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Abstract In this paper, the Takagi–Sugeno (T-S) fuzzy

model is first used to deal with the exponential stability and

asynchronous stabilization problem of a class of continu-

ous-time nonlinear impulsive switched systems with

asynchronous behaviors. In order to reduce the conserva-

tiveness resulting from the quadratic Lyapunov functions

(QLFs) and nonlinearity, the switching fuzzy Lyapunov

functions (FLFs) are proposed using the switching infor-

mation and structural information of membership function

in the rule base. Using the switching FLFs approach and

the mode-dependent average dwell time (MDADT) tech-

nique, we obtain stability conditions for the open-loop

nonlinear impulsive switched systems and stabilization

conditions for the closed-loop nonlinear impulsive swit-

ched systems. Moreover, the stability and stabilization

results are formulated in the form of LMIs. Finally, a

numerical example and a chemical process example are

given to demonstrate the advantage and applicability of the

proposed method.

Keywords Nonlinear impulsive switched systems �
Asynchronous switching � Takagi–Sugeno (T-S) fuzzy

model � Switching fuzzy Lyapunov functions (FLFs) �
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1 Introduction

Switched systems are an important class of hybrid systems

encountered in numerous practical circumstances. The

stability problem is a main concern in the field of switched

systems [1–6]. Up to now, two stability issues have been

addressed in the literature, i.e., the stability under arbitrary

switching and the stability under constrained switching. As

for the arbitrary switching issue, the study is mainly based

on a common Lyapunov function for all subsystems [1, 6].

As for the constrained switching issue, the multiple Lya-

punov functions play an important role in the stability

analysis [7–9]. As one typical example of the constrained

switching, the average dwell time (ADT) logic is proposed

in [3]. The ADT is widely used to investigate the problems

of stability and stabilization of switched systems [10–12].

However, most works assumed that the ADT is indepen-

dent of the system models. Thus, the acquired results have

more or less conservativeness compared with the case if the

ADT can be extended to the mode-dependent average

dwell time (MDADT) [13]. Recently several, though not

many, works have studied the control problem for switched

systems with MDADT [14, 15].

It is well known that many practical systems exhibit

impulsive dynamical behaviors because of sudden changes

at certain instants during the dynamical process. The

switched systems with impulsive effect can be modeled as

impulsive switched systems [16]. Due to the existence of

the impulsive effect, the traditional pure continuous or pure

discrete models cannot well describe these systems, so it is

important and necessary for us to study the impulsive

switched systems. As for such systems, some useful results

on stability and stabilization have been achieved [16–18].

In this paper, we are interested in investigating the

asynchronous stabilization problem of nonlinear impulsive

& Hongbin Zhang

zhanghb@uestc.edu.cn

1 School of Electronic Engineering, University of Electronic

Science and Technology of China,

Chengdu 611731, Sichuan, People’s Republic of China

123

Int. J. Fuzzy Syst. (2017) 19(1):257–271

DOI 10.1007/s40815-015-0086-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-015-0086-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-015-0086-4&amp;domain=pdf


switched systems. As is well known, due to the existence of

nonlinearity, it is difficult to analyze the nonlinear systems

directly. The T-S fuzzy model is proven to be an effective

tool in approximating most complex nonlinear systems

[19], which utilizes local linear system description for each

rule. The issue of stability and controller synthesis of T-S

fuzzy systems has been studied extensively [20–28]. Sim-

ilar to [27, 28], we use the T-S fuzzy model to represent

each nonlinear subsystem of nonlinear impulsive switched

systems in this paper.

It is well known that the results based on a common

quadratic Lyapunov function might be conservative. By

taking into consideration the information of membership

functions, the authors in [29] presented the fuzzy Lyapunov

functions (FLFs) which are defined by fuzzily blending

multiple quadratic Lyapunov functions (QLFs). Stability

analysis and controller synthesis results based on FLFs can

be seen in [29–31]. The FLFs method only needs to search

for a local common positive matrix in fuzzy model. In this

paper, we investigate the nonlinear impulsive switched

systems by employing the T-S fuzzy model. The switching

FLFs are proposed using the switching information and

structural information of membership function in the rule

base. The candidate Lyapunov function is switching

according to the system switching among several FLFs,

which is based on premise membership functions to reduce

conservativeness introduced by nonlinearity. Due to the

above advantages, we consider nonlinear impulsive swit-

ched systems based on switching FLFs method.

In practice, when the systems are switching among the

subsystems, the switching of the matched controller of each

subsystem has a lag to the switching of the corresponding

subsystem, which results in asynchronous switching in the

switched systems. The asynchronous behaviors usually

bring unsatisfactory performance or even make the swit-

ched systems out of control. Recently, several works have

explored the effect of asynchronous behaviors on the

switched systems [11, 12, 15, 32].

To the best of our knowledge, there is very little work on

the use of the T-S fuzzy model to study the nonlinear

impulsive switched systems, not to mention the nonlinear

impulsive switched systems with asynchronous behaviors. In

this paper, we fully considered the effects of various factors

on the systems and used the T-S fuzzy model to study the

nonlinear impulsive switched systems with asynchronous

behaviors. Furthermore, the results obtained in this paper can

also apply to the nonlinear switched systems without

impulsive behaviors or asynchronous switching.

The main contributions of this paper are as follows:

(i) The previous work studied the asynchronous switching

problem mainly focused on the switched linear systems. In

our work, the T-S fuzzy model is first used to study the

nonlinear impulsive switched systems with asynchronous

switching. (ii) In order to further reduce the conservativeness

resulting from the nonlinearity and the quadratic Lyapunov

functions approach, the switching fuzzy Lyapunov functions

approach is proposed, and this approach can also be applied

to study other nonlinear switched systems. (iii) The case

bp\0 is also considered in this paper, which means that the

Lyapunov functions can still decrease in the asynchronous

state, so the results obtained in this paper can be much looser

compared with the results in [11].

The remainder of the paper is organized as follows: Sys-

tem descriptions and preliminaries are presented in Sect. 2.

The main results are given in Sect. 3. In Sect. 4, a numerical

example and a chemical process example are presented.

Finally, some conclusions are obtained in Sect. 5.

Notations: The notations used in this paper are fairly

standard. N and N? denote the set of the natural numbers and

the set of positive integers, respectively. I represents the

identity matrix. The symbol ‘‘*’’ in a matrix stands for the

transposed elements in the symmetric positions. The super-

script ‘‘T’’ is the matrix transposition. Rn denotes the n-di-

mensional Euclidean space. The notation �k k refers to the

Euclidean vector norm. C1 denotes the space of continuously

differentiable functions. L2½0;1Þ is the space of square-in-

tegrable, and for vðtÞ 2 L2½0;1Þ its norm is given by

vðtÞk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1
0

vðtÞTvðtÞdt
q

. We use P[ 0 ð� ; \; �Þ to

denote a positive definite (semi-positive definite, negative

definite, semi-negative definite) matrixP. We use kmaxðPÞ and

kminðPÞ, respectively, to denote the maximum and minimum

eigenvalues ofP. If not explicitly stated, matrices are assumed

to have compatible dimensions. Throughout this paper,

ðp; qÞ 2 S� S, p 6¼ q, and ðm; n; u; vÞ 2 1; 2; . . .; kf g.

2 System Descriptions and Preliminaries

In this paper, let us consider the following class of non-

linear impulsive switched systems:

_xðtÞ ¼ frðtiÞðxðtÞ; uðtÞÞ; t 6¼ ti
DxðtÞ ¼ DrðtiÞxðtÞ þ gðt; xðtÞÞ; t ¼ ti
xðtþ0 Þ ¼ x0

8

<

:

; ð1Þ

where xðtÞ 2 Rn and uðtÞ 2 Rm denote the state vector and

input vector, respectively. DrðtiÞ is a known matrix. frðtÞ and

gðt; xðtÞÞ are nonlinear functions, and gðt; 0Þ � 0 for all

t 2 t0;1½ Þ. rðtÞ is defined as a switching signal, which is a

piecewise constant function of time and takes its values in

the finite set S ¼ 1; 2; . . .;Mf g, where M is the number of

subsystems. For a switching sequence 0\t0\t1\ � � �
\ti\tiþ1\ � � �, rðtÞ is continuous from right everywhere.

When t 2 ½ti; tiþ1Þ, we say that the rðtiÞ subsystem is

activated, and rðtiÞ ¼ p, p 2 S. DxðtiÞ ¼ xðtþi Þ � xðt�i Þ ¼
xðtþi Þ � xðtiÞ, with xðtþi Þ ¼ lim

h!0þ
xðti þ hÞ, xðt�i Þ ¼ lim

h!0�
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xðti þ hÞ ¼ xðtiÞ, meaning that the solution of the nonlinear

impulsive switched systems (1) is left continuous. This

implies that the impulses will affect the state x(t) at the

switching instant.

The T-S fuzzy model which is described by fuzzy IF-

THEN rules [19] is employed here to represent each sub-

system of systems (1). By introducing the T-S fuzzy model,

the subsystem p of the nonlinear impulse switched systems

(1) is described in the following form:

Rule m for the subsystem p: IF zp1ðtÞ is Mp1m and � � �
and zpgðtÞ is Mpgm, THEN

_xðtÞ ¼ ApmxðtÞ þ BpmuðtÞ; t 6¼ ti
DxðtÞ ¼ DpxðtÞ þ gðt; xðtÞÞ; t ¼ ti
xðtþ0 Þ ¼ x0

8

<

:

; ð2Þ

where zplðtÞ are some measurable premise variables andMplm

are fuzzy sets ðl ¼ 1; 2; . . .; gÞ. Apm and Bpm are constant real

matrices of the mth local model of the pth subsystem.

Using ‘‘fuzzy blending’’, the final output of the pth

subsystem is inferred as follows:

_xðtÞ ¼
P

k

m¼1

hpmðtÞ½ApmxðtÞ þ BpmuðtÞ�; t 6¼ ti

DxðtÞ ¼ DpxðtÞ þ gðt; xðtÞÞ; t ¼ ti
xðtþ0 Þ ¼ x0

8

>

>

<

>

>

:

; ð3Þ

where hpmðtÞ ¼ wpmðtÞ=
P

k

m¼1

wpmðtÞ;wpmðtÞ ¼
Q

g

l¼1

Mplm ðzpl

ðtÞÞ, k is the number of IF-THEN rules, and MplmðzplðtÞÞ is

the grade of the membership function of zpl in Mplm. It is

assumed that wpmðtÞ� 0 for all t, m ¼ 1; 2; . . .; k. There-

fore, the normalized membership function hpmðtÞ satisfies

hpmðtÞ� 0;
X

k

m¼1

hpmðtÞ ¼ 1: ð4Þ

In this paper, we design a fuzzy controller for the system (3)

via parallel distributed compensation (PDC) [20]. In the PDC

design, the designed fuzzy controller shares the same pre-

mise variables with the fuzzy model (3). In view of the

asynchronous behaviors, the controller u(t) is divided into

two parts �uðtÞ and ûðtÞ, where �uðtÞ denotes the unmatched

controller, and ûðtÞ represents the matched controller. For the

fuzzy model (3), we can construct the following fuzzy con-

troller via the PDC:

�uðtÞ ¼
P

k

n¼1

hqnðtÞKqnxðtÞ; t 2 ðti; �ti�

ûðtÞ ¼
P

k

n¼1

hpnðtÞKpnxðtÞ; t 2 ð�ti; tiþ1�

8

>

>

<

>

>

:

; ð5Þ

where notation�ti (ti � �ti\tiþ1) denotes the starting-operating

instant of the matched controller, and Kqn and Kpn are

constant matrices. Substituting (5) into (3), we can obtain the

following closed-loop nonlinear impulsive switched system:

_xðtÞ ¼ �ApðtÞxðtÞ; t 2 ðti;�ti�
_xðtÞ ¼ ÂpðtÞxðtÞ; t 2 ð�ti; tiþ1�
DxðtÞ ¼ DpxðtÞ þ gðt; xðtÞÞ; t ¼ ti
xðtþ0 Þ ¼ x0

8

>

>

<

>

>

:

; ð6Þ

where the �ApðtÞ and ÂpðtÞ are defined as follows:

�ApðtÞ ¼ ApðtÞ þ BpðtÞKqðtÞ

¼
X

k

m¼1

X

k

n¼1

hpmðtÞhqnðtÞðApm þ BpmKqnÞ;

ÂpðtÞ ¼ ApðtÞ þ BpðtÞKpðtÞ

¼
X

k

m¼1

X

k

n¼1

hpmðtÞhpnðtÞðApm þ BpmKpnÞ:

We assume that there is no impulsive and asynchronous

effects at the initial instant.

Now, we introduce the following assumptions, definitions

and lemmas, which are useful in the following derivation.

Assumption 1 Let the nonlinear function gðt; xðtÞÞ satisfy

the following inequality:

gðt; xðtÞÞk k� g xðtÞk k

for all t 2 t0;1½ Þ, where g is a positive constant.

Definition 1 Suppose that a switching signal rðtÞ is

given. The nonlinear impulsive switched systems (1) with

uðtÞ � 0 are exponentially stable under the switching sig-

nal rðtÞ if for any initial conditions xðt0Þ

kxðtÞk�Ckxðt0Þke�cðt�t0Þ; 8t� t0;

where C[ 0 and c[ 0 are constants.

Definition 2 [13] For switching signal rðtÞ and each

T � t� 0. Let NrpðT ; tÞ be the switching numbers such that

the pth subsystem is activated over the interval [t, T], and

TpðT ; tÞ denotes the total running time of the pth subsystem

over the interval [t, T], 8p 2 S. We say that rðtÞ has a

mode-dependent average dwell time (MDADT) Tap if there

exist positive numbers N0p (N0p denotes mode-dependent

chatter bounds here) and Tap such that

NrpðT; tÞ�N0p þ TpðT ; tÞ=Tap; 8T � t� 0:

Definition 3 [29] Equation (7) is said to be a fuzzy

Lyapunov function for the pth subsystem of the T-S fuzzy

system (3) if there exists a positive definite matrix Ppu and

the time derivative of VpðxðtÞÞ is always negative at

xðtÞ 6¼ 0.

VpðxðtÞÞ ¼ xðtÞTPpðtÞxðtÞ; ð7Þ
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where PpðtÞ ¼
Pk

u¼1 hpuðtÞPpu and _PpðtÞ ¼
Pk

u¼1
_hpu

ðtÞPpu.

Lemma 1 [33] Let P 2 Rn�n be a given symmetric positive

definite matrix and let Q 2 Rn�n be a given symmetric matrix.

Then

kminðP�1QÞXðtÞ� xðtÞTQxðtÞ� kmaxðP�1QÞXðtÞ

for all xðtÞ 2 Rn, where XðtÞ ¼ xðtÞTPxðtÞ, kmaxð�Þ and

kminð�Þ denote, respectively, the largest and the smallest

eigenvalues of the matrix inside the brackets.

Lemma 2 [34] Given matrices M, E, and F with com-

patible dimensions and F satisfying FTF� I, the following

inequality holds for any e[ 0:

MFE þ ETFTMT � eMMT þ e�1ETE:

3 Main Results

In this paper, to deal with the asynchronous switching of

switched systems, the Lyapunov function is allowed to increase

with a bounded rate. Here, the parameter ap represents the

decaying rate of the Lyapunov function, which corresponds to

the convergence rate of the system in synchronous state. And

the parameter bp denotes the increasing rate of the Lyapunov

function, which corresponds to the divergence rate of the sys-

tem in asynchronous state. In a sense, the purpose of controller

design is to design the appropriateap andbp parameters to make

the systems reach the desired control performance.

For concise notation, let Tðtiþ1; tiÞ ¼ tiþ1 � ti represent

the length of the running time interval of each subsystem.

By (6), we can see that Tðtiþ1; tiÞ is divided into two parts,

T"ðti; tiþ1Þ and T#ðti; tiþ1Þ, where T"ðtiþ1; tiÞ ¼ �ti � ti and

T#ðtiþ1; tiÞ ¼ tiþ1 � �ti. During T"ðti; tiþ1Þ the Lyapunov

function may increase or decrease, which represents the

running time of the unmatched controllers in ðti; tiþ1�, while

during T#ðti; tiþ1Þ the Lyapunov function is strictly

decreasing with the matched controllers.

For brevity, we introduce the following notations: ri ¼
rðtiÞ and

Qp ¼ ðIþDpÞT
X

k

m¼1

Ppm

 !

ðIþDpÞþ
g
e
þ gkmax

X

k

m¼1

Ppm

 ! !

I

þ eðIþDpÞT
X

k

m¼1

Ppm

 !

X

k

m¼1

Ppm

 !

ðIþDpÞ;
;

where the parameters g and e are given in assumption 1 and

lemma 2. The parameter lp used in the following lemmas

and theorems is lp ¼ max
q

flqp; 1g, 8q 2 S, q 6¼ p,

withlqp ¼ kmax

Pk
n¼1 Pqn

� ��1

Qp

� �

.

3.1 Stability Analysis

In this section, we consider the stability analysis problem

of the nonlinear impulsive switched systems. Without

control input, the open-loop system for (6) is listed as

follows:

_xðtÞ ¼
P

k

m¼1

hpmðtÞApmxðtÞ; 8t 2 ðti; tiþ1�

DxðtÞ ¼ DpxðtÞ þ gðt; xðtÞÞ; t ¼ ti
xðtþ0 Þ ¼ x0

8

>

>

<

>

>

:

: ð8Þ

Lemma 3 Consider the open-loop nonlinear impulsive

switched system (8), and let g[ 0, e[ 0, and ap\0 be

given constants. If there exists positive definite C1 function

VrðtiÞ : R
n ! R; rðtiÞ 2 S with Vrðt0Þðxðt0ÞÞ � 0 satisfying

_VpðtÞ� apVpðtÞ; t 2 ðti; tiþ1�; ð9Þ

then the system (8) is exponentially stable for any

switching signal satisfying

sop � s	op ¼
ln lp
�ap

: ð10Þ

Proof From definition 3, at the switching instant ti, we

can obtain

Vpðxðtþi ÞÞ ¼ ðI þ DpÞxðtiÞ þ gðti; xðtiÞÞ
� �T

PpðtiÞ ðI þ DpÞxðtiÞ þ gðti; xðtiÞÞ
� �

¼ xðtiÞTðI þ DpÞTPpðtiÞðI þ DpÞxðtiÞ
þ 2xðtiÞTðI þ DpÞTPpðtiÞgðtiÞ
þ gðti; xðtiÞÞTPpðtiÞgðti; xðtiÞÞ:

Then, by Assumption 1, Lemmas 1 and 2, we have

Vpðxðtþi ÞÞ� xðtiÞTðI þ DpÞTPpðtiÞðI þ DpÞxðtiÞ
þ exðtiÞTðI þ DpÞTPpðtiÞPpðtiÞðI þ DpÞxðtiÞ

þ 1

e
gðti; xðtiÞÞTgðti; xðtiÞÞ

þ kmaxðPpðtiÞÞgðti; xðtiÞÞTgðti; xðtiÞÞ

� xðtiÞT ðI þ DpÞT
X

k

m¼1

Ppm

 !

ðI þ DpÞ
"

þeðI þ DpÞT
X

k

m¼1

Ppm

 !

X

k

m¼1

Ppm

 !

ðI þ DpÞ

þ g
e
þ gkmax

X

k

m¼1

Ppm

 ! !#

xðtiÞ

¼ xðtiÞTQpxðtiÞ: ð11Þ

By Lemma 1 and (11), we have
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Vpðxðtþi ÞÞ� xðtiÞTQpxðtiÞ� kmax P�1
q ðtiÞQp

� �

VqðxðtiÞÞ:

ð12Þ

Due to P�1
q ðtiÞ ¼

Pk
n¼1 hqnðtiÞPqn

� ��1

, we can conclude

that the inequality (12) holds if the following inequality

(13) holds

Vpðxðtþi ÞÞ� xðtiÞTQpxðtiÞ

� kmax

Xk

n¼1
Pqn

� ��1

Qp

� �

VqðxðtiÞÞ:
ð13Þ

Let lp ¼ max
q

flqp; 1g, 8q 2 S, q 6¼ p with lqp ¼ kmax

Pk
n¼1 Pqn

� ��1

Qp

� �

, then we get

Vpðxðtþi ÞÞ� lpVqðxðtiÞÞ: ð14Þ

By integrating (9) we have

VpðtÞ� eapðt�tiÞVpðtiÞ: ð15Þ

Combining (14) and (15), t 2 ðti; tiþ1�, we have

VriðxðtÞÞ� lri e
ari ðt�tiÞVri�1

ðxðtiÞÞ
� lri e

ari ðt�tiÞþari�1
ðti�ti�1ÞVri�1

ðxðtþi�1ÞÞ
� � � �
� lrilri�1

� � � lr1
eari ðt�tiÞþ���þar0

ðt1�t0ÞVr0
ðxðt0ÞÞ:

From definition 2, let Nri denote Nriðt; t0Þ for simplicity.

The following inequality holds

VðtÞ� exp
XM

p¼1
Nriðapsop þ ln lpÞ

n o

Vðt0Þ:

If supposing

apsop þ ln lp � 0; ð16Þ

we obtain a sufficient condition that guarantees the expo-

nential stability of the system (8). The inequality (16) is

equivalent to

sop � s	op ¼
ln lp
�ap

: h

The stability conditions for the system (8) can be sum-

marized in the following theorem.

Theorem 1 Assume that

_hpsðtÞ
	

	

	

	� eps; s ¼ 1; 2; . . .; k; ð17Þ

where eps � 0. Let g[ 0, e[ 0, and ap\0 be given con-

stants. The system (8) is exponentially stable for any

switching signal satisfying (10), if there exist matrices

Ppu [ 0 satisfying

Ppl �Ppk; l ¼ 1; 2; . . .; k � 1; ð18Þ

and

Hpmu þHpum\0; m� u; ð19Þ

where

Hpmu ¼ AT
pmPpu þ PpuApm þ

Pk�1
s¼1 epsðPps � PpkÞ � apPpu:

Proof Differentiating (4) implies _hpkðtÞ ¼ �
Pk�1

m¼1
_hpmðtÞ,

so we have

_PpðtÞ ¼
X

k�1

u¼1

_hpuðtÞðPpu � PpkÞ: ð20Þ

Combining (17), (18) with (20) implies

_PpðtÞ�
X

k�1

u¼1

epuðPpu � PpkÞ: ð21Þ

Along with the solution of the system (8), we have

_VpðtÞ � apVpðtÞ ¼ xðtÞT ApðtÞTPpðtÞ þ PpðtÞApðtÞ
�

þ _PpðtÞ � apPpðtÞ�xðtÞ:

Since ApðtÞ ¼
Pk

m¼1 hpmðtÞApm, PpðtÞ ¼
Pk

u¼1 hpuðtÞPpu

and _PpðtÞ ¼
Pk

s¼1
_hpsðtÞPps, then

_VpðtÞ � apVpðtÞ�
X

k

m¼1

h2
pmðtÞxðtÞ

THpmmxðtÞ

þ
X

k

m\u

hpmðtÞhpuðtÞxðtÞT Hpmu þHpum

� �

xðtÞ:

From (19) we can conclude that

_VpðtÞ � apVpðtÞ� 0:

So the system (8) is exponentially stable for any switching

signal satisfying (10). This completes the proof. h

Remark 1 By setting Ppu ¼ Pp, we get Corollary 1 where

the QLFs are used. Compared with the QLFs method, the

computational complexity of the results based on the FLFs

method will be greater. But the results based on the FLFs

method have less conservativeness than the results based

on the QLFs method.

Corollary 1 Let g[ 0, e[ 0, and ap\0 be given con-

stants. The system (8) is exponentially stable for any

switching signal satisfying (10), if there exist matrices

Pp [ 0 satisfying

AT
pmPp þ PpApm � apPp � 0: ð22Þ
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Proof The proof is similar to that of Theorem 1, with

the function VpðtÞ given by

VpðtÞ ¼ xðtÞTPpxðtÞ:

It is omitted here. h

3.2 Controller design

In this section, our objective is to design a set of model-

dependent controllers and find a set of admissible switch-

ing signal such that the closed-loop nonlinear impulsive

switched system (6) is exponentially stable with asyn-

chronous switching.

Lemma 4 Consider the closed-loop nonlinear impulsive

switched system (6), and let g[ 0, e[ 0, ap\0 and bp be

given constants. If there exists positive definite C1 function

VrðtiÞ : R
n ! R; rðtiÞ 2 S with Vrðt0Þðxðt0ÞÞ � 0 satisfying

_VpðtÞ�
bpVpðtÞ; t 2 T"ðti; tiþ1Þ
apVpðtÞ; t 2 T#ðti; tiþ1Þ




; ð23Þ

then the system is exponentially stable for any switching

signal satisfying

sp � s	p ¼
ln lp
�ap

; bp\ap

sp � s	p ¼
TpMðbp � apÞ þ ln lp

�ap
; bp � ap

8

>

>

<

>

>

:

; ð24Þ

where TpM ¼D max Tp"ðtiþ1; tiÞ; 8i 2 Nþ.

Proof Let S1 ¼ f0; 1; . . .; rg, S2 ¼ fr þ 1; . . .;Mg, r� 0.

Now based on the value of bp, all the subsystems are divided

into two parts. If the unmatched controller can stabilize the

current subsystem, i.e., bp\0, then the subsystem is con-

tained in set S1, otherwise, it is contained in set S2. For any

T [ 0, let t0 ¼ 0 and denote the switching times on the

interval [0, T] as t1; t2; . . .ti; tiþ1; . . .tNrðT ;0Þ, then

NrðT ; 0Þ ¼
Xr

p¼1
NpðT ; 0Þ þ

XM

p¼rþ1
NpðT ; 0Þ:

Let Tp#ðT ; 0Þ denote the total running time of the pth

subsystem controlled by the matched controller and

Tp"ðT ; 0Þ denote the total running time of the pth subsys-

tem controlled by the unmatched controller. We get

TpðT ; 0Þ ¼ Tp#ðT ; 0Þ þ Tp"ðT; 0Þ.
Since TpM ¼D max Tp"ðtiþ1; tiÞ, by Definition 2, we have

Tp"ðT ; 0Þ� TpMNpðT; 0Þ� TpM N0p þ
TpðT; 0Þ

sp

� �

: ð25Þ

By integrating (23) and together with (14) for t 2 ðti; tiþ1�,
we have

VriðxðtÞÞ�eari T#ðt;tiÞþbri T"ðt;tiÞlriVri�1
ðxðtiÞÞ

�expfariT#ðt;tiÞþbri T"ðt;tiÞþari�1
T#ðti;ti�1Þ

þbri�1
T"ðti;ti�1ÞglriVri�1

x tþi�1

� �� �

����

�
Y

i

n¼1

lrn exp ariT#ðt;tiÞþbri T"ðt;tiÞþ
X

i

n¼1

arn�1
T#ðtn;tn�1Þ

(

þ
X

i

n¼2

brn�1
T"ðtn;tn�1Þ

)

Vr0
ðxðt0ÞÞ

¼
Y

M

p¼1

lNpðT ;0Þ
p exp

X

M

p¼1

apTp#ðT ;0ÞþbpTp"ðT ;0Þ
� �

( )

Vr0
ðxðt0ÞÞ

¼X1X2Vr0
ðxðt0ÞÞ; ð26Þ

where

X1 ¼
Y

r

p¼1

lNpðT ;0Þ
p exp

X

r

p¼1

apTp#ðT ; 0Þ þ bpTp"ðT ; 0Þ
� �

( )

;

X2 ¼
Y

M

p¼rþ1

lNpðT ;0Þ
p exp

X

M

p¼rþ1

apTp#ðT ; 0Þ þ bpTp"ðT ; 0Þ
� �

( )

:

As for X1, we introduce the following notations:

X11 ¼
Y

r1

p¼1

lNpðT ;0Þ
p exp

X

r1

p¼1

apTp#ðT ; 0Þ þ bpTp"ðT ; 0Þ
� �

( )

;

where bp\ap, 0� r1 � r;

X12¼
Y

r

p¼r1þ1

lNpðT ;0Þ
p exp

X

r

p¼r1þ1

apTp#ðT ;0ÞþbpTp"ðT ;0Þ
� �

( )

;

where ap � bp � 0, 0� r1 � r.

As for X11, we have

X11 �
Y

r1

p¼1

lNpðT ;0Þ
p exp

X

r1

p¼1

apTp#ðT ; 0Þ þ apTp"ðT ; 0Þ
� �

( )

¼ exp
X

r1

p¼1

NpðT ; 0Þ ln lp þ apTpðT ; 0Þ
� �

( )

� exp
X

r1

p¼1

N0p ln lp þ TpðT; 0Þðap þ
ln lp
sp

Þ

 �

( )

¼ X̂11

ð27Þ

As for X12, we get
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X12 ¼
Y

r

p¼r1þ1

lNpðT ;0Þ
p exp

X

r

p¼r1þ1

apTpðT ; 0Þ þ ð�ap þ bpÞTp"ðT ; 0Þ
� �

( )

¼ exp
X

r

p¼r1þ1

NpðT ; 0Þ ln lp þ apTpðT ; 0Þ þ ð�ap þ bpÞTp"ðT ; 0Þ
� �

( )

� exp
X

r

p¼r1þ1

N0p ln lp þ apTpðT ; 0Þ þ ð�ap þ bpÞTp"ðT ; 0Þ þ
TpðT ; 0Þ ln lp

sp


 �

( )

:

ð28Þ

Substituting (25) into (28), we have

X12 � exp
X

r

p¼r1þ1

N0p ln lp þ TpMð�ap þ bpÞ
� ��

(

þ TpðT ; 0Þ ap þ
ln lp
sp

� �

þð�ap þ bpÞTpM
TpðT; 0Þ

sp

��

¼ X̂12:

ð29Þ

Combining (27) and (29), we can obtain

X1 ¼ X11X12 � X̂11X̂12: ð30Þ

As for X2, similar to the derivations of (28) and (29), and

letting

X̂2 ¼ exp
X

M

p¼rþ1

N0p ln lp þ TpMð�ap þ bpÞ
� �

þ TpðT ; 0Þ
�

(

�ðap þ
ln lp
sp

Þ þ ð�ap þ bpÞTpM
TpðT ; 0Þ

sp

��

;

we have

X2 � X̂2: ð31Þ

By (26), (30), and (31), we have

VriðxðtÞÞ � X̂11X̂12X̂2Vr0
ðxðt0ÞÞ

¼ exp
X

r1

p¼1

N0p lnlp þ
X

M

p¼r1þ1

N0p ln lp þ TpMð�ap þ bpÞ
� �� �

( )

� exp
X

r1

p¼1

TpðT ; 0Þ ap þ
lnlp
sp

� �
 �

þ
X

M

p¼r1þ1

TpðT ; 0Þ ap þ
lnlp
sp

� �


(

þ ð�ap þ bpÞTpM
TpðT ; 0Þ

sp

��

Vr0
ðxðt0ÞÞ:

ð32Þ

If (24) holds, we conclude that VriðxðtÞÞ converges to zero

as T ! 1. Let

C1 ¼ exp
X

r1

p¼1

N0p lnlpþ
X

M

p¼r1þ1

N0p lnlpþTpMð�apþbpÞ
� �� �

( )

ð33Þ

and

�c1 ¼ max max
p2f1;...;r1g

ap þ
ln lp
sp


 �

; max
p2fr1þ1;...;Mg




ap þ
ln lp
sp

þ
ð�ap þ bpÞTpM

sp


 ��

:

ð34Þ

By (32)–(34), we have

VriðxðtÞÞ�C1e
�c1tVr0

ðxðt0ÞÞ: ð35Þ

Letting c ¼ c1=2 and C ¼ C1=2
1 minp2S
�

kmin

P

k

m¼1

Ppm

� �
 �

i�1
2

maxp2S kmax

P

k

m¼1

Ppm

� �
 �
 �

1
2

, by

Lemma 1 and together with (35), we get

kxðtÞk�Ce�ctkxðt0Þk:

By Definition 1, we can conclude that the system is

exponentially stable for any switching signal satisfying

(24). This completes the proof. h

Remark 2 Although the main method in the proof of

Lemma 4 is literally similar to that of [32], there is an

essential difference between these two methods. The

Lyapunov function VpðxðtÞÞ in [32] is VpðxðtÞÞ ¼ xðtÞT
PpxðtÞ, which is a quadratic form. However, the Lyapunov

function used in our work is a fuzzy Lyapunov function to

treat the nonlinearity, which is given by VpðxðtÞÞ ¼ xTðtÞ
PpðtÞxðtÞ, where PpðtÞ ¼

Pk
m¼1 hpmðtÞPpm. Moreover, we

will show that the quadratic Lyapunov function is a special

case of the fuzzy Lyapunov function.

Lemma 5 Let g[ 0, e[ 0, ap\0 and bp be given

constants. The closed-loop nonlinear impulsive switched

system (6) is exponentially stable for any switching signal

satisfying (24), if there exist matrices PpðtÞ[ 0 satisfying

PpðtÞ�ApðtÞ þ �Ap
TðtÞPpðtÞ þ _PpðtÞ � bpPpðtÞ\0; ð36Þ

PpðtÞÂpðtÞ þ Âp
TðtÞPpðtÞ þ _PpðtÞ � apPpðtÞ\0: ð37Þ

Proof Suppose pth subsystem is activated and the former

one is qth subsystem. Considering t 2 T"ðti; tiþ1Þ, from the

system (6) and definition 3, we have

_VpðtÞ � bpVpðtÞ ¼ xðtÞT PpðtÞ�ApðtÞ þ �Ap
TðtÞPpðtÞ

h

þ _PpðtÞ � bpPpðtÞ�xðtÞ:
ð38Þ

Similarly, for t 2 T#ðti; tiþ1Þ, we obtain

Q. Zheng and H. Zhang: Exponential Stability and Asynchronous Stabilization 263

123



_VpðtÞ � apVpðtÞ ¼ xðtÞT PpðtÞÂpðtÞ þ Âp
TðtÞPpðtÞ

h

þ _PpðtÞ � apPpðtÞ�xðtÞ:
ð39Þ

Inequalities (36) and (37) imply (38)\0 and (39) \0. So

we obtain the following inequality:

_VpðtÞ�
bpVpðtÞ; t 2 T"ðti; tiþ1Þ
apVpðtÞ; t 2 T#ðti; tiþ1Þ




:

According to Lemma 4, the system (6) is exponentially

stable for any switching signal satisfying (24). This com-

pletes the proof.

Lemma 5 provides a sufficient condition for the

controller design. However, the matrix variables PpðtÞ are

coupled with system parameter matrices in (36) and (37),

and thus it is difficult to design the controller directly. To

overcome this difficulty, a decoupling technique is needed.

In such a way, the following lemma is introduced. h

Lemma 6 Let g[ 0, e[ 0, ap\0 and bp be given

constants. If there exist matrices �PpðtÞ[ 0, LpðtÞ and

X satisfying

Pp1 Pp2

	 �X � XT


 �

\0; ð40Þ

Pp3 Pp4

	 �X � XT


 �

\0; ð41Þ

where

Pp1 ¼ ApðtÞX þ XTApðtÞT þ BpðtÞLqðtÞ þ LqðtÞTBpðtÞT

� bp �PpðtÞ þ _�PpðtÞ;
Pp2 ¼ �PpðtÞ � X þ XTApðtÞT þ LqðtÞTBpðtÞT ;
Pp3 ¼ ApðtÞX þ XTApðtÞT þ BpðtÞLpðtÞ þ LpðtÞTBpðtÞT

� ap �PpðtÞ þ _�PpðtÞ;
Pp4 ¼ �PpðtÞ � X þ XTApðtÞT þ LpðtÞTBpðtÞT ;

we can conclude that the inequalities (36) and (37) hold.

Proof In order to decouple the matrix variables PpðtÞ and

system parameter matrices, we introduce a slack matrix

H. Moreover, introducing slack matrices can also reduce

the design conservativeness [35]. By introducing a slack

matrix H, we introduce the following inequalities:

�ApðtÞTH þ HT �ApðtÞ � bpPpðtÞ þ _PpðtÞ PpðtÞ � HT þ �ApðtÞTH
	 �H � HT


 �

\0;

ð42Þ
ÂpðtÞTH þ HTÂpðtÞ � apPpðtÞ þ _PpðtÞ PpðtÞ � HT þ ÂpðtÞTH

	 �H � HT


 �

\0:

ð43Þ

Multiplying (42) from the left and right, respectively, by

K̂p ¼ I �ApðtÞT
� �

and its transpose, and multiplying (43)

from the left and right, respectively, by �Kp ¼ I ÂpðtÞT
� �

,

we can conclude that (36) and (37) hold. Notice that if the

conditions in (42) and (43) hold, the matrix H is nonsin-

gular. Now, we define the following matrices:

X ¼ H�1; LpðtÞ ¼ KpðtÞX; �PpðtÞ ¼ XTPpðtÞX: ð44Þ

Multiplying (42) from the left and right, respectively, by

diagonal matrix diag(H�T ,H�T ) and its transpose, we can

obtain

Pp5 Pp6

	 �H�1 � H�T


 �

\0; ð45Þ

where

Pp5 ¼ H�T �ApðtÞT þ �ApðtÞH�1 � bpH
�TPpðtÞH�1

þ H�T _PpðtÞH�;

Pp6 ¼ H�TPpðtÞH�1 � H�1 þ H�T �ApðtÞT
:

Similarly, for (43), we have

Pp7 Pp8

	 �H�1 � H�T


 �

\ 0 ð46Þ

where

Pp7 ¼ H�T ÂpðtÞT þ ÂpðtÞH�1 � apH
�TPpðtÞH�1

þ H�T _PpðtÞH�;Pp8

¼ H�TPpðtÞH�1 � H�1 þ H�T ÂpðtÞT :

LMIs (40) and (41) imply (45) and (46), respectively. Thus,

if (40) and (41) hold, we can conclude that (36) and (37)

hold. This completes the proof. h

Remark 3 With the introduction of some new additional

matrices LpðtÞ and X, we obtain the linear matrix inequal-

ities in which the Lyapunov matrix PpðtÞ is not involved in

any product with the state matrices ApðtÞ. This feature

enables us to derive conditions with less conservativeness

due to the extra degrees of freedom.

Based on the above lemmas, the asynchronous stabi-

lization problem can be addressed by the following

theorem.

Theorem 2 Assume that

_hpsðtÞ
	

	

	

	� eps; s ¼ 1; 2; . . .; k; ð47Þ

where eps � 0. Let g[ 0, e[ 0, ap\0 and bp be given

constants. If there exist matrices �Ppu [ 0, Lpn and

X satisfying

�Ppl � �Ppk; l ¼ 1; 2; . . .; k � 1 ð48Þ
�Hpmnu þ �Hpunm\0;m� u ð49Þ
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Ŝpmmm ¼ Ĥpmmm\0

Ŝpmmn ¼
1

3
Ĥpmmn þ Ĥpmnm þ Ĥpnmm

h i

\0;m 6¼ n

Ŝpmnu ¼
1

6
Ĥpmnu þ Ĥpmun þ Ĥpnmu þ Ĥpnum

h

þĤpunm þ Ĥpumn

i

\0;m\n\u

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

for all m; n; u 2 1; 2; . . .; kf g, where

�Hpmnu ¼
Up1 Up2

	 �X � XT


 �

; Ĥpmnu ¼
Wp1 Wp2

	 �X � XT


 �

and

Up1 ¼ ApmX þ XTAT
pm þ BpmLqn þ LTqnB

T
pm � bp �Ppu

þ
X

k�1

s¼1

epsð�Pps � �PpkÞ;

Up2 ¼ �Ppu � X þ XTAT
pm þ LTqnB

T
pm;

Wp1 ¼ ApmX þ XTAT
pm þ BpmLpn þ LTpnB

T
pm � ap �Ppu

þ
X

k�1

s¼1

epsð�Pps � �PpkÞ;

Wp2 ¼ �Ppu � X þ XTAT
pm þ LTpnB

T
pm;

The system (6) is exponentially stable for any switching

signal satisfying (24). Moreover, if a feasible solution

exists, the admissible controller gains can be given by

Kqn ¼ LqnX
�1; t 2 ðti;�ti�

Kpn ¼ LpnX
�1; t 2 ð�ti; tiþ1�:

(

ð51Þ

Proof Denote the left side of (40) and (41) as �HpðtÞ and

ĤpðtÞ, respectively. If the conditions in Theorem 2 are

satisfied, we can obtain

�HiðtÞ�
X

k

m¼1

X

k

n¼1

X

k

u¼1

hpmðtÞhqnðtÞhpuðtÞ �Hpmnu

¼
X

k

n¼1

hqnðtÞ
X

k

m¼1

h2
pmðtÞ �Hpmnm

"

þ
X

k

m¼1

X

k

m\u

hpmðtÞhpuðtÞð �Hpmnu þ �HpunmÞ
#

\0

and

ĤpðtÞ�
X

k

m¼1

X

k

n¼1

X

k

u¼1

hpmðtÞhpnðtÞhpuðtÞĤpmnu

¼
X

k

m¼1

h3
pmðtÞŜpmmm þ 3

X

k

m¼1

X

k

n ¼ 1

n 6¼ m

hpmðtÞhpnðtÞŜpmmn

þ 6
X

k

m¼1

X

n[m

X

u[ n

hpmðtÞhpnðtÞhpuðtÞŜpmnu\0:

From Lemmas 4, 5, and 6, we know that the controller

design problem is solved. By (44), we can conclude that the

gains in (5) can be constructed by (51). This completes the

proof. h

Remark 4 Theorem 2 provides a sufficient condition to

guarantee the exponential stability of the system (6) with

asynchronous switching. This theorem can also be used to

study other nonlinear switched systems. For example, if

TpM ¼ 0, the results obtained above can be used to study

the nonlinear impulsive switched systems without asyn-

chronous switching. And if DxðtÞ ¼ 0, the above theorem

can be applicable to the asynchronous control of nonlinear

switched systems without impulsive behaviors.

Remark 5 By setting �Ppu ¼ �Pp, we get Corollary 2 where

the QLFs are used.

Corollary 2 Let g[ 0, e[ 0, ap\0; and bp be given

constants. If there exist matrices �Pp [ 0, Lpn and

X satisfying

�Kpmn þ �Kpnm\0

K̂pmn þ K̂pnm\0




; m� n; ð52Þ

for all m; n 2 f1; 2; . . .; kg, where

�Kpmn ¼
/p1 Up2

	 �X � XT


 �

; K̂pmn ¼
wp1 wp2

	 �X � XT


 �

and

/p1 ¼ ApmX þ XTAT
pm þ BpmLqn þ LTqnB

T
pm � bp �Pp;

/p2 ¼ �Pp � X þ XTAT
pm þ LTqnB

T
pm;

wp1 ¼ ApmX þ XTAT
pm þ BpmLpn þ LTpnB

T
pm � ap �Pp;

wp2 ¼ �Pp � X þ XTAT
pm þ LTpnB

T
pm;

then the system (6) is exponentially stable for any

switching signal satisfying (24). Moreover, if a feasible

solution exists, the admissible controller gains can be given

by
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Kqn ¼ LqnX
�1; t 2 ðti;�ti�

Kpn ¼ LpnX
�1; t 2 ð�ti; tiþ1�

:

(

Proof The proof is similar to that of Theorem 2 with the

function VpðtÞ given by

VpðtÞ ¼ xðtÞTPpxðtÞ:

It is omitted here. h

4 Example

Example 1 Here, a numerical example is given to illustrate

the effectiveness and advantage of our results obtained

above. Consider the following continuous-time nonlinear

impulsive switched system consisting of two subsystems:

Subsystem 1:

_x1ðtÞ ¼ �0:2þ 0:03z11ðtÞð Þx1ðtÞþ 0:01þ 0:04z11ðtÞð Þx2ðtÞþ
�0:21þ 0:09z11ðtÞð Þu1ðtÞþ 0:01� 0:02z11ðtÞð Þu2ðtÞ

_x2ðtÞ ¼ 0:16� 0:06z11ðtÞð Þx2ðtÞþ 0:22þ 0:03z11ðtÞð Þu2ðtÞ
;

8

>

<

>

:

Subsystem 2:

_x1ðtÞ ¼ 0:04þ 0:01z21ðtÞð Þx1ðtÞ� 0:02� 0:01z21ðtÞð Þx2ðtÞþ
0:3� 0:1z21ðtÞð Þu1ðtÞ� 0:01u2ðtÞ

_x2ðtÞ ¼ 0:02x1ðtÞþ 0:05z21ðtÞ� 0:35ð Þx2ðtÞ
� 0:3þ 0:1z21ðtÞð Þu2ðtÞ

8

>

>

>

<

>

>

>

:

;

where

z11ðtÞ ¼
sin2ðx1ðtÞ þ 0:5Þesin2ðx1ðtÞþ0:5Þ

e
z21ðtÞ ¼ cos2ðx2ðtÞ þ 0:5Þ

:

8

<

:

Using the local sector nonlinearity method [20], we obtain

the fuzzy model as follows:

Subsystem 1:

Rule 1: IF z11ðtÞ is 0, THEN _xðtÞ ¼ A11xðtÞ þ B11uðtÞ,
Rule 2: IF z11ðtÞ is 1, THEN _xðtÞ ¼ A12xðtÞ þ B12uðtÞ,

Subsystem 2:

Rule 1: IF z21ðtÞ is 0, THEN _xðtÞ ¼ A21xðtÞ þ B21uðtÞ,
Rule 2: IF z21ðtÞ is 1, THEN _xðtÞ ¼ A22xðtÞ þ B22uðtÞ,
where

A11 ¼
�0:2 0:01

0 0:16


 �

; A12 ¼
�0:17 0:05

0 0:1


 �

;

B11 ¼
�0:21 0:01

0 0:22


 �

;

B12 ¼
�0:12 �0:01

0 0:25


 �

; A21 ¼
0:04 �0:02

0:02 �0:35


 �

;

A22 ¼
0:05 �0:01

0:02 �0:3


 �

;

B21 ¼
0:3 �0:01

0 �0:3


 �

; B22 ¼
0:2 �0:01

0 �0:4


 �

:

The normalized membership functions are calculated as

follows:

h11ðx1ðtÞÞ ¼ 1 � sin2ðx1ðtÞ þ 0:5Þesin2ðx1ðtÞþ0:5Þ

e
;

h12ðx1ðtÞÞ ¼ 1 � h11ðx1ðtÞÞ
h21ðx2ðtÞÞ ¼ 1 � cos2ðx2ðtÞ þ 0:5Þ;
h22ðx2ðtÞÞ ¼ 1 � h21ðx2ðtÞÞ

:

8

>

>

>

>

>

<

>

>

>

>

>

:

The nonlinear functions gpðt; xðtÞÞ and the parameters Dp

are given as

g1 ¼ g2 ¼ 0:01 sinðx1ðtÞÞ
0:01 sinðx2ðtÞÞ


 �

; D1 ¼ D2 ¼ 0:3 0

0 0:3


 �

:

By the method of [29], we can calculate the parameters eps
as e11 ¼ e12 ¼ 1 and e21 ¼ e22 ¼ 0:5. The initial conditions

are assumed to be xðt0Þ ¼ ½1; 2�T . The state response of

subsystem 1 and subsystem 2 is shown in Fig. 1. As we see

from Fig. 1 that both of these two subsystems are unstable.

We will use our results to design a set of model-de-

pendent controllers such that the system (6) is exponen-

tially stable. In practice, the asynchronous switching

between the system models and the controllers generally

exists. First, we study the asynchronous switching between

the system models and the controllers, while the controllers

are designed by only considering the synchronous condi-

tions. Given g ¼ 0:01, e ¼ 0:01, a1 ¼ �0:12, a2 ¼ �0:2,

b1 ¼ 0:08, b2 ¼ 0:045 and TM ¼ 8, with these parameters,

we can obtain l1 ¼ 2:1892, l2 ¼ 2:2699, s	1 ¼ 19:8626

and s	2 ¼ 13:8987. Using the LMI toolbox in Matlab to

solve (48) and (50), the controller gains can be obtained as

K11 ¼
7:9722 �0:4578

�0:1675 �9:1560


 �

; K12 ¼
8:3959 0:5866

0:0438 �6:5639


 �

;

K21 ¼
�7:3636 0:2791

0:1263 5:0258


 �

; K22 ¼
�6:3776 0:2231

0:0955 2:7234


 � :

The state response for this case is shown in Fig. 2. As

shown in Fig. 2, the system becomes unstable if we ignore

the effects of asynchronous behaviors on the controllers

design.
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Then, we investigate the situation that the asynchronous

switching between the system models and the controllers,

and the controllers are designed by considering the asyn-

chronous conditions. We get l1 ¼ 9:7281, l2 ¼ 13:0302,

s	1 ¼ 32:2918 and s	2 ¼ 22:6363 with the above parameters.

Using the LMI toolbox in Matlab to solve (48), (49), and

(50), the controller gains are listed as follows:

K11 ¼
0:1450 6:3475

0:1332 �0:3805


 �

; K12 ¼
�0:1433 4:2655

0:0626 �0:5197


 �

;

K21 ¼
�0:6258 1:7423

0:0695 �0:4502


 �

; K22 ¼
�0:5616 3:7148

0:0886 �0:2252


 � :

The state response for this situation is shown in Fig. 3. As

is shown in Fig. 3,the states of the system converge to zero.
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Fig. 1 State response of subsystem 1 and subsystem 2
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Fig. 2 State response of the closed-loop asynchronous switched

system with controllers designed by synchronous conditions
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Fig. 3 State response of the closed-loop asynchronous switched

system with controllers designed by considering asynchronous

conditions
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It means that the designed controllers by considering

asynchronous conditions are effective. Since the asyn-

chronous switching is very common in real world, it is

necessary for us to consider this effect on the controller

design. Through comparing Fig. 2 with Fig. 3, we can

conclude if we ignore the effects of asynchronous behav-

iors on the controller design when there exists asyn-

chronous switching, the controllers designed cannot meet

the actual requirements.

Next, we give some comparisons to show the advantage of

our methods. We firstly compare the closed-loop nonlinear

impulsive switched system under two different switching

schemes MDADT and ADT. The parameters and computa-

tion results are shown in Table 1. It is clearly shown in

Table 1 that s	 [ s	1 and s	 [ s	2. Therefore, any switching

signals which satisfy the ADT of the closed-loop nonlinear

impulsive switched system will satisfy the MDADT of all

subsystems of that system, that is, s	p � s	, 8p 2 S.

Secondly, we give a comparison between Theorem 2

and Corollary 2. Given the parameters TM ¼ 8, b1 ¼ 0:08

and b2 ¼ 0:045 for Theorem 2 and Corollary 2, by

changing a1 with a step of 0.01, the lower bounds of a2 for

Theorem 2 and Corollary 2 are plotted in Fig. 4. As is

shown in Fig. 4, the lower bounds of a2 of Theorem 2 are

smaller than those of Corollary 2. As we see from (23) and

(24), a smaller ap leads to a quicker decay of Lyapunov

functions and a smaller s	p. It is because that the QLFs

method is a special case of the FLFs method.

Example 2 Here, we give a practical example to show the

validity of our method. Consider a continuous stirred tank

reactor (CSTR) where an exothermic, irreversible reaction

of the form A ! B happens. As shown in [36], there are

two different feeding streams to feed the reactor, and these

two feeding streams are selected by a selector. Source 1

feeds pure species A at the flow rate F1 ¼ 50 L/min,

concentration CA1
¼ 1:5 mol/L and temperature TA1

¼ 350

K, and source 2 feeds pure species A at the flow rate

F2 ¼ 200 L/min, concentration CA2
¼ 0:75 mol/L and

temperature TA2
¼ 350 K. In other words, the reactor has

two modes with respect to the feeding stream. For each

mode of operation, the mathematical model for the process

has the following differential equations [27, 36]:

_CA ¼ Fr

V
ðCAr � CAÞ � k0e

�E=RTRCA;

_TR ¼ Fr

V
ðTAr � TRÞ þ

�MH

qcp
k0e

�E=RTRCA þ
Qr

qcpV
;
; ð53Þ

where CA represents the concentration of the species A, TR
denotes the temperature of the reactor, Qr is the heat

removed from the reactor, V is the volume of the reactor,

k0;E;MH are the pre-exponential constant, the activation

energy, and enthalpy of the reaction, cp, q are the heat

capacity and fluid density in the reactor, and rðtÞ 2 f1; 2g
is the switching signal which is a discrete variable. The

values of all process parameters can be found in [27].

The system (53) is a switched nonlinear system.

Substituting all the process parameters into equation (53),

we can get the following two subsystems:

Subsystem 1: ðr ¼ 1Þ

Table 1 Parameters and computation results for the closed-loop system under two different switching schemes

Switching schemes MDADT switching ADT switching

Parameters TM ¼ 8 TM ¼ 8

a1 ¼ �0:12; a2 ¼ �0:2 a ¼ �0:12

b1 ¼ 0:08; b2 ¼ 0:045 b ¼ 0:08

e11 ¼ e12 ¼ 1, e21 ¼ e22 ¼ 0:5 e11 ¼ e12 ¼ e21 ¼ e22 ¼ 0:5

The value of l l1 ¼ 3:7392, l2 ¼ 4:4394 l ¼ maxfl1;l2g ¼ 14:3330

Switching signals s	1 ¼ 10:9716 s	2 ¼ 7:6766 s	 ¼ 35:5214

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
−0.37

−0.368

−0.366

−0.364

−0.362

−0.36

−0.358

−0.356

−0.354

−0.352

−0.35

α
1

α 2

Theorem 2
Corollary 2

Fig. 4 The lower bounds of a2 for Theorem 2 and Corollary 2 by

changing a1 with a step of 0.01
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_CA ¼ �0:0334CA � 1:2 � 109e�10;000TRCA þ 0:026386;

_TR ¼ �0:0334TR þ 2:4 � 1011e�10;000TRCA

þ 11:77684 þ Qr

23:9
;

Subsystem 2: ðr ¼ 2Þ
_CA ¼ �0:0167CA � 1:2 � 109e�10;000TRCA þ 0:0167;

_TR ¼ �0:0167TR þ 2:4 � 1011e�10;000TRCA þ 5:177 þ Qr

23:9
:

When Qr ¼ 0, the two steady-states can be easily obtained

as ðCA; TRÞ1 ¼ ð0:57; 395:3Þ and ðCA; TRÞ2 ¼ ð0:738;

509:12Þ.
Using the T-S fuzzy model [19] and from [27], the

nonlinear system (53) can be approximated by the follow-

ing subsystem Sr:

Subsystem Sr:

Rule 1: IF the concentration of the species A is Mr1ðx1Þ
(i.e., x1ðtÞ is 0.57). THEN

d _xrðtÞ ¼ Ar1dxðtÞ þ Br1duðtÞ;

Rule 2: IF the concentration of the species A is Mr2ðx1Þ
(i.e., x1ðtÞ is 0.738). THEN

d _xrðtÞ ¼ Ar2dxðtÞ þ Br2duðtÞ;

where r 2 f1; 2g represents the subsystem subscript,

xrðtÞ ¼ ½xr1ðtÞ xr2ðtÞ�T ¼ ½CA TR�T ,

dxrðtÞ ¼ xrðtÞ � xdr, and xdr is the stationary point of the

subsystem r. It was shown in [27] that the Ar1 and Ar2

have the following values:

A11 ¼
�4:5803 � 10�2 6:6748 � 10�5

2:4807 �3:61 � 10�3

" #

;

A12 ¼
�3:5728 5:1826 � 10�5

707:89 �0:010268

" #

;

A21 ¼
�0:029103 5:1833 � 10�5

2:4807 �0:0036045

" #

;

A22 ¼
�3:564 5:1826 � 10�5

706:13 �0:010265

" #

:

The parameters Br1 and Br2 are set as B11 ¼ B12 ¼
B21 ¼ B22 ¼ ½�0:000005; 0:0030�. The nonlinear functions

grðt; xðtÞÞ used here are the same as in Example 1. Based

on different properties of the source 1 and source 2, the

matrices Dr are given as

D1 ¼ 0:02 0

0 �0:02


 �

; D2 ¼ 0:01 0

0 �0:02


 �

:

If grðt; xðtÞÞ and Dr can be measured in practice, we can

use these practical values to replace the values used in this

example.

The normalized membership functions for Rule 1 and

Rule 2 of the two subsystems are taken as

h11ðx1Þ ¼ h21ðx1Þ ¼
arctanð50 � ðx1 � 0:654ÞÞ þ p=2

p
;

h12ðx1Þ ¼ 1 � h11ðx1Þ; h22ðx1Þ ¼ 1 � h21ðx1Þ:

8

<

:

By the method of [29], the parameters eps used in this

example are calculated as e11 ¼ e12 ¼ e21 ¼ e22 ¼ 2. Given

g ¼ 0:01, e ¼ 0:01, TM ¼ 200, a1 ¼ �0:02, a2 ¼ �0:015,

b1 ¼ 0:01 and b2 ¼ 0:015, substituting above parameters

into (48), (49), and (50), we find these LMIs are feasible. A

set of feasible controller gains can be given as follows:

K11 ¼ 6:9574 4:2107½ �; K12 ¼ �18:3518 2:483½ �;
K21 ¼ 7:9568 �1:2109½ �; K22 ¼ �20:3518 5:4854½ �:

By assuming the initial conditions to be xðt0Þ ¼ ½0:5;
404:9�T , and setting s	1 ¼ 765:2733, s	2 ¼ 681:3643, the

simulation results are shown in Figs. 5 and 6. As we see

from these two figures, although there exist effects of

impulsive behaviors and asynchronous switching, the sys-

tem (53) can still be stable, which illustrates the validity of

our method.

5 Conclusion

In this paper, the T-S fuzzy model is first used to study the

exponential stability and asynchronous stabilization prob-

lem of the continuous-time nonlinear impulsive switched

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Second

S
ta

te
 R

es
po

ns
e 

an
d 

S
w

itc
hi

ng
 S

ig
na

l

model switching signal
controller switching signal
x1(t)
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systems with asynchronous switching. Based on the

switching FLFs approach and the MDADT technique, the

stability conditions and asynchronous stabilization condi-

tions are obtained. Moreover, the state-feedback fuzzy

controllers are designed to guarantee the closed-loop sys-

tems to be exponentially stable. Besides, we remark that

the obtained results can also apply to the nonlinear swit-

ched systems without the effects of asynchronous switch-

ing or impulsive behaviors. Finally, a numerical example

and a chemical process example are given to illustrate the

advantage and applicability of the results obtained.
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