 0 0 0 0
. 0 0 —-a O 0 0
= sign4 det _
0 0 0 —-b; O 0
0 0 0 0 0
L O 0 0 0 0 —b,l
Then
deg{JON (x1,x2, .., Xn, Y1, 2,
=sign{ (— 1)"™"aya - a,b1by---b,} #0.

By now, we have proved that Q verifies all requirements
of Lemma 2.1, then it follows that Lz = Nz has at least one
solution in DomL N Q, namely, system (1.1) has at least
one m-periodic solution. The proof is complete.

3 Global Exponential Stability of Periodic
Solution

In this section, we shall present sufficient conditions for the
global exponential stability of system (1.1).

Theorem 3.1 Suppose that (Hl)—(H3) and the following
assumption holds true:

(H3) The following inequalities are satisfied:
a; — (c;,r + 5 + Qﬁ)Gi >0,

- + 0t pt
b — (aij + o +ﬁij>Fj > 0.

then the periodic solution of system (1.1) is globally
exponentially stable.

Proof 1In view of Theorem 2.1, system (1.1) has an -
periodic solution z*() = (x;(¢),x5(1), ..., x3(1),¥;(1), ¥}

(1), (D)
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Let Z(t) = (xl(t)aXZ(t)a o 'axn(t)ayl(t)ayZ(t)a o '7ym(t))T
be an arbitrary solution of system (1.1). Then it follows
from (1.1) that

d(xi(r) — (%7 (1))
dr

= —ai(1) () +Zay (B0 £ (3 0))

4%%%U[ﬁwﬂwm»wA%%o

X /l; ki(t — s)f; (y]* (s))ds

v By0) [ k0= s)))ds =y ()

< [ =51 (550)as

%ﬁ@éﬁﬁﬁz—mnmm—gv»
+Z% —8i(¥(0))
+Aﬁlmuy[:h0smmn@»MAz,%o>
< [ k= lo)es

V00 [ b= () ds= VI 0400

X /tt ki(t — 5)gi(x; (s))ds.

gl xl

According to the assumptions (H2), (H3) and Lemma
2.3, we have

dli(r) = x; (1)]
dr

= a0l 50+ Y layO1}i00) 5 ()

+ ALy og(t) /ti ki(t — s)fi(vi(s))ds— ATy o(2)

< [ =515 (050)as
VB0 [ 0= 0509
<[ =915 (570)as
)=/ (0)

3 (af + o+ 85) o

j=1

- \/jm:lﬁlj(t)

)

< —a; ’xi(t

-y (@)},

@ Springer

dly; (1) — v (1)]

dr

= ( )|yl | + Z |C]l ||g1 xl

+¢A£1wxﬂ/frho-ﬂgxnﬁnd&—Aﬂlwxﬂ
< [ k=9t
00 [ (= ) l(s))ds— VL, 0400
x[}mﬂmwww

y/ |+Z<J’ +le +0+)
_xi(t)‘a

—8i(x z(t))’

+ | Vie,

b ‘yj

X Gi|xl~
(32)

where % stands for the upper right derivative. Define a

function V by

Vi =3 i) 0]+ Y- o0 - 550]
2 2

By virtue of (3.1) and (3.2), we derive
= a0 0+ 5 b

<y [ [e0) ~ 5, (0] + Z (aj + 3 +B0F 0 y;mﬂ

m
+2
=1

(3.3)

57 ) =5 0]+ 3 (6 +35 + 07) Gl x;‘(r)@
i=1

n

- ‘Z {a - ( i +0*) ,} GEEAG]
_ ; [b]_ - (a; + ocfjf +ﬂ;)Fj] ’yj(t) *)’;(f)’-

(3.4)

It follows from condition (H4) that there exists a posi-
tive constant ¢ such that

- gt
ai = (¢ 495 +07)Gi=e,

and

- + o pt
by — (aij + o +5U)FJZS
Then

+

d
E<_6V() for

Then we have V(r) <

t>0.

e V(0), for t > 0. Thus,
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t)‘ S e*ﬁt

3 ) = 0]+ 3|0
i=1 =
« [Z 5(0) X O]+ 3 |(0) - y;<o>]] .

Therefore, the periodic solution of system (1.1) is
globally exponentially stable.

Remark 3.1 1In [1, 44, 45], Cao established the sufficient
conditions for the globally exponential stability of delayed
cellular neural networks by constructing a suitable Lya-
punov functional. All the coefficients of cellular neural
networks are constants and there is no fuzzy logic. In this
paper, we consider the existence and globally exponential
stability of cellular neural networks with distributed delays
with varying coefficients and fuzzy logic by the coinci-
dence degree theory, Lyapunov function. (1.1) is more
general than the systems in [1, 44, 45]. Moreover, the
results in [1, 44, 45] cannot be applicable to system (1.1) to
obtain the existence and exponential stability of periodic
solutions. In addition, one also can observe that all the
results in [8, 14] and references therein cannot be appli-
cable to system (1.1) to obtain the existence and expo-
nential stability of periodic solutions. This implies that the
results of this paper are essentially new.

4 An Illustrate Example

In this section, we present numerical examples to illustrate
the effectiveness of the obtained results. Consider the fol-
lowing fuzzy cellular neural network with distributed
delays:

. 2
dx(;—gt):—a,(t )xi (1) +Za Nfi(yi(1) +Zb,, 1) (1)
Jj=1
+/\ 1 o(1) f[ kit —s) I(y/(s))ds + A u(t):“j( )
+V2 1 Byt J, Kt — JS(yJ(S))dS+V2 (1)1 (1),
DOy oyt0) + Zc,, @) + Zd,i<t>ui<t> 10
+ AL (1) f,_rk(l 5)8i(xi(s ))<1S+/\2 1Mji (1) (1)
VR 0i(0) [ kit = 5)gi(gi(5))ds + VI N (D) (o),
4.1)
where i,j=1,2, and a,(t) = 15 —sin2¢t, ax(t) =14 —

cos2t, bi(t) =14 +cos2t, by(t) =16 —cos2t,
a;(t) =3 +cos2t, by(t)=1—cos2t,
(1) =2 +cos2t, oy(t) = 0.5+ sin2t,

B(t) = 0.5 +cos2t, Tj(t) =2 +sin2t,
H()f1+0052t, c;j(t) =2+ sin2t,

AVAMAMAMAAMAN]

25

0, 0, , 00, v,

L L L L L L L L L
u] 20 40 [=in} 80 100 120 140 160 180 200
t

Fig. 1 Transient response of state variables x;(¢),x2(¢),y1(¢) and
vo(f), where the blue line stands for x;(f) the red line stands for x,(%),
th purple line stands for y,(¢) and the green line stands for y,(¢)

7;(t) = 1 +cos2t, 0;(t) =2 +sin2t,
M;(t) =24 2cos2t, Ni(t) =2+ 2sin2t,
) =

I;(t) =34 2cos 2t,J;(t) = 2 + 3sin 2t,
Let
1 .
filx) = gilx) =5 (e + 1] = e = 1) = 1,2).
Then we have ay =14, a; =3, by =13, b, =
15, c;ir:3, yjf:2, 0;23, a$:4, 051»7:1.57

f = 1.5. It is easy to see that the following conditions
a; — ( + 97 +9+)G >0, b — (a; +of+ B)F;
>0, 1i,j=1,2 are satisfied. Thus, all the assumptions in
Theorems 2.1 and 3.1 are fulfilled. Thus, we can conclude
that system (4.1) has one m-periodic solution, which is

globally exponentially stable. The results are illustrated in
Fig. 1.

5 Conclusions

In this paper, applying the continuation theorem of coin-
cidence degree theory and the Lyapunov function methods,
we investigate the existence and global exponential sta-
bility of a periodic solution for fuzzy cellular neural net-
works with distributed delays. Several simple sufficient
conditions checking the global exponential stability and the
existence of periodic solutions of the fuzzy cellular neural
networks with distributed delays have been obtained. A
numerical example is presented to illustrate the effective-
ness of the derived results.

Acknowledgments This work is supported by National Natural
Science Foundation of China (Nos. 11261010, 11201138 and

@ Springer



50

International Journal of Fuzzy Systems, Vol. 18, No. 1, February 2016

11101126), Natural Science and Technology Foundation of Guizhou
Province (J[2015]2025), Scientific Research Fund of Hunan Provin-
cial Education Department (No. 12B034) and 125 Special Major
Science and Technology of Department of Education of Guizhou
Province ([2012]011).

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Cao, J.D.: Global exponential stability and periodic solutions of
delayed cellular neural networks. J. Comput. Syst. Sci. 60(1),
38-46 (2000)

. Chua, L.O., Yang, L.: Celluar neural networks: theory. IEEE

Trans Circ. Syst. 35(10), 1257-1272 (1988)

. Chua, L.O,, Yang, L.: Celluar neural networks: applications.

IEEE Trans. Circ. Syst. 35(10), 1273-1290 (1988)

. Yang, T., Yang, L., Wu, C., Chua, L.O.: Fuzzy cellular neural

networks: theory. Proceedings of IEEE international workshop on
cellular neural networks and applications, p. 181-186 (1996)

. Yang, T., Yang, L., Wu, C., Chua, L.O.: Fuzzy cellular neural

networks: applications. Proceedings of IEEE international workshop
on cellular neural networks and applications, p. 225-230 (1996)

. Wang, L., Ding, W.: Synchronization for delayed non-au-

tonomous reaction—diffusion fuzzy cellular neural networks.
Commun. Nonlinear Sci. Numer. Simul. 17(1), 170-182 (2012)

. Syed Ali, M., Balasubramaniam, P.: Global asymptotic stability

of stochastic fuzzy cellular neural networks with multiple discrete
and distributed time-varying delays. Commun. Nonlinear Sci.
Numer. Simul. 16(7), 2907-2916 (2011)

. Long, S.J., Xu, D.Y.: Global exponential p-stability of stochastic

non-autonomous Takagi—Sugeno fuzzy cellular neural networks
with time-varying delays and impulses. Fuzzy Set. Syst. 253,
82-100 (2014)

. Rakkiyappan, R., Sakthivel, N., Park, J.H., Kwon, O.M.: Sam-

pled-data state estimation for Markovian jumping fuzzy cellular
neural networks with mode-dependent probabilistic time-varying
delays. Appl. Math. Comput. 221, 741-769 (2013)

Yang, G.W., Kao, Y.G.,, Li, W., Sun, X.Q.: Exponential stability
of impulsive stochastic fuzzy cellular neural networks with mixed
delays and reaction—diffusion terms. Neural Comput. Appl.
23(3-4), 1109-1121 (2013)

Gan, Q.T.: Exponential synchronization of stochastic fuzzy cel-
lular neural networks with reaction-diffusion terms via periodi-
cally intermittent control. Neural Process. Lett. 37(3), 393410
(2013)

Balasubramaniam, P., Kalpana, M., Rakkiyappan, R.: Stationary
oscillation of interval fuzzy cellular neural networks with mixed
delays under impulsive perturbations. Neural Comput. Appl.
22(7-8), 1645-1654 (2013)

Gan, Q.T., Xu, R., Yang, P.H.: Exponential synchronization of
stochastic fuzzy cellular neural networks with time delay in the
leakage term and reaction—diffusion. Commun. Nonlinear Sci.
Numer. Simul. 17(4), 1862-1870 (2012)

Han, W., Liu, Y., Wang, L.S.: Global exponential stability of
delayed fuzzy cellular neural networks with Markovian jumping
parameters. Neural Comput. Appl. 21(1), 67-72 (2012)

Wang, L.H., Ding, W.: Synchronization for delayed non-au-
tonomous reaction—diffusion fuzzy cellular neural networks.
Commun. Nonlinear Sci. Numer. Simul. 17(1), 170-182 (2012)
Liu, Y.Q., Tang, W.S.: Exponential stability of fuzzy cellular
neural networks with constant and time-varying delays. Phys.
Lett. A 323(3—4), 224-233 (2004)

Ding, W.: Synchronization of delayed fuzzy cellular neural net-
works with impulsive effects. Commun. Nonlinear Sci. Numer.
Simul. 14(11), 3945-3952 (2009)

@ Springer

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

31.

32.

33.

34.

3s.

36.

37.

Gan, Q.T., Xu, R., Yang, P.H.: Exponential synchronization of
stochastic fuzzy cellular neural networks with time delay in the
leakage term and reaction—diffusion. Commun. Nonlinear Sci.
Numer. Simul. 17(4), 1862-1870 (2012)

Yuan, K., Cao, J.D., Deng, J.: Exponential stability and periodic
solutions of fuzzy cellular neural networks with time-varying
delays. Neurocomputing 69(13-15), 1619-1627 (2006)

Song, Q.K., Cao, J.D.: Dynamical behaviors of a discrete-time
fuzzy cellular neural networks with variable delays and impulses.
J. Franklin Inst. 345(1), 39-59 (2008)

Ding, W., Han, M.: Synchronization of delayed fuzzy cellular
neural networks based on adaptive control. Phys. Lett. A 372(26),
4674-4681 (2008)

Liu, Z.W., Zhang, H.G., Wang, Z.S.: Novel stability criterions of
a new fuzzy cellular neural networks with time-varying delays.
Neurocomputing 72(4-6), 1056-1064 (2009)

Balasubramaniam, P., Rakkiyappan, R., Sathy, R.: Delay
dependent stability results for fuzzy BAM neural networks with
Markovian jumping parameters. Expert Syst. Appl. 38(1),
121-130 (2011)

Tan, M.: Global asymptotic stability of fuzzy cellular neural
networks with unbounded distributed delays. Neural Process.
Lett. 31(2), 147-157 (2010)

Song, Q.K., Wang, Z.D.: Dynamical behaviors of fuzzy reaction-
diffusion periodic cellular neural networks with variable coeffi-
cients and delays. Appl. Math. Model. 33(9), 3533-3545 (2009)
Li, K.: Impulsive effect on global exponential stability of BAM
fuzzy cellular neural networks with time-varying delays. Int.
J. Syst. Sci. 41(2), 131-142 (2010)

Yu, F., Jiang, H.J.: Global exponential synchronization of fuzzy
cellular neural networks with delays and reaction—diffusion
terms. Neurocomputing 74(4), 509-515 (2011)
Balasubramaniam, P., Kalpana, M., Rakkiyappan, R.: State esti-
mation for fuzzy cellular neural networks with time delay in the
leakage term, discrete and bounded distributed delays. Comput.
Math. Appl. 62(10), 3959-3972 (2011)

Balasubramaniam, P., Syed, M.: Ali, S. Arik, Global asymptotic
stability of stochastic fuzzy cellular neural networks with multiple
time-varying delays. Expert Syst. Appl. 37(12), 7737-7744 (2010)

. Long, S.J., Xu, D.Y.: Stability analysis of stochastic fuzzy cel-

lular neural networks with time-varying delays. Neurocomputing
74(14-15), 2385-2391 (2011)

Yu, J., Hu, C., Jiang, H.J., Teng, Z.D.: Exponential lag syn-
chronization for delayed fuzzy cellular neural networks via
periodically intermittent control. Math. Comput. Simul. 82(5),
895-908 (2012)

Zhang, Q.H., Xiang, R.G.: Global asymptotic stability of fuzzy
cellular neural networks with time-varying delays. Phys. Lett. A
372(22), 3971-3977 (2008)

Gan, Q.T., Xu, R., Yang, P.H.: Synchronization of non-identical
chaotic delayed fuzzy cellular neural networks based on sliding
mode control. Commun. Nonlinear Sci. Numer. Simul. 17(1),
433-443 (2012)

Chen, L.P., Wu, R., Pan, D.H.: Mean square exponential stability
of impulsive stochastic fuzzy cellular neural networks with dis-
tributed delays. Expert Syst. Appl. 38(5), 6294-6299 (2011)
Rakkiyappan, R., Balasubramaniam, P.: On exponential stability
results for fuzzy impulsive neural networks. Fuzzy Set. Syst.
161(13), 1823-1835 (2010)

Balasubramaniam, P., Syed, M.: Ali, Stability analysis of Takagi—
Sugeno fuzzy Cohen—Grossberg BAM neural networks with
discrete and distributed time-varying delays. Math. Comput.
Model. 53(1-2), 151-160 (2011)

Li, Y., Wang, C.: Existence and global exponential stability of
equilibrium for discrete-time fuzzy BAM neural networks with
variable delays and impulses. Fuzzy Set. Syst. 217, 62-79 (2013)



C. Xu et al.: Existence and Exponential Stability of Periodic Solution to Fuzzy Cellular Neural Networks... 51

38. Yan, P, Lv, T.: Exponential synchronization of fuzzy cellular
neural networks with mixed delay and general boundary condi-
tions. Commun. Nonlinear Sci. Numer. Simulat. 17(2),
1003-1011 (2012)

39. Lv, T, Yan, P.: Dynamical behaviors of reaction—diffusion fuzzy
neural networks with hybrid delays and general boundary con-
ditions. Commun. Nonlinear Sci. Numer. Simulat. 16(2),
993-1001 (2011)

40. Wang, J., Lu, J.: Globally exponential stability of fuzzy cellular
neural networks with delays and reaction—diffusion terms. Chaos
Soliton Fractals 38(3), 878-885 (2008)

41. Huang, T.: Exponential stability of delayed fuzzy cellular neural
networks with diffusion. Chaos Soliton Fractals 31(3), 658-664
(2007)

42. Huang, T.: Exponential stability of fuzzy cellular neural networks
with unbounded distributed delay. Phys. Lett. A 351(1-2), 44-52
(2006)

43. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear
Differential Equations. Springer-verlag, Berlin (1997)

44. Cao, J.D.: New results concerning exponential stability and
periodic solutions of delayed cellular neural networks. Phys. Lett.
A 307(2-3), 136-147 (2003)

45. Cao, 1.D., Li, Q.: On the exponential stability and periodic
solutions of delayed cellular neural networks. J. Math. Anal.
Appl. 252(1), 50-64 (2000)

46. Yang, T., Yang, L.B.: The global stability of fuzzy cellular neural
networrks. IEEE Trans. Circuits Syst. 43(10), 880-883 (1996)

47. Park, M.J., Kwon, O.M., Park, J.H., Lee, S.M.: Simplified sta-
bility criteria for fuzzy Markovian jumping Hopfield neural net-
works of neutral type with interval time-varying delays. Expert
Syst. Appl. 39(5), 5625-5633 (2012)

48. Li, X., Rakkiyappan, R., Balasubramaniam, P.: Existence and
global stability analysis of equilibrium of fuzzy cellular neural
networks with time delay in the leakage term under impulsive
perturbations. J. Franklin Inst. 348(2), 135-155 (2011)

Changjin Xu graduated from Huaihua University, China, in 1994. He
received the M.S. degree from Kunming University of Science and
Technology in 2004 and the Ph.D. degree from Central South
University, China, in 2010. He is currently a Professor at the Guizhou
Key Laboratory of Economics System Simulation at Guizhou
University of Finance and Economics. He has published about 100
refereed journal papers. He is a Reviewer of Mathematical Reviews
and Zentralbatt-Math. His research interests include nonlinear
systems, neural networks, anti-periodic solution, stability and bifur-
cation theory.

Qiming Zhang graduated from Hunan University of Humanities,
Science and Technology, China, in 1996. She received the M.S.
degree from Hunan Normal University, China, in 2007 and the Ph.D.
degree from Central South University, China, in 2012. At present, she
is an Associate Professor of College of Science in Hunan University
of Technology. Her main research interests are differential equations
and dynamic systems.

Yusen Wu graduated from Liaocheng University, People’s Republic
of China, in 2004. He received the M.S. degree from Central South
University, People’s Republic of China in 2007 and the Ph.D. degree
from Central South University, People’s Republic of China, in 2010.
He is currently an Associate Professor at School of Mathematics and
Statistics of Henan University of Science and Technology. He has
published about 30 refereed journal papers. He is a Reviewer of
Mathematical Reviews. His research interests include the qualitative
theory of ordinary differential equation and computer symbol
calculation.

@ Springer



	Existence and Exponential Stability of Periodic Solution to Fuzzy Cellular Neural Networks with Distributed Delays
	Abstract
	Introductions
	Existence of Periodic Solutions
	Global Exponential Stability of Periodic Solution
	An Illustrate Example
	Conclusions
	Acknowledgments
	References




