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Abstract In this paper, a multi-objective multi-item solid

transportation problem (MOMISTP) with parameters, e.g.,

transportation costs, supplies, and demands, as trapezoidal

fuzzy variables is formulated. In this MOMISTP, there are

limitations on some items and conveyances so that some

special items cannot be carried by means of some special

conveyances. With the use of the nearest interval approx-

imation of trapezoidal fuzzy numbers, an interval pro-

gramming model is constructed for the fuzzy MOMISTP

and then this model is turned into its deterministic form.

Then, a new interval fuzzy programming approach is

developed to obtain the optimal solution of the problem.

Finally, a numerical example is presented for illustration.

Keywords Multi-objective multi-item solid

transportation problem � Fuzzy decision making � Interval
programming � Order relations

1 Introduction

The solid transportation problem (STP) is a continuation of

the conventional transportation problem in which three-

dimensional properties are considered in the objective and

constraint set instead of the supply and destination. The

necessity of considering this special type of transportation

problem appears when heterogeneous conveyances are

available for shipment of products. In many industrial

problems, a homogeneous product is obtained by its supply

to a destination by way of distinct modes of transport called

conveyances, such as trucks, cargo flights, goods trains,

and ships. These conveyances are taken as the third

dimension.

The TP was first developed by Hitchcock [1]. Shell [2]

first presented the STP and Haley [3] introduced a solution

procedure of the STP.

Because of the difficulty of the real world problems, we

may usually encounter uncertain phenomena in construct-

ing the model of realistic applications. For such condition,

we generally add the uncertain parameters (fuzzy, interval

or stochastic) to the models. Zadeh [4] first presented the

concept of fuzzy set theory. Bellman, and Zadeh [5],

Zimmermann [6] developed and used the fuzzy set theory.

The STP is further discussed and solved by several

researchers in crisp as well as uncertain environments. The

STP based on fuzzy sets was suggested by Jimenez and

Verdegay [7, 8]. A fuzzy programming approach was used

to multi-objective STP by Bit and Biswal [9] and an effi-

cient solution was obtained. Li et al. [10] presented a neural

network method for multi-criteria STP, and they suggested

an improved genetic algorithm to solve multi-objective

STPs with fuzzy parameters in [11]. Gen et al., [12] pre-

sented a genetic algorithm for solving bi-criteria STP with

fuzzy parameters. Liu and Yang [13] discussed the STP

with fuzzy parameters. They suggested the fuzzy pro-

gramming approach for the fixed charge STP by thinking

that the direct costs, fixed charges, supplies, demands, and

conveyance parameters are fuzzy coefficient (Fig. 1).

Baidya et al. [14] studied the interval multi-item interval

STP. Kundu et al. [15, 16] presented fuzzy multi-objective

multi-item solid transportation problems (MOMISTPs)

with fuzzy coefficients. They used the fuzzy programming
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approach and global criterion method to find the optimal

compromise solution. Recently, several kinds of multi-

objective solid transportation models are studied by

Chakraborty et al. [17], Giri et al. [18], Kaur and Kumar

[19], Zavardehi et al. [20], Pramanik et al. [21], Radhakr-

ishnan and Anukokila [22], Tao and Xu [23].

Model parameters in most programming problems

require to be addressed as interval parameters, due to poor

data for an absolute evaluation but with known extreme

bounds of the parameter values. Such interval uncertainty,

with partially known and partially unknown components

cannot be completely designed by probabilistic or fuzzy

logic approach because of deficiency of data to determine

probability distribution and shortage of information to

exactly determine the membership functions.

The order relation of interval number is a major issue in

group decision-making, especially for decision-making

with scientific terms, which are generally designed by

interval numbers. The interval uncertainty theory was

introduced by Moore [24]. Ishibuchi and Tanaka [25]

developed the order relation between intervals for linear

programming problems with interval objective functions

by transforming those into multi-objective programming

problem. Several authors such as Chinneck and Ramadan

[26], Kuchta [13], Oliveira and Antunes [27], Sengupta and

Pal [28], Yu et al. [29] interested in different order relations

between intervals to make decisions.

Chanas and Kuchta [30] improved the paper [25] with

the aid of a level-cut of the intervals and presented the

general method using multi-objective programming for

interval linear programming. For interval multi-objective

problems, a new approach is developed in [31]. The

interval transportation problems were converted into crisp

multi-objective problems using the order relation in [32].

The effects of variations on the optimal value and interval

solutions are the basic problems investigated in [33].

The interval fuzzy linear programming model is intro-

duced as the basic algorithm of interval programming

which is effective for optimization under uncertainty [34].

The interval fuzzy linear programming model is developed

by Hajiagha et al. [35, 36] and they obtained Pareto optimal

solution of interval multi-objective problems using the

Fig. 1 Application framework of the interval fuzzy programming approach
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different order relation between intervals. Some interactive

solution procedure has been developed based on interval

and fuzzy programming model in [37, 38].

Here, this paper focuses on MOMISTP under uncertainty

and presents a new interval fuzzy programming model for

the fuzzy MOMISTP. The application of the suggested

method is shown by solving a numerical example in which

objective function coefficients, availabilities, and demand

parameters are represented by trapezoidal fuzzy numbers.

The method converts an unbalanced problem to a balanced

one. After constructing that the interval MOMISTP is

transformed into a crisp form. Then, based on a compromise

solution of deterministic MOMISTP, the best and worst

bounds are found and the membership functions are con-

structed. Using these membership functions, a new interval

fuzzy programming model is formulated and easily solved

by Maple 18 optimization toolbox.

The main contributions of our work are summarized below;

A nearest interval approximation of fuzzy numbers [39]

is used for the fuzzy MOMISTP and an equivalent interval

MOMISTP is obtained. Then, a new interval fuzzy pro-

gramming model is developed to solve the interval

MOMISTP. Moreover, while the model concludes infea-

sible solution by the suggested approach in [35, 36] for the

fuzzy MOMISTP, our suggested model gives an optimal

solution for the fuzzy MOMISTP.

The rest of this paper is organized as follows. In Sect. 2,

we recall some preliminary information about interval and

fuzzy arithmetic. We formulate a fuzzy MOMISTP and we

convert into a deterministic one. Then provides general

information about the fuzzy set-based approach in Sect. 3.

A numerical example is solved in Sect. 4.

2 Preliminaries

In this paper, we assumed that all parameters of considered

problems are expressed as fuzzy and interval numbers and

brief information about the interval arithmetic are

presented.

Definition 1 A fuzzy numbers ~A defined on the universal

set of real numbers R, denoted by ~A ¼ ða; b; c; dÞ, is said to
be a trapezoidal fuzzy number if its membership function

l ~AðxÞ is given by

l ~AðxÞ ¼

x� a

b� a
; a� x\b;

1; b� x� c;

x� d

c� d
; c\x\d;

0; otherwise:

:

8
>>>>>>><

>>>>>>>:

Definition 2 A trapezoidal fuzzy number ~A ¼ ða; b; c; dÞ
is said to be zero trapezoidal fuzzy number if and only if
~A ¼ ð0; 0; 0; 0Þ.

Definition 3 A trapezoidal fuzzy number ~A ¼ ða; b; c; dÞ
is said to be nonnegative trapezoidal fuzzy number if and

only if a C 0.

Definition 4 The support of a fuzzy number ~A on X is the

crisp set of all x 2 X such that l ~AðxÞ[ 0:

Definition 5 The core of a fuzzy number ~A on X is the

crisp set of all x 2 X such that l ~AðxÞ ¼ 1:

Definition 6 Two trapezoidal fuzzy numbers ~A1 ¼
ða1; b1; c1; d1Þ and ~A2 ¼ ða2; b2; c2; d2Þ are said to be equal

trapezoidal fuzzy number if a1 = a2, b1 = b2, c1 = c2 and

d1 = d2.

2.1 Arithmetic Operations

Let ~A1 ¼ ða1; b1; c1; d1Þ and ~A2 ¼ ða2; b2; c2; d2Þ be two

trapezoidal fuzzy numbers and we have

• ~A1 � ~A2 ¼ ða1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2Þ;
• ~A1H~A2 ¼ ða1 � d2; b1 � c2; c1 � b2; d1 � a2Þ;

• k ~A1 ¼
ðka1; kb1; kc1; kd1Þ; k� 0;

ðkd1; kc1; kb1; ka1Þ; k� 0;

(

• ~A1 � ~A2 ¼ ðminða1a2; a1d2; d1a2; d1d2Þ; minðb1b2; b1
c2; c1b2; c1c2Þ; maxðb1b2; b1c2; c1b2; c1c2Þ; maxða1a2;
a1d2; d1a2; d1d2ÞÞ:

2.1.1 Liou and Wang Ranking Approach for Trapezoidal

Fuzzy Numbers [40]

Let FðRÞ be a set of fuzzy numbers defined on the set of

real numbers R and let ~A ¼ ða; b; c; dÞ 2 FðRÞ: According
to the ranking approach suggested by Liou and Wang [40]

to find the crisp value of trapezoidal fuzzy numbers,

<ð~AÞ ¼ ðaþ bþ cþ dÞ
4

is called a ranking function < : FðRÞ ! R; which maps

each fuzzy number into the real line.

2.2 Comparison of Trapezoidal Fuzzy Numbers

Let ~A1 ¼ ða1; b1; c1; d1Þ and ~A2 ¼ ða2; b2; c2; d2Þ be two

trapezoidal fuzzy numbers and then, we have

• ~A1 � ~A2 if <ð~A1Þ[<ð~A2Þ:
• ~A1 	 ~A2 if <ð~A1Þ\<ð~A2Þ:
• ~A1 
 ~A2 if <ð~A1Þ ¼ <ð~A2Þ:
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2.3 Nearest Interval Approximation of Fuzzy

Numbers

According to Grzegorzewski [39], a fuzzy number is approxi-

mated to an equal crisp interval. Let A = (a1, a2, a3, a4) be a

trapezoidal fuzzy number and its a-cut is defined as Aa; �Aa½ �.
Therefore, we can write Aa ¼ a1 þ a a2 � a1ð Þ and
�Aa ¼ a3 þ a a4 � a3ð Þ. Using the definition of nearest interval
approximation,weget lower and upper bounds, respectively, as

C ¼
Z1

0

Aa að Þda ¼
Z1

0

a1 þ a a2 � a1ð Þ½ �da ¼ 1

2
ða2 þ a1Þ;

0� a� 1

ð1Þ

�C ¼
Z1

0

�Aa að Þda ¼
Z1

0

a3 þ a a4 � a3ð Þ½ �da ¼ 1

2
ða4 þ a3Þ;

0� a� 1

ð2Þ

Here, with the use of the nearest interval approximation,

a trapezoidal fuzzy number A = (a1, a2, a3, a4) is con-

verted to a crisp closed interval as

C; �C½ � ¼ 1

2
ða2 þ a1Þ;

1

2
ða4 þ a3Þ

� �

ð3Þ

2.4 Interval Numbers

The interval uncertainty theory was presented by Moore

[24] and defined following concepts in [41].

Definition 7 (Moore et al. [41]) An interval number is a

number whose exact value is unknown distribution infor-

mation, but a range within which the value lies is known.

Interval number is a number with both lower and upper

bounds.X 2 ½x; �x�: where x� �x. The main arithmetic oper-

ations can be expressed in interval numbers.

Definition 8 (Moore et al [41]) Let ~x1 ¼ x1; �x1½ � and ~x2 ¼
x2; �x2½ � be a closed interval number. The following nota-

tions can be satisfied:

• ~x1 þ ~x2 ¼ x1 þ x2; �x1 þ �x2½ �
• ~x1 � ~x2 ¼ x1 � �x2; �x1 � x2½ �

~x1 � ~x2 ¼ min x1x2; x1�x2; �x1x2; �x1�x2ð Þ; max x1x2; x1�x2;ð½
�x1x2; �x1�x2Þ�
~x1  ~x2 ¼ x1; �x1½ � 1

�x2;x2½ �When X 2 x; �x½ � is an interval

number, its absolute value is the maximum of the

absolute value of its endpoints:

• xj j ¼ max xj j; �xj jð Þ

The center, xc, and width, xw, of an interval number of

X 2 x; �x½ � are defined as follows:

xc ¼
1

2
xþ �x½ � and xw ¼ 1

2
�x� x½ �

It is easily demonstrable that �x ¼ xc þ xw and

x ¼ xc � xw:

In addition, Ishibuchi and Tanaka [25] defined the

following order relations between intervals.

Definition 9 (Ishibuchi and Tanaka [25]) Let ~x ¼ ½x; �x�
and ~y ¼ ½y; �y� are two closed interval numbers and then the

order relation BLR (LR represents the upper and lower

bounds of an interval) is defined as

• ~x� LR ~y , x� y and �x� �y

• ~x\LR ~y , x� LR y and �x 6¼ �y

Definition 10 (Ishibuchi and Tanaka [25]) The order

relation BCW between two interval numbers ~x ¼ x; �x½ � and
~y ¼ y; �y

h i
is expressed as

~x� CW ~y , xC � yC and xW � yW

~x\CW ~y , ~x� CW ~y and x 6¼ y

The order relations BCW and BLR certainly not conflict

with each other. Furthermore, the order relations BCW and

BLR are antisymmetric, reflexive, and transitive (Sengupta

and Pal [28]).

3 Problem Formulation

In order to construct the model, we use the following

notations for the fuzzy MOMISTP;

• i is the {1, 2, …, m}number of sources.

• j is the {1, 2, …, n}number of demands.

• k is the {1, 2, …, l}number of conveyances or different

modes of transportation.

• p is the {1, 2, …, r} number of fuzzy available for item

p at supplies and destinations.

• x
p
ijk is the unknown quantity of item p transported from

supply i to destination j by conveyance k.

• ~cpijk is the fuzzy penalty for transporting one unit of item

p from supply i to destination j by conveyance kfor the

fuzzy objective.

• ~api is the fuzzy availability of item p at supply i which

can be transported to n destinations.

• ~bpj is the fuzzy demand of item p at destination j.

• ~ek is the transportation capacity of conveyance k.

In fact, in a MOMISTP, the total availability of item

p from supply i is no more than ai
p. Thus, the first constraint

of the system is obtained as follows:
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Xn

j¼1

Xl

k¼1

x
p
ijk � a

p
i ; i ¼ 1; 2; . . .;m; p ¼ 1; 2; . . .; r ð4Þ

The constraint of the system is the total availability of

item p transported from supplies should satisfy the demand

for destination j. Then, the second constraint of the system

is obtained as follows:

Xm

i¼1

Xl

k¼1

x
p
ijk � b

p
j ; j ¼ 1; 2; . . .; n; p ¼ 1; 2; . . .; r ð5Þ

In addition, the total quantity is transported by means of

conveyance is no more than its transportation capacity.

Thus, the last constraint of the system is obtained as

follows:

Xr

p¼1

Xm

i¼1

Xn

j¼1

x
p
ijk � e

p
k ; k ¼ 1; 2; . . .; l ð6Þ

Using these system constraints (4), (5), and (6), pro-

gramming model of a fuzzy MOMISTP can be formulated

as follows:

Z1; Z2; . . .; ZKð Þ ! min

s:t:

Pn

j¼1

Pl

k¼1

x
p
ijk � ~api ; i ¼ 1; 2; . . .;m; p ¼ 1; 2; . . .; r;

Pm

i¼1

Pl

k¼1

x
p
ijk � ~bpj ; j ¼ 1; 2; . . .; n; p ¼ 1; 2; . . .; r;

Pr

p¼1

Pm

i¼1

Pn

j¼1

x
p
ijk � ~epk ; k ¼ 1; 2; . . .; l;

x
p
ijk � 0; 8p; i; j; k

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð7Þ

where

Zt
t¼1;2;...;K

¼
Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijkx

p
ijk

 !

:

In the fuzzy MOMISTP, all parameters are taken as

trapezoidal fuzzy numbers and for the above problem to be

balanced, it should satisfy the following conditions.

• Total availability of an item at all sources should be

equal to its demand at all the destinations.

<
Xn

j¼1

Xl

k¼1

~api

 !

¼ <
Xm

i¼1

Xl

k¼1

~bpj

 !

; p ¼ 1; 2; . . .; r;

ð8Þ

• Total availability of all the items at all the sources, total

demand of all the items at all the destinations, and total

conveyance capacity should be equal.

<
Xn

j¼1

Xl

k¼1

~api

 !

¼<
Xm

i¼1

Xl

k¼1

~bpj

 !

¼<
Xr

p¼1

Xm

i¼1

Xn

j¼1

~epk

 !

:

ð9Þ

Thus, the balanced fuzzy MOMISTP is formulated as

Z1;Z2; . . .;ZKð Þ!min

s:t:

Pn

j¼1

Pl

k¼1

x
p
ijk ¼ ~api ; i¼ 1;2; . . .;m;p¼ 1;2; . . .; r;

Pm

i¼1

Pl

k¼1

x
p
ijk ¼ ~bpj ; j¼ 1;2; . . .;n;p¼ 1;2; . . .; r;

Pr

p¼1

Pm

i¼1

Pn

j¼1

x
p
ijk ¼ ~epk ;k¼ 1;2; . . .; l;

x
p
ijk�0;8p; i; j;k

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð10Þ

where

Zt
t¼1;2;...;K

¼
Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijkx

p
ijk

 !

:

Here, with the use of nearest interval approximation (3)

for the fuzzy numbers, all fuzzy variables of the above

fuzzy MOMISTP can be converted to its equivalent inter-

val variables and the model (10) converted into the interval

MOMISTP as follows;

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijk;�c

tp
ijk

h i
 !

t¼1;2;...K

!min

s:t:

Pn

j¼1

Pl

k¼1

x
p
ijk¼ a

p
i ; �a

p
i½ �; i¼1;2; . . .;m; p¼1;2; . . .;r;

Pm

i¼1

Pl

k¼1

x
p
ijk¼ b

p
j ;
�bpj

h i
; j¼1;2; . . .;n; p¼1;2; . . .;r;

Pr

p¼1

Pm

i¼1

Pn

j¼1

x
p
ijk¼ e

p
k ;�e

p
k

� �
; k¼1;2; . . .;l;

xijk�0;8p; i; j;k

8
>>>>>>>>>><

>>>>>>>>>>:

ð11Þ

3.1 Deterministic Model of the Interval MOMISTP

Hajiagha et al. [35, 36] and Huang et al. [34] suggested

different interval fuzzy methods to optimize the interval-

type problems. These methods transformed an interval

linear programming method into two equivalent models for

its lower and upper bounds. Then, with the use of the order

relation between intervals, deterministic linear program-

ming problems are generated. But, these models generally

produce the infeasible solution and fail to provide the most

appropriate solutions to interval MOMISTPs.
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Therefore, we suggest a different method for solving

interval MOMISTP. At first, the supply, demand, and

conveyance constraints of the interval MOMISTP (11) are

constructed as follows:

a
p
i �

Xn

j¼1

Xl

k¼1

x
p
ijk � �api ; b

p
j �

Xm

i¼1

Xl

k¼1

x
p
ijk � �bpj ;

e
p
k �

Xr

p¼1

Xm

i¼1

Xn

j¼1

x
p
ijk � �epk : ð12Þ

Then, interval MOMISTP (11) is transformed into the

following problems

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijk;�c

tp
ijk

h i
 !

t¼1;2;...;K

!min

s:t:

a
p
i �
Xn

j¼1

Xl

k¼1

x
p
ijk� �api ; i¼1;2; . . .;m; p¼1;2; . . .;r;

b
p
j �
Xm

i¼1

Xl

k¼1

x
p
ijk� �bpj ; j¼1;2; . . .n; p¼1;2; . . .;r;

e
p
k�
Xr

p¼1

Xm

i¼1

Xn

j¼1

x
p
ijk��epk ; k¼1;2; . . .; l;

xijk�0;8p;i;j;k

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð13Þ

If the original objective is to minimize Zt(x),

(t = 1, 2,…, K), the solution of the model (13) can be

obtained as the set of optimal solutions of the following

programming bi-objective problem:

ZtC xð Þ; �Zt xð Þð Þ t¼1;2;...;Kð Þ! min ð14Þ

where �Zt xð Þ is the upper bound of interval objective

function and ZtC(x) is its center of interval objective

function. Then, the objective function of minimization

model (13) is obtained as follows;

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijk þ �ctpijk

2

 ! !

t¼1;2;...;K

! min

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

�ctpijk

 !

t¼1;2;...;K

! min

ð15Þ

If the original objective is to maximize Zt(x), (t = 1,

2, …, K) the solution of model (13) can be obtained as the

set of optimal solutions of the following problem:

Zt xð Þ; ZtC xð Þð Þ t¼1;2;...;Kð Þ! max ð16Þ

where Zt xð Þ is the lower bound of interval objective

function and ZtC(x) is its center. Then, the objective func-

tion of maximization model is obtained as follows;

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijk

 !

t¼1;2;...K

! max

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijk þ �ctpijk

2

 ! !

t¼1;2;...;K

! max

ð17Þ

The above interval MOPMSTP is transformed into the

following crisp form:

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

c
tp
ijk þ �ctpijk

2

 ! !

t¼1;2;...;K

! min

Xr

p¼1

Xm

i¼1

Xn

j¼1

Xl

k¼1

�ctpijk

 !

t¼1;2;...;K

! min

8
>>>>>><

>>>>>>:

s:t:

a
p
i �

Xn

j¼1

Xl

k¼1

x
p
ijk � �api ; i ¼ 1; 2; . . .;m; p ¼ 1; 2; . . .; r;

b
p
j �

Xm

i¼1

Xl

k¼1

x
p
ijk � �bpj ; j ¼ 1; 2; . . .n; p ¼ 1; 2; . . .; r;

e
p
k �

Xr

p¼1

Xm

i¼1

Xn

j¼1

x
p
ijk � �epk ; k ¼ 1; 2; . . .; l;

xijk � 0; 8p; i; j; k

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð18Þ

In this model, solve each objective function as a single STP

ignoring all other objectives and the range of optimal

objective functions based on lower and upper bounds are

determined as

Zopt
t ¼ Zopt

t ; �Zopt
t

� �
; p ¼ 1; 2; . . .; rð Þ ð19Þ

Definition 11 The function Z:Rn ! I (I 2 R) is called a

closed and bounded interval function on the Rn and defined

as Zt xð Þ ¼
Pr

p¼1

Pm

i¼1

Pn

j¼1

Pl

k¼1

c
tp
ijk;
Pr

p¼1

Pm

i¼1

Pn

j¼1

Pl

k¼1

�ctpijk

" #

where

Pr

p¼1

Pm

i¼1

Pn

j¼1

Pl

k¼1

c
tp
ijk and

Pr

p¼1

Pm

i¼1

Pn

j¼1

Pl

k¼1

�ctpijk are the lower limit

and the upper limit of interval respectively. Then, we have

8xpijk 2 X, (X is the feasible region of problem)
Pr

p¼1

Pm

i¼1

Pn

j¼1

Pl

k¼1

c
tp
ijk �

Pr

p¼1

Pm

i¼1

Pn

j¼1

Pl

k¼1

�ctpijk; t ¼ 1; 2; . . .;Kð Þ; p ¼ 1; 2;ð

. . .; rÞ:

3.2 An Interval Fuzzy Programming Model

to Interval MOMISTP

In order to construct an interval fuzzy programming model,

we consider the interval objective function Zt (x) of model

(13). After determining the best lower and worst upper

H. Dalman et al.: A Fuzzy Set Based Approach to Multi-objective Multi-item Solid Transportation Problem… 721

123



bounds (19) of objective function values, then its mem-

bership function (for the minimization type objective) can

be determined as follows:

ltðxÞ ¼
1 Zt xð Þ� Z

opt
t

�Zopt
t � Zt xð Þ
�Zopt
t � Z

opt
t

Z
opt
t � Zt xð Þ

8
<

:
ð20Þ

where the decreasing of Zt (x) will increase the membership

degree lt (x).

Lemma 1 In the membership function (20) it always

holds that lt B 1.

Proof Assume that lr C 1. According to the membership

function (20), we get

lt Zt xð Þð Þ� 1 )
�Zopt
t � Zt xð Þ
�Zopt
t � Z

opt
t

� 1

) �Zopt
t � Zt xð Þ� �Zopt

t � Zopt
t ) Zt xð Þ� Zopt

t

From membership function (20), Zt xð Þ� Z
opt
t required that

Z
opt
t � Zt xð Þ which contradicts with the optimality of Z

opt
t

Thus, we obtained as lt B 1. h

Also, for maximization type objective, the membership

function can be specified with the use of optimal solution

(19) as follows:

ltðxÞ ¼
1 Zt xð Þ� �Zopt

t

Zt xð Þ � Z
opt
t

�Zopt
t � Z

opt
t

; Zt xð Þ� �Zopt
t

8
<

:
ð21Þ

where the increasing of Zt(x) will increase the membership

degree lt(x).
After constructing membership function (20) and/or

(21), using the fuzzy decision of Bellman and Zadeh [5],

the interval fuzzy programming model of MOPMSTP (13)

can be formulated as follows:

l1;l2; . . .;lKf g!max

s:t:

lt�1; t¼ 1;2; . . .;K;

a
p
i �
Xn

j¼1

Xl

k¼1

x
p
ijk� �api ; i¼ 1;2; . . .;m;p¼ 1;2; . . .; r;

b
p
j �
Xm

i¼1

Xl

k¼1

x
p
ijk� �bpj ; j¼ 1;2; . . .n;p¼ 1;2; . . .; r;

e
p
k�
Xr

p¼1

Xm

i¼1

Xn

j¼1

x
p
ijk� �epk ; k¼ 1;2; . . .; l;

xijk�0;8p; i; j;k

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð22Þ

where lt, (t = 1, 2, …, K) is an interval functions.

Here, lt ¼ ½l
t
; �lt� � 1 represents the minimum value of

the objective function;

it can be defined as follows based on model (14):�lt � 1

and
l
t
þ�lt
2

� �
� 1; t ¼ 1; 2; . . .;K

Thus, this problem is transformed into the following

deterministic equivalent problem:

XK

t¼1

l
t
þ

l
t
þ �lt
2

� 	� 	( )

!max

s:t:

�lt�1; t¼ 1;2; . . .;K;

l
t
þ �lt
2

� 	

�1; t¼ 1;2; . . .;K;

a
p
i �
Xn

j¼1

Xl

k¼1

x
p
ijk� �api ; i¼ 1;2; . . .;m;p¼ 1;2; . . .; r;

b
p
j �
Xm

i¼1

Xl

k¼1

x
p
ijk� �bpj ; j¼ 1;2; . . .n;p¼ 1;2; . . .; r;

e
p
k�
Xr

p¼1

Xm

i¼1

Xn

j¼1

x
p
ijk� �epk ;k¼ 1;2; . . .; l;

xijk�0;8p; i; j;k

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ

The complete solution procedure for the MOPMSTP

with interval coefficients can be summarized as follows:

• Develop fuzzy MOMISTP (7).

• Check fuzzy MOMISTP (7) is balanced. If not, convert

into its balanced one using the Liou and Wang Ranking

approach.

• With the use of nearest interval approximation (3), turn

it to interval MOMISTP (11).

• Formulate its crisp model (18).

• Solve the crisp MOMISTP as a linear programming

problem ignoring all the other objectives.

• Determine the best lower and worst upper bounds (19).

• Define the membership functions (20) and/or (21) of

each objective function (13).

• Formulate, interval fuzzy programming model (21) and

(23), respectively.

• Solve problem (23) as a single linear programming with

the use of the simple equal weighted method. The flow

chart of these solution steps is presented in (Fig. 1).

Definition 12 (Hossein Razavi Hajiagha et al. [35],

Jiménez and Bilbao [42]) Assume that the feasible set of a

fuzzy programming model (22) is X. A x0 2 X is an effi-

cient solution to the fuzzy problem (22) if there does not

exist other solution x 2 X such that lt(x) C lt(x0) and

lt(x) C lt(x0) at least one index k.

722 International Journal of Fuzzy Systems, Vol. 18, No. 4, August 2016

123



4 A Numerical Example

Let us consider the following numerical example presented by

Kundu et al. [16] to illustrate the application of fuzzy MOMIS

TP. Data of the problem are as given in Tables 1, 2, 3, 4, and 5.

Here,

X2

i¼1

~a1i ¼ 49; 56; 61; 65ð Þ;
X2

i¼1

~a2i ¼ 57; 62; 67; 72ð Þ;

X3

j¼1

~b1j ¼ 43; 51; 59; 68ð Þ;
X3

j¼1

~b2j ¼ 51; 58; 63; 71ð Þ;

X2

j¼1

~ek ¼ 97; 102; 107; 112ð Þ:

Before solving FSTP, it is needed providing a balance

between total supply, demand, and conveyance capacities.

By means of adding dummy supply, demand or con-

veyance point, the balance equality. Using the Liou and

Wang ranking approach, we obtain that

<
P2

i¼1

~api

� 	

�<
P3

j¼1

~bpj

 !

: So to balance the problem add a

dummy destination with demands of items 1 and 2 equal to

any fuzzy number whose ranks are 2.5 and 3.75, respec-

tively. Here, we add dummy destinations as ~b14 ¼

Table 1 Unit penalties of transportation in the first objective

Item 1

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 (5, 8, 9, 11) (4, 6, 9, 11) (10, 12, 14, 16) S1 (9, 11, 13, 15) (6, 8, 10,12) (7, 9, 12, 14)

S2 (8, 10, 13, 15) (6, 7, 8, 9) (11, 13, 15, 17) S2 (10, 11, 13,15) (6, 8, 10,12) (14, 16, 18, 20)

Table 2 Unit penalties of transportation in the first objective

Item 2

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 (9, 10, 12,13) (5, 8, 10,12) (10, 11, 12, 13) S1 (11, 13, 14,15) (6, 7, 9, 11) (8, 10, 11, 13)

S2 (11, 13, 14, 16) (7, 9, 12,14) (12, 14, 16, 18) S2 (14, 16, 18, 20) (9, 11, 13, 14) (13, 14, 15, 16)

Table 3 Unit penalties of transportation in the second objective

Item 1

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 (4, 5, 7, 8) (3, 5, 6, 8) (7, 9, 10, 12) S1 (6, 7, 8, 9) (4, 6, 7, 9) (5, 7, 9, 11)

S2 (6, 8, 9,11) (5, 6, 7, 8) (6, 7, 9, 10) S2 (4, 6, 8, 10) (7, 9, 11, 13) (9, 10, 11, 12)

Table 4 Unit penalties of transportation in the second objective

Item 2

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 (5, 7, 9, 10) (4, 6, 7, 9) (9, 11, 12, 13) S1 (7, 8, 9, 10) (4, 5, 7, 8) (8, 10, 11, 12)

S2 (10, 11, 13, 14) (6, 7, 8, 9) (7, 9, 11, 12) S2 (6, 8, 10, 12) (5, 7, 9, 11) (9, 10, 12, 14)
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1; 2; 3; 4ð Þ; ~b24 ¼ 2; 3; 4; 6ð Þ and this produces <
P2

i¼1

~api

� 	

¼

<
P3

j¼1

~bpj

 !

¼ 122: However,
P2

j¼1

~ek ¼ 104\122 and insert

a dummy conveyance having total fuzzy capacity equal to

any fuzzy number with rank 17.75. Here, we add dummy

conveyance as ~e3 ¼ 15; 16; 19; 21ð Þ:

Thus, the analyzed problem is balanced and consists of

two objectives, two items, two sources, four destinations,

and three distinct modes of transportation.

Using the nearest interval approximation as given in (3),

all fuzzy numbers in data Tables 1, 2, 3, 4 and 5 can be

converted into the interval numbers as in the following data

Tables 6,7, 8, 9 and 10.

Table 6 Interval transportation costs in the first objective

Item 1

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 [13/2, 10] [5, 10] [11, 15] S1 [10 14] [7, 11] [8, 13]

S2 [9, 14] [13/2, 17/2] [12, 16] S2 [21/2, 14] [7, 11] [15, 19]

Table 7 Interval Transportation Costs in the first objective

Item 2

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 [19/2, 25/2] [13/2, 11] [21/2, 25/2] S1 [12, 29/2] [13/2, 10] [9 12]

S2 [12, 15] [8, 13] [13, 17] S2 [15, 19] [10, 27/2] [27/2, 31/2]

Table 8 Interval transportation costs in the second objective

Item 1

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 [9/2, 15/2] [4 7] [8, 11] S1 [5, 8] [6, 10] [5, 9]

S2 [7 10] [11/2, 15/2] [13/2, 19/2] S2 [8, 12] [19/2,23/2] [6,19/2]

Table 5 Fuzzy availability and

demand data
Fuzzy availability Interval demand Interval conveyance capacities

~a11 ¼(21, 24, 26, 28) ~b11 ¼ 14; 16; 19; 22ð Þ ~e1 ¼ 46; 49; 51; 53ð Þ
~a12 ¼ 28; 32; 35; 37ð Þ ~b12 ¼ 17; 720; 22; 25ð Þ ~e2 ¼ 51; 53; 56; 59ð Þ
~a21 ¼ 32; 34; 37; 39ð Þ ~b13 ¼ 12; 15; 18; 21ð Þ
~a22 ¼ 25; 28; 30; 33ð Þ ~b21 ¼ 20; 23; 25; 28ð Þ

~b22 ¼ 16; 18; 19; 22ð Þ
~b23 ¼ 15; 17; 19; 21ð Þ
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Consequently, the considered fuzzy problem is trans-

formed as follows based on model (13):

Z1 ¼

13

2
;10

� �

x1
111

þ 5;10½ �x1
121

þ 11;15½ �x1
131

þ 9;14½ �x1
211

þ 13

2
;
17

2

� �

x1
221

þ 12;16½ �x1
231

þ 10;14½ �x1
112

þ 7;11½ �x1
122

þ 8;13½ �x1
132

þ 21

2
;14

� �

x1
212

þ 7;11½ �x1
222

þ 15;19½ �x1
232

þ 19

2
;
25

2

� �

x2
111

þ 13

2
;11

� �

x2
121

þ 21

2
;
25

2

� �

x2
131

þ 12;15½ �x2
211

þ 8;13½ �x2
221

þ 13;17½ �x2
231

þ 12;
29

2

� �

x2
112

þ 13

2
;10

� �

x2
122

þ 9;12½ �x2
132

þ 15;19½ �x2
212

þ 10;
27

2

� �

x2
222

þ 27

2
;
31

2

� �

x2
232

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

!min

Z2 ¼

9

2
;
15

2

� �

x1
111

þ 4; 7½ �x1
121

þ 8; 11½ �x1
131

þ 7; 10½ �x1
211

þ 11

2
;
15

2

� �

x1
221

þ 13

2
;
19

2

� �

x1
231

þ 13

2
;
17

2

� �

x1
112

þ 5; 8½ �x1
122

þ 6; 10½ �x1
132

þ 5; 9½ �x1
212

þ 8; 12½ �x1
222

þ 19

2
;
23

2

� �

x1
232

þ 6;
19

2

� �

x2
111

þ 5; 8½ �x2
121

þ 10;
25

2

� �

x2
131

þ 21

2
;
27

2

� �

x2
211

þ 13

2
;
17

2

� �

x2
221

þ 8;
23

2

� �

x2
231

þ 15

2
;
19

2

� �

x2
112

þ 9

2
;
15

2

� �

x2
122

þ 9;
23

2

� �

x2
132

þ 7; 11½ �x2
212

þ 6; 10½ �x2
222

þ 19

2
; 13

� �

x2
232

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

! min

s:t:

x1
111

þ x1
121

þ x1
131

þ x1
141

þ x1
112

þ x1
122

þ x1
132

þ x1
142

þ x1
113

þ x1
123

þ x1
133

þ x1
143

� 45

2
; 27

� �

;

x1
211

þ x1
221

þ x1
231

þ x1
241

þ x1
212

þ x1
222

þ x1
232

þ x1
242

þ x1
213

þ x1
223

þ x1
233

þ x1
243

� 30; 36½ �;
x2
111

þ x2
121

þ x2
131

þ x2
141

þ x2
112

þ x2
122

þ x2
132

þ x2
142

þ x2
113

þ x2
123

þ x2
133

þ x2
143

� 33; 38½ �;
x2
211

þ x2
221

þ x2
231

þ x2
241

þ x2
212

þ x2
222

þ x2
232

þ x2
242

þ x2
213

þ x2
223

þ x2
233

þ x2
243

� 53

2
;
63

2

� �

;

x1
111

þ x1
211

þ x1
112

þ x1
212

þ x1
113

þ x1
213

� 15;
45

2

� �

x1
121

þ x1
221

þ x1
122

þ x1
222

þ x1
123

þ x1
223

� 37

2
;
47

2

� �

;

x1
131

þ x1
231

þ x1
132

þ x1
232

þ x1
133

þ x1
233

� 27

2
;
49

2

� �

;

x1
141

þ x1
241

þ x1
142

þ x1
242

þ x1
143

þ x1
243

� 3

2
;
7

2

� �

;

x2
111

þ x2
211

þ x2
112

þ x2
212

þ x2
113

þ x2
213

� 43

2
;
53

2

� �

;

x2
121

þ x2
221

þ x2
122

þ x2
222

þ x2
123

þ x2
223

� 17;
41

2

� �

;

x2
131

þ x2
231

þ x2
132

þ x2
232

þ x2
133

þ x2
233

� 16; 10½ �;

x2
141

þ x2
241

þ x2
142

þ x2
242

þ x2
143

þ x2
243

� 5

2
; 5

� �

x1
111

þ x1
121

þ x1
131

þ x1
141

þ x1
211

þ x1
221

þ x1
231

þ x1
241

þ x2
111

þ x2
121

þ x2
131

þ x2
141

þ x2
211

þ x2
221

þ x2
231

þ x2
241

� 95

2
; 52

� �

;

x1
112

þ x1
122

þ x1
132

þ x1
142

þ x1
212

þ x1
222

þ x1
232

þ x1
242

þ x2
112

þ x2
122

þ x2
132

þ x2
142

þ x2
212

þ x2
222

þ x2
232

þ x2
242

� 52;
115

2

� �

;

x1
113

þ x1
123

þ x1
133

þ x1
143

þ x1
213

þ x1
223

þ x1
233

þ x1
243

þ x2
113

þ x2
123

þ x2
133

þ x2
143

þ x2
213

þ x2
223

þ x2
233

þ x2
243

� 31

2
; 20

� �

xijk � 0; 8p; i; j; k

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ
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This problem further is transformed into a multi-objec-

tive linear programming model as follows:

Z1¼

13

2
x1
111
þ5x1

121
þ11x1

131
þ9x1

211
þ13

2
x1
221

þ12x1
231
þ10x1
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C
C
C
C
C
C
C
C
C
C
C
A

!min

Table 10 Interval availability

and demand data
Interval availability Interval demand Interval conveyance capacities

~a11 ¼ 45=2; 27½ � ~b11 ¼ 15; 41=2½ � ~e1 ¼ 95=2; 52½ �
~a12 ¼ 30; 36½ � ~b12 ¼ 37=2; 47=2½ � ~e2 ¼ 52; 115=2½ �
~a21 ¼ 33; 38½ � ~b13 ¼ 27=2; 39=2½ � ~e3 ¼ 31=2; 20½ �
~a22 ¼ 53=2; 63=2½ � ~b14 ¼ 3=2; 7=2½ �

~b21 ¼ 43=2; 53=2½ �
~b22 ¼ 17; 41=2½ �
~b23 ¼ 16; 20½ �
~b24 ¼ 5=2; 5½ �

Table 9 Interval transportation costs in the second objective

Item 2

Conveyance k = 1 Conveyance k = 2

Source Destination 1 Destination 2 Destination 3 Source Destination 1 Destination 2 Destination 3

S1 [13/2, 17/2] [5, 8] [10, 25/2] S1 [15/2, 17/2] [9/2, 15/2] [9, 23/2]

S2 [21/2, 27/2] [13/2, 17/2] [8, 23/2] S2 [7, 11] [6, 10] [19/2, 13]
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s:t:

45

2
� x1

111
þ x1

121
þ x1

131
þ x1

141
þ x1

112
þ x1

122
þ x1

132

þ x1
142

þ x1
113

þ x1
123

þ x1
133

þ x1
143

� 27;

30� x1
211

þ x1
221

þ x1
231

þ x1
241

þ x1
212

þ x1
222

þ x1
232

þ x1
242

þ x1
213

þ x1
223

þ x1
233

þ x1
243

� 36;

33� x2
111

þ x2
121

þ x2
131

þ x2
141

þ x2
112

þ x2
122

þ x2
132

þ x2
142

þ x2
113

þ x2
123

þ x2
133

þ x2
143

� 38;

53

2
� x2

211
þ x2

221
þ x2

231
þ x2

241
þ x2

212
þ x2

222
þ x2

232

þ x2
242

þ x2
213

þ x2
223

þ x2
233

þ x2
243

� 63

2
;

15� x1
111

þ x1
211

þ x1
112

þ x1
212

þ x1
113

þ x1
213

� 45

2
37

2
� x1

121
þ x1

221
þ x1

122
þ x1

222
þ x1

123
þ x1

223
� 47

2
;

27

2
� x1

131
þ x1

231
þ x1

132
þ x1

232
þ x1

133
þ x1

233
� 49

2
;

3

2
� x1

141
þ x1

241
þ x1

142
þ x1

242
þ x1

143
þ x1

243
� 7

2
;

43

2
� x2

111
þ x2

211
þ x2

112
þ x2

212
þ x2

113
þ x2

213
� 53

2
;

17� x2
121

þ x2
221

þ x2
122

þ x2
222

þ x2
123

þ x2
223

� 41

2
;

16� x2
131

þ x2
231

þ x2
132

þ x2
232

þ x2
133

þ x2
233

� 20;

5

2
� x2

141
þ x2

241
þ x2

142
þ x2

242
þ x2

143
þ x2

243
� 5;

95

2
� x1

111
þ x1

121
þ x1

131
þ x1

141
þ x1

211
þ x1

221
þ x1

231

þ x1
241

þ x2
111

þ x2
121

þ x2
131

þ x2
141

þ x2
211

þ x2
221

þ x2
231

þ x2
241

� 52;

52� x1
112

þ x1
122

þ x1
132

þ x1
142

þ x1
212

þ x1
222

þ x1
232

þ x1
242

þ x2
112

þ x2
122

þ x2
132

þ x2
142

þ x2
212

þ x2
222

þ x2
232

þ x2
242

� 115

2
;

31

2
� x1

113
þ x1

123
þ x1

133
þ x1

143
þ x1

213
þ x1

223
þ x1

233

þ x1
243

þ x2
113

þ x2
123

þ x2
133

þ x2
143

þ x2
213

þ x2
223

þ x2
233

þ x2
243

� 20;

xijk � 0; 8p; i; j; k

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð25Þ

Solving the Z1; Z1c; Z2 and Z2c problems individually, by

the suggested method, will result in Z
opt
1 = [815.450,

960.750]and Z
opt
2 = [611.625, 747.000]. Now, the member-

ship functions of objective functions are constituted as follows:

l1ðxÞ ¼
1
960:750� Z1 xð Þ

960:750� 815:450

8
<

:
;

Z1 xð Þ� 815:450

815:450� Z1 xð Þ

and l2ðxÞ ¼
1
747� Z2 xð Þ

747� 611:625

(

;
Z2 xð Þ� 611:625

611:625� Z2 xð Þ

Consequently, the problem is transformed as follows

based on model (22):

960:750� Z1 xð Þ
960:750� 815:450

;
747� Z2 xð Þ

747� 611:625

� 	

! max

s:t:

960:750� Z1 xð Þ
960:750� 815:450

� 1;
747� Z2 xð Þ

747� 611:625
� 1

45

2
� x1

111
þ x1

121
þ x1

131
þ x1

141
þ x1

112
þ x1

122
þ x1

132

þ x1
142

þ x1
113

þ x1
123

þ x1
133

þ x1
143

� 27;

30� x1
211

þ x1
221

þ x1
231

þ x1
241

þ x1
212

þ x1
222

þ x1
232

þ x1
242

þ x1
213

þ x1
223

þ x1
233

þ x1
243

� 36;

33� x2
111

þ x2
121

þ x2
131

þ x2
141

þ x2
112

þ x2
122

þ x2
132

þ x2
142

þ x2
113

þ x2
123

þ x2
133

þ x2
143

� 38;

53

2
� x2

211
þ x2

221
þ x2

231
þ x2

241
þ x2

212
þ x2

222
þ x2

232

þ x2
242

þ x2
213

þ x2
223

þ x2
233

þ x2
243

� 63

2
;

15� x1
111

þ x1
211

þ x1
112

þ x1
212

þ x1
113

þ x1
213

� 45

2

37

2
� x1

121
þ x1

221
þ x1

122
þ x1

222
þ x1

123
þ x1

223
� 47

2
;

27

2
� x1

131
þ x1

231
þ x1

132
þ x1

232
þ x1

133
þ x1

233
� 49

2
;

3

2
� x1

141
þ x1

241
þ x1

142
þ x1

242
þ x1

143
þ x1

243
� 7

2
;

43

2
� x2

111
þ x2

211
þ x2

112
þ x2

212
þ x2

113
þ x2

213
� 53

2
;

17� x2
121

þ x2
221

þ x2
122

þ x2
222

þ x2
123

þ x2
223

� 41

2
;

16� x2
131

þ x2
231

þ x2
132

þ x2
232

þ x2
133

þ x2
233

� 20;

5

2
� x2

141
þ x2

241
þ x2

142
þ x2

242
þ x2

143
þ x2

243
� 5;

95

2
� x1

111
þ x1

121
þ x1

131
þ x1

141
þ x1

211
þ x1

221
þ x1

231
þ x1

241

þ x2
111

þ x2
121

þ x2
131

þ x2
141

þ x2
211

þ x2
221

þ x2
231

þ x2
241

� 52;

52� x1
112

þ x1
122

þ x1
132

þ x1
142

þ x1
212

þ x1
222

þ x1
232

þ x1
242

þ x2
112

þ x2
122

þ x2
132

þ x2
142

þ x2
212

þ x2
222

þ x2
232

þ x2
242

� 115

2
;

31

2
� x1

113
þ x1

123
þ x1

133
þ x1

143
þ x1

213
þ x1

223
þ x1

233
þ x1

243
þ x2

113
þ x2

123

þ x2
133

þ x2
143

þ x2
213

þ x2
223

þ x2
233

þ x2
243

� 20;

xijk � 0; 8p; i; j; k

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ

3
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The model (26) is an interval linear programming model

which can be solved by first finding its optimum lower

bound and center. Then, a multi-objective function is

constructed and is solved with a simple weighted model

with equal weights. The optimal solution is obtained as

x1
111

¼ 13, x1
132

¼ 13:5; x1212 ¼ 3, x1221 ¼ 23:5;

x1242 ¼ 3:5; x2
111
¼ 11;

x2122 ¼ 20:5; x2
132

¼ 5, x2
133

¼ 4:; x2
212

¼ 1:5;

x2
213

¼ 9, x2
233

¼ 11, x2
242

¼ 5:

Z
opt
1 = [682.000, 978.250] and Z

opt
2 = [497.500, 768.000].

From Definition 11, the suggested method performed a pre-

ferred solution in both objectives.

Kundu et al. [16] obtained the solution of the fuzzy

MOMISTP with the use of the minimum fuzzy number

approach. Comparative results are given in the following

Table 11.

5 Conclusion

In the real-world applications, we are frequently faced with

the uncertainty factor due to lack of detecting data about

the unknown state of nature. Thus, this paper presented

some useful notions to handle the MOMISTP, where the

supplies, destinations, conveyance capacities, and trans-

portation costs are supposed to be fuzzy parameters.

At first, using the nearest interval approximation, the

fuzzy MOMISTP is transformed to the MOMISTP in

which the parameters have interval values. Then the

interval MOMISTP is converted into its crisp form, and

compromise programming model based on the best and

worst solutions is constructed and solved. Finally, the

method attempts to reach the better compromise solution

which simultaneously satisfied different objectives based

on the interval fuzzy programming model.

Consequently, application of the suggested method is

discussed with a numerical model and the effectiveness of

the solutions obtained by the suggested method is verified.

Moreover, from Table 11, our suggested approach gives a

more efficient solution comparing to the approaches of

Kundu et al., [16]. Furthermore, this method can be mod-

eled as fuzzy goal or fuzzy interactive satisfied method.

Hence, this model may be used in various uncertain envi-

ronments with different factors.
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42. Jiménez, M., Bilbao, A.: Pareto-optimal solutions in fuzzy multi-

objective linear programming. Fuzzy Sets Syst. 160(18),
2714–2721 (2009). doi:10.1016/j.fss.2008.12.005

43. Liu, P., Yang, L., Wang, L., Li, S.: A solid transportation problem

with type-2 fuzzy variables. Appl. Soft Comput. 24, 543–558
(2014). doi:10.1016/j.asoc.2014.08.005

44. Yang, L., Liu, P., Li, S., Gao, Y., Ralescu, D.A.: Reduction

methods of type-2 uncertain variables and their applications to

solid transportation problem. Inf. Sci. 291, 204–237 (2015).

doi:10.1016/j.ins.2014.08.044

Hasan Dalman received his Ph.D. degree in Mathematical Engi-

neering from Yildiz Technical University, Istanbul. His main research

interests include Fuzzy Nonlinear Programming, Uncertain Program-

ming, Fuzzy Decision Making, and Game Theory.

Nuran Guzel is an Associate Professor of Mathematics at Yildiz

Technical University. Her research interests are in the areas of

Applied Mathematics, Numerical Analysis, and Linear programming.

Mustafa Sivri is a Professor of Mathematics at Yildiz Technical

University. His research interests include applied mathematics and

optimization with a focus on transportation problem.

H. Dalman et al.: A Fuzzy Set Based Approach to Multi-objective Multi-item Solid Transportation Problem… 729

123

http://dx.doi.org/(10.1186/1029-242X-2014-338)
http://dx.doi.org/(10.1186/1029-242X-2014-338)
http://dx.doi.org/10.1016/j.asoc.2014.10.003
http://dx.doi.org/10.1007/s10489-012-0368-6
http://dx.doi.org/10.1016/j.mcm.2012.12.031
http://dx.doi.org/10.1016/j.mcm.2012.12.031
http://dx.doi.org/10.1007/s12198-013-0108-0
http://dx.doi.org/10.1016/j.fiae.2014.12.006
http://dx.doi.org/10.1016/j.ins.2011.11.022
http://dx.doi.org/10.1016/0377-2217(90)90375-L
http://dx.doi.org/10.1057/palgrave.jors.2600891
http://dx.doi.org/10.1057/palgrave.jors.2600891
http://dx.doi.org/10.1016/j.ejor.2005.12.042
http://dx.doi.org/10.1016/j.ejor.2005.12.042
http://dx.doi.org/10.1016/S0377-2217(99)00319-7
http://dx.doi.org/10.1016/S0377-2217(99)00319-7
http://dx.doi.org/10.1080/00207543.2014.939236
http://dx.doi.org/10.1080/00207543.2014.939236
http://dx.doi.org/(10.1016/0377-2217(95)00055-0)
http://dx.doi.org/(10.1016/0377-2217(95)00055-0)
http://dx.doi.org/(10.1016/S0377-2217(98)00044-7)
http://dx.doi.org/(10.1016/S0377-2217(98)00044-7)
http://dx.doi.org/10.1007/s11590-012-0530-4
http://dx.doi.org/10.1080/02630259308970119
http://dx.doi.org/10.1108/03684921311323707
http://dx.doi.org/10.1108/20439371211260225
http://dx.doi.org/10.3808/jei.201400277
http://dx.doi.org/10.3808/jei.201400277
http://dx.doi.org/10.1007/s10852-006-9042-5
http://dx.doi.org/10.1007/s10852-006-9042-5
http://dx.doi.org/10.1016/S0165-0114(02)00098-2
http://dx.doi.org/10.1016/S0165-0114(02)00098-2
http://dx.doi.org/10.1016/0165-0114(92)90223-Q
http://dx.doi.org/10.1016/0165-0114(92)90223-Q
http://dx.doi.org/10.1016/j.fss.2008.12.005
http://dx.doi.org/10.1016/j.asoc.2014.08.005
http://dx.doi.org/10.1016/j.ins.2014.08.044

	A Fuzzy Set-Based Approach to Multi-objective Multi-item Solid Transportation Problem Under Uncertainty
	Abstract
	Introduction
	Preliminaries
	Arithmetic Operations
	Liou and Wang Ranking Approach for Trapezoidal Fuzzy Numbers [40]

	Comparison of Trapezoidal Fuzzy Numbers
	Nearest Interval Approximation of Fuzzy Numbers
	Interval Numbers

	Problem Formulation
	Deterministic Model of the Interval MOMISTP
	An Interval Fuzzy Programming Model to Interval MOMISTP

	A Numerical Example
	Conclusion
	References




