
Hardware Design of Digital Parametric Conjunctors and t-Norms

Prometeo Cortés-Antonio1
• Ildar Batyrshin1

• Luis A. Villa-Vargas1
•

Imre Rudas2
• Herón Molina-Lozano1

• Marco A. Ramı́rez-Salinas1

Received: 3 April 2015 / Revised: 26 June 2015 / Accepted: 14 August 2015 / Published online: 9 September 2015

� Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015

Abstract This paper presents the hardware design and its

implementation on FPGA of several parametric families of

digital conjunctors and t-norms built from simple basic

t-norms. The authors propose the method of unified pre-

sentation of the p-monotone sum, the simplified versions of

the ordinal sum of t-norms and t-subnorms, and the method

of extension of t-norms by the drastic t-norm. Such unifi-

cation gives possibility to join several methods of con-

struction of parametric digital conjunctors and t-norms in

one scheme with the efficient FPGA implementation. The

logic schemes of the proposed design are presented, and the

comparative analysis of the latency time and the resources

used for the implementation is given.

Keywords Fuzzy logic � Conjunctor � t-Norm �Monotone

sum � Ordinal sum � FPGA

1 Introduction

Fuzzy logic [1] has wide applications in industry and in

decision-making systems [2, 3]. Many of them are based on

hardware implementation of fuzzy systems [4–7]. Recent

years, the number of applications of fuzzy systems devel-

oped on field programmable gate array (FPGA) has been

increased [7–13]. FPGAs are programmable semiconductor

devices that are based around a matrix of configurable logic

blocks connected through programmable interconnects

[14]. FPGAs can be easily reprogrammed to the desired

application or functionality requirements [10, 14–20]. This

paper presents the design in one scheme of FPGA of several

parametric families of conjunctors and t-norms built from

simple basic t-norms that can be used in efficient FPGA

implementation of reconfigurable fuzzy systems. Below is a

short survey of the works on parameterized and generalized

fuzzy operations and their FPGA implementation.

The generalized operations of fuzzy logic-like non-as-

sociative or non-commutative conjunctions (conjunctors)

and parameterized or reconfigurable t-norms give possi-

bility to build sophisticated and more flexible fuzzy models

in comparison with traditional fuzzy models based on basic

t-norms [21–24]. The most general extension of conjunc-

tion operation T from binary to fuzzy setting requires the

monotonicity of this operation and the fulfillment of

boundary conditions [25]: T(0,0) = T(1,0) = T(0,1) = 0,

T(1,1) = 1. The most important from the mathematical

point of view fuzzy extension of conjunction operation is a

t-norm [26, 27] satisfying also the associativity and com-

mutativity properties and the boundary condition

T(1,x) = x for all x in [0, 1]. But the hardware imple-

mentation of the most popular parametric families of (as-

sociative) t-norms consumes sufficiently many resources

due to their use in their definition of the multiplication,
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2 Obudu University, Budapest, Hungary

123

Int. J. Fuzzy Syst. (2015) 17(4):559–576

DOI 10.1007/s40815-015-0076-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-015-0076-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-015-0076-6&amp;domain=pdf


division, exponentiation operations, or logarithm function.

As it was noted in [23, 24], the associativity property often

does not require from the fuzzy conjunction operations

used in applied fuzzy models with two inputs. It gives rise

to build more simple non-associative parametric conjunc-

tion operations suitable for efficient hardware implemen-

tation. The commutativity property of conjunctions also

may be not necessary when the position of arguments in

fuzzy models is fixed. For these reasons, the study of non-

associative and non-commutative conjunctions (conjunc-

tors) has the practical interest in fuzzy modeling. Another

point of interest in building of fuzzy models is to consider

parameterized fuzzy operations that can be tuned to

achieve the better performance of these models [23, 24].

The tuning of membership functions in fuzzy models can

lead to fuzzy sets that loss the expert knowledge presented

by fuzzy sets before the tuning. In such cases, the tuning of

parameters of fuzzy operations instead of (or additionally

to) tuning of membership functions can help to preserve

expert knowledge presented in fuzzy sets. The main para-

metric families of t-norms and t-conorms are described in

[26]. In [23, 24], the simple parametric classes of fuzzy

conjunctors suitable for tuning in fuzzy models are intro-

duced. In [28], it compared the influence of fuzzy control

systems on the tuning parameters of operations versus the

parameters of membership functions. The paper [29] dis-

cussed the methods of information aggregation in intelli-

gent systems using generalized operators. The application

of generalized operations of fuzzy logic in inference

engines is discussed in [30]. Zhang et al. [31] studied a

fuzzy logic system based on parametric family of Sch-

weizer–Sklar t-norm. Different aggregation functions

including generalized conjunctions are considered in [32].

Alcalá-Fdez [33] used parameterized operations for

achieving better co-operation among fuzzy rules. The

methods of construction of parametric classes of digital

conjunctors based on generator functions using simple

operations like addition, subtraction, minimum, maximum,

and comparison suitable for efficient hardware implemen-

tation are introduced in [34–36]. The digital conjunctors

considered in these works are particular cases of discrete

fuzzy conjunctors [37, 38] defined on a set of integer

numbers L = {0, 1,…, n}. In [39], it proposed the method

of the monotone sum of basic t-norms for the construction

of simple parametric conjunctors for hardware implemen-

tation. The paper [40] presents modular neuro-fuzzy sys-

tems based on parametric classes of generalized

conjunction and disjunction operations. A survey of weak

connectives and the problem of the preservation of their

properties in some aggregation functions are considered in

[41]. Dependencies between fuzzy conjunctions and

implications are studied in [42, 43]. Application of para-

metric t-norms and various fuzzy operations in neural

networks is considered in [44, 45]. t-norms and t-conorms

on the sets of multisets or strings to achieve strict mono-

tonicity of these operations for finite scales are considered

in [46]. In [47], the Hamacher parameterized t-norms are

used to induce the priority weight in prioritized weighted

aggregation in multicriteria decision making. The authors

of [48] used parametric conjunctors in a fuzzy rule-based

control system. The paper [49] used parameterized uni-

norm and absorbing norm for logic design. The tuning of

parameterized conjunctors is used in the optimization of

the type-l fuzzy neural system for slip control of a quarter

car model [50], for trajectory tracking of a 2-DOF heli-

copter system using neuro-fuzzy system [51], and for

optimization of an interval type-2 fuzzy neural system [52].

The paper [53] studied a general class of increasing binary

operations including conjunctions. The application of

generalized norms in digital/analog scheme’s synthesis and

analysis is discussed in [54]. The parameterized operations

over t-norms are considered in [55]. Adaptive conjunction

operations are used in [56] in linguistic fuzzy modeling.

The paper [57] discussed the relationship between mono-

tone and ordinal sums of basic t-norms and proposed the

new methodologies for generation of parametric digital

t-norms suitable for efficient hardware implementation.

The parametric inverse Hamacher operations are discussed

in [58]. The authors of [59] proposed a generalized fuzzy

similarity measure that can be used in the construction of

fuzzy systems. The paper [60] developed multivalued

automaton based on generalized fuzzy operations for con-

trol of mobile agents and the locomotion model. The

application of the generalized logic operations in fuzzy

predicate systems for clustering is discussed in [61].

Preservation of fuzzy relation properties based on gener-

alized fuzzy conjunctions and disjunctions during aggre-

gation process is studied in [62]. FPGA implementation of

different parametric families of digital conjunctors based

on generator functions is considered in [63–65]. FPGA

implementation of diverse fuzzy t-norms and t-conorms is

considered in [66]. The papers [67, 68] proposed the

methods of FPGA implementation of p-monotone sum and

(p, 1 - p) monotone sum of basic t-norms. FPGA imple-

mentation of Sugeno and Mamdani fuzzy inference sys-

tems with parametric families of conjunctors obtained by

monotone sum of basic t-norms is discussed in [69, 70].

This work is based on the theoretical results from [57].

The main contribution of the paper is the following. The

paper proposes the method of unified presentation of the p-

monotone sum, the simplified versions of the ordinal sum

of t-norms and t-subnorms, and the method of extension of

t-norms by the drastic t-norm. Such unification gives pos-

sibility to join several methods of construction of para-

metric digital conjunctors and t-norms in one scheme with

the efficient FPGA implementation. The logic schemes of
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the proposed design are presented, and the comparative

analysis of the latency time and the resources used for the

implementation is given.

The paper has the following structure. Section 2 gives

the definitions of digital conjunctors and t-norms. Section 3

discusses the methods of construction of parametric con-

junctors and t-norms implemented further on FPGA. Sec-

tion 4 presents the design on FPGA of parametric families

of conjunctors and t-norms. Section 5 contains the com-

parative analysis of the latency time and the resources used

for the implementation. The last section contains

conclusions.

2 Digital Conjunctors and t-Norms

Consider the set L = {0, 1,…, n}, n C 1 of digital repre-

sentations of truth (degree, membership, etc.) values. If m-

bits integer representation is used, then we have

n B 2m - 1. We will consider conjunctors and t-norms

defined on the set L, and the maximal value of this set

I = n will correspond to the value 1 in traditional set of

truth values [0, 1]. Consider the function T:L 9 L ? L

with the following possible properties on L:

A1. Tðx; IÞ ¼ x; TðI; yÞ ¼ y; boundary conditionsð Þ

A2. T x; yð Þ� T u; vð Þ; if x� u; y� v: monotonicityð Þ

A3. T x; yð Þ ¼ T y; xð Þ; commutativityð Þ
A4. T x; T y; zð Þð Þ ¼ T T x; yð Þ; zð Þ: associativityð Þ
A5. Tðx; yÞ�min x; yð Þ: range conditionð Þ

This function will be called a conjunctor, a commutative

conjunctor, a t-norm, or a t-subnorm, if the following

properties are fulfilled for all x, y, z [ L, correspondingly

{A1, A2}, {A1–A3}, {A1–A4}, and {A2–A5}. See [26,

27, 37, 38, 57] for properties of these operations on [0, 1],

on discrete set and on L = {0, 1,…, n}. For any conjunctor

from A1, A2, it follows for all x, y [ L:

Tðx; 0Þ ¼ 0; Tð0; yÞ ¼ 0:

Generally, we can consider conjunctors and t-norms

defined on a set L containing only one element L = {0}. In

this case, we have I = 0. Below there are the simplest t-

norms that will be considered as basic t-norms in the

generation of digital fuzzy parametric conjunctors and t-

norms:

TM x; yð Þ ¼ min x; yf g; Minimumð Þ

TN x; yð Þ ¼ min x; yð Þ; if xþ y[ I
0; otherwise

�

Nilpotent minimumð Þ

TL x; yð Þ ¼ max xþ y � I; 0f g;
Lukasiewicz t�normð Þ

TD x; yð Þ ¼
x; if y ¼ I
y; if x ¼ I
0; if x; y\I

8<
: : Drastic productð Þ

These t-norms have efficient hardware implementation,

because their definition uses very simple mathematical

operations. Figure 1 depicts the shapes of these t-norms

defined on L ¼ f0; 1; :::; 31g:.
In some cases, we will also consider a basic conjunctor

as the following operation:

TP x; yð Þ ¼ x � y; productð Þ

where the operation * is a normalized product of x and y

and taking values in L:

TP x; yð Þ ¼ xy=I:

This operation has a little bit more complicated hard-

ware implementation on the set of integer values L than

other basic t-norms; moreover, this digitalized version of

the product t-norm will be not associative and hence will be

not a t-norm but only a conjunctor. It can be used as a

digital approximation of the product t-norm.

Denote T1 B T2 if T1(x,y) B T2(x,y) for all x,y from L.

For any conjunctor T and for considered above t-norms, we

have

TD � T � TM; TD � TL � TN � TM ; TD � TL � TP � TM:

From T B TM, it follows that any t-norm is a t-subnorm.

3 Construction of Parametric Conjunctors
and t-Norms

Let L = {0, 1,…, n} be a set of integer values and a, b 2 L,

be two integers such that a B b. A sequence of consecutive

numbers changing from a till b will be called an interval

and denoted as [a, b]. Let p [ {0, 1,…, n} is an integer

parameter. When p C 1 divide L on 2 intervals: X1 = [0,

p - 1], X2 = [p, n], and all domain L 9 L divide on 4

sectors: D1 = X1 9 X1, D2 = X2 9 X1, D3 = X1 9 X2,

D4 = X2 9 X2, see Fig. 2 for n = 15. When p = 0 we

have only one interval X2 = [0, n] and one sector D4 -

= X2 9 X2 = L 9 L coinciding with all domain L 9 L. In

this case, all other sectors D1, D2, and D3 will be empty.

Belowwe considermethods of construction and hardware

implementation of conjunctors and t-norms on L 9 L by

means of basic t-normsTi associatedwith sectorsDi, i [ {1, 2,
3, 4}. These methods are particular cases of the general

methods discussed in [26, 27, 37, 38, 57]. To simplify ref-

erences on these methods, we give short names for them.
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3.1 Method 4T

This method can use four different t-norms. Let Ti, i [ {1,

2, 3, 4} be t-norms defined on L = {0,1,…, n}, such that

T1 � T2 � T4; T1 � T3 � T4:

Then, the function T: L 9 L ? L defined by

T x; yð Þ ¼

T1 x; yð Þ; if x; y\p

T2 x; yð Þ; if y\p; p� x;
T3 x; yð Þ; if x\p; p� y

T4 x; yð Þ; if p� x; y

8>><
>>:

;

is a conjunctor, where p [ {0, 1,…, n} is a parameter.

Figure 2b shows t-norms used in segments D1 - D4 of

L 9 L in construction of conjunctor T(x,y) by method 4T.

Conjunctor T(x,y) is commutative if all Ti are commutative

and T2 = T3. Note that when p = 0, the conjunctor

T equals to T4 defined on all domain L 9 L. On the other

hand, when p = n, the resulting conjunctor T equals to T1
because T used only border values of t-norms T2, T3, and T4
defined by A1 condition and hence coinciding with the

corresponding values of T1.

The method 4T of generation of conjunctors is based on

the p-monotone sum of t-norms [39, 57]. We denote here

this method for short as 4T instead of (T1, T2, T3, T4) used

in [57] and we use notation 4Tc for commutative con-

junctors. In Table 1 and Fig. 6, this method has types 0 and

1 for non-commutative conjunctors and types 2 and 3 for

commutative conjunctors. Similarly, below, instead of the

notations (T, M, M, M), (D, D, D, T), (T, M, M, T), used in

[57] where M denotes TM and D denotes TD we use nota-

tions T3M, 3DT, and TMMT, respectively.

Fig. 1 Simplest t-norms: a Drastic, b Lukasiewicz t-norm, c Nilpotent minimum, d Minimum

Fig. 2 a Partition of L 9 L on segments defined by parameter p. b Method 4T of constructing conjunctors
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3.2 Method 3DT

Suppose TD is defined on L = {0, 1,…, n}, p [ {0, 1,…, n}

and t-norm T4 is defined on L4 = {0, 1,…, n -p}, then for

all x, y [ L = {0, 1,…, n} the following function is a t-

norm on L:

Tðx; yÞ ¼ pþ T4 x� p; y� pð Þ; if p� x; y
TD x; yð Þ; otherwise

�
:

The method 3DT is based on Proposition 3 from [57].

Figure 3a depicts the location of basic t-norms used in this

method in segments of L 9 L. In Table 1 and Fig. 6, this

method is referred to as the method of type 4. See Table 10

and Fig. 10 for examples.

3.3 Method TMMT

Let p [ {0, 1,…, n}, T1 be a t-norm on L1 = {0, 1,…, p}

and T4 be a t-norm on L4 = {0, 1,…, n - p}, then the

following function is a t-norm on L = {0, 1,…, n}:

Tðx; yÞ ¼
T1 x; yð Þ if x; y\p

pþ T4 x� p; y� pð Þ if p� x; y
minðx; yÞ otherwise

8<
: :

This method is based on ordinal sum of t-norms [26, 37,

38, 57]. Figure 3b depicts the location of basic t-norms

used in this method in segments of L 9 L. In Table 1 and

Fig. 6, this method has the type 6. See Table 10 and

Fig. 10 for examples.

3.4 Method T3Ms

Suppose p [ {0, 1,…, n} and i1 [ {0, 1,…, 2n} are

parameters and T1 is a t-norm defined on [0, i1]. The fol-

lowing function defined on L = {0, 1,…, n} is a t-norm:

T x; yð Þ ¼ T1 x; yð Þ if x; y\minði1; pÞ
min x; yð Þ otherwise

�
:

Method T3Ms is based on the ordinal sum of t-subnorms

[27] and also referred to as a method of constructing

t-norms with shifted domains, see Proposition 6 in [57].

Letter ‘‘s’’ in the name of the method T3Ms denotes

‘‘shifted.’’ Figure 4 depicts the location of basic t-norms

used in this method in segments of L 9 L when i1 -

[ p. When i1\ p, this method can be obtained from the

method TMMT when the parameter p is replaced by

parameter i1 and instead of T4 it is used TM. See Table 10

and Fig. 10 for examples of such t-norms used as a part of

other types of t-norms 3DTs and TMMTs.

Note that the domains of t-norms T1 used in monotone

sum of t-norms (method 4T), in ordinal sum of t-norms

(method TMMT) and in T3Ms method generally are dif-

ferent. In the monotone sum of t-norms, T1 is defined on

Table 1 Classification of conjunctors and t-norms by type configu-

ration parameter

Type code Type methodology

0, 1 Non-commutative 4T

2, 3 Commutative 4Tc

4 3DT

5 3DTs

6 TMMT

7 TMMTs

Fig. 3 a 3DT and b TMMT (ordinal sum) methods of constructing t-norms
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L = {0, 1,…, n}. In the ordinal sum of t-norms, T1 is

defined on ‘‘window’’ L1 = [0, p] 9 [0, p], where p [ {0,

1,…, n}. In T3Ms method, the domain of t-norm T1

generally differs from the domains of both of these meth-

ods and can be defined on any interval [0, i1]. From this

point of view, the domain of T1 in T3Ms method is

‘‘shifted’’ with respect to the domains of T1 in the first two

methods. For simplicity of hardware implementation, we

selected i1 [ {0, 1,…, 2n}.

In Table 1 and Fig. 6, this method is used as a part of

the methods 3DTs and TMMTs with types 5 and 7 corre-

spondingly when t-norms T1 and T4 have shifted domains.

These methods are defined as follows.

3.5 Method 3DTs

Suppose TD is defined on L = {0, 1,…, n}, p [ {0, 1,…, n},

i4 [ {0, 1,…, 2n} and t-norm T4 is defined on L4 = {0,

1,…, i4}. Then for all x, y [ L = {0,…, n}, the following

function is a t-norm on L:

Tðx;yÞ ¼
pþT4 x� p;y� pð Þ if p�x;y\min n;pþ i4ð Þ
min x;yð Þ if pþ i4�x;y�n

TD x;yð Þ otherwise

8<
: :

Figure 5 depicts the location of basic t-norms used in

this method. See Table 10 and Fig. 10 for examples.

3.6 Method TMMTs

Let p [ {0, 1,…, n}, i1 [ {0, 1,…, 2n}, i4 [ {0, 1,…, 2n},

t-norm T1 be a t-norm on L1 = {0, 1,…, i1} and T4 be a

t-norm on L4 = {0, 1,…, i4}. Then, the following function

is a t-norm on L = {0, 1, 2,…, n}:

Tðx;yÞ¼
T1 x;yð Þ; if x;y\minði1;pÞ
pþT4 x�p;y�pð Þ; if p�x;y\minðpþ i4;nÞ
minðx;yÞ; otherwise

8<
: :

Note that when i1\ p, the parameter p is replaced by

parameter i1. See Table 10 and Fig. 10 for examples.

Table 1 gives the type codes of the methods considered

above and Fig. 6 depicts the flow diagram of the process

of selection of the methods of construction of conjunctors

and t-norms based on these type codes in FPGA

implementation.

The considered above unification of the simplified ver-

sions of different methods discussed in [57] gives the basis

for the generation of a variety of parametric families of

digital t-norms and conjunctors that have efficient imple-

mentation in hardware when we use the simplest t-norms as

basic modules. Generally, as in the continuous case [26,

27], the ordinal sum can be applied to more than two

summands. Another way to extend the number of diagonal

sections is to apply recursively ordinal sum with two

summands several times.

Fig. 4 Method T3Ms. t-Norm T1 is defined on [0, i1] and it is

‘‘visible’’ only in ‘‘window’’ [0, p - 1] 9 [0, p - 1]

Fig. 5 Method 3DTs. t-Norm T4 is defined on [0, i4], where i4 = 12.

It is ‘‘visible’’ only in window [p, n - 1] 9 [p, n - 1] = [6,

14] 9 [6, 14]
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4 Hardware Design of Parametric Operations

In this section, we discuss the design and the implemen-

tation on a FPGA of parametric digital conjunctors and

t-norms considered in the previous section. First, we show

the logic schemes of the implementation of basic t-norms,

and after that it will show the methodology to build para-

metric conjunctors and t-norms in one building block.

4.1 Basic t-Norms Implementation

Figure 7 depicts the schemes of basic t-norms (digital

Product is a conjunctor): (a) Drastic, (b) Lukasiewicz,

(c) Product, (d) Nilpotent, and (e) Minimum that have one

more input unlike the implementation of these t-norms in

[47, 53] (with exception of Minimum). The I input is used

for specifying parametric domain of a t-norm, where if one

t-norm has m-bits representation, the values to I input

belong to [0, 2m ? 1 - 1] interval. It also can be observed

that for these implementations, we used only simple digital

combinatorial circuits as adders, comparators, multiplex-

ors, and multipliers (which can be implemented by using

both adder and multiplexor or defined by multiplier

embedded on chip).

Because the fact that definition of basic digital t-norms

is valid in the interval [0, n] (instead of unit interval), some

modifications in their definitions are done.

(i) Due to I input size is defined on (m ? 1)-bits, the

operations (combinatorial circuits) into each mod-

ule should be defined on (m ? 1)-bits, in spite of

X, Y inputs and Ti output are defined on m-bits.

(ii) (m ? 1)-bits operations avoid overflow in Nilpo-

tent and Lukasiewicz t-norms (X ? Y).

(iii) Special implementation is done for Lukasiewicz

t-norm for avoiding negative values. When

X ? Y\ I (corresponding a negative number in

traditional definition), the most significant bit

(MSB) bit on the subtract operation of Fig. 7b is

set to 1, and these results can be considered as

incorrect, and for the other hand when X ? Y C I,

MSB on subtract operation is set to 0. Then, the

MSB bit is used as input selector of a multiplexor

with both X ? Y - I or 0 inputs, and therefore

only correct result will be chosen.

(iv) Due to the multiplication on unsigned integer

representation is an operation from m to 2 m-bits,

p

Commutative

Operator type

Operator type

{T1,T2,T3,T4} {T1,T2,T4}

{T4} {T2,T4}

Shifting Shifting

T1 T2

T3 T4

T1 T2

T2 T4

D D

D T4

T1 M

M T4

T1

M

M
T4

i4

i1

D

D
T4

i4D

{ i4} { i1, i4}

M
M

M

M MMM

M

pp

p

ppp p

p

Type=0,1 Type=2,3

Type=4 Type=6 Type=7Type=5

Conjunctor T-norm

YesNo TMMT3DT

YesNo YesNo

Fig. 6 The flow diagram of the process of selection of operations in

FPGA implementation

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 7 Logic schemes of basic t-norms: a Drastic, b Lukasiewicz,

c Product, d Nilpotent, e Minimum, f t-norms multiplexed
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the result of this operation will be normalized to

m-bits. Then, the definition of TP t-norm is

modified to

TP x; yð Þ ¼ x � y=I:

With this normalization, all results are assured to

be in L, and TP output takes the m-LSBs of the

divisor. The disadvantage of this modification for

one hand is the aggregation of a divisor, see

Fig. 7c. As a consequence, it is more expensive on

resource consumed and latency time slower. On

the other hand, digital multiplication operation

does not satisfy association property due to the

discretization of the results, and therefore, this

operator is not a t-norm but it is a conjunctor. It

will be referred to as a quasi-t-norm. For these

reasons, we present in the next section the results

of the implementation of parametric operators

including and not including product t-norm as a

basic t-norm separately.

For getting a conjunctor or t-norm generated from basic

t-norm, we multiplexed the different modules as shown in

Fig. 7f using a 4-input multiplexor, i.e., a mu 9 4 9 1 (or

mu 9 5 9 1, when t-product is included), which can be

configured as shown in Table 2a (or Table 2b, when

t-product is included).

4.2 Implementation of Parametric Conjunctors

and t-Norms

For designing parametric conjunctors and t-norms, it is

needed to define some input parameters that can be clas-

sified as tuning parameters and configuration parameters.

The tuning parameters are p, i1, and i2, which can take

different values in the definition of one conjunctor or

t-norm. The configuration parameters Ti are used for

specifying conjunctors or t-norms applied in specific

method defined by type configuration parameter. In spite of

the parametric operator has eight input parameters, all of

them are not always used to define a specific t-norm or

conjunctor. Table 3a shows the input parameters that are

used in specific method and Table 3b gives information

about the number of bits used by each inputs. Type input is

not included in Table 3a, but it is clear that this input is

necessary in general scheme. The inputs X and Y and Z

output are not included in Table, because they are not

parameter, but these should be considered as the input and

output in the design with m-bits.

Figure 8 shows the implementation schemes of the six

different methods. Taken into account, the features of these

schemes are as follows: (a) All schemes have different sets

of inputs. (b) All implementations need a control module,

called Ctrl1. This module is used for splitting the input

space LxL in four regions Di as it is specified in Table 4,

and it uses the simple comparators for its implementation.

(c) The implementation of a parametric t-norm requires

two subtractors and one adder used to compute t-norm

specified on region D4. Therefore, 2-input multiplexors are

implemented to choose the inputs and the output of t-norm

module, which are controlled by the ANDed output of

Ctrl1 module, referred as xyGEp (X and Y are greater or

equal to p). (d) For implementation of a t-norm with shifted

domain, a control module was created, called Ctrl2, which

configures the selector of t-norm module, according to the

values of Di, X, Y, I, and Ti. Two control modules are used

to reduce the complexity of the design.

Table 2 Selector of t-norms (a) With 4 basic t-norm

Ti T

0 Drastic

1 Lukasiewicz

2 Nilpotent

3 Minimum

(b) With 5 basic t-norm

Ti T

0 Drastic

1 Lukasiewicz

2 Product

3 Nilpotent

4 Minimum

Table 3 Input parameters of conjunctors and t-norms methodologies

(a) Input parameters classified by families

Methodology Tuning parameter Configuration parameter

4T p T4; T3; T2; T1

4Tc p T4; T2; T1

3DT p T4

3DTs p, i1 T4

TMMT p T4; T1

TMMTs p, i1, i2 T4; T1

(b) Number of bits of input parameters

Input parameter Number of bits

p m

i1; i2 mþ 1

Ti 2 (or 3)

type 3
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In the rows 5 and 7 of Table 5, there are specified the

conditions to configure 3DTs and TMMTs methods. In the

next section, the latency times and resources used by each

implementation in comparison with the general

implementation of the operator including all parametric

families are shown and analyzed.

4.3 Implementation of the General Operator

To implement the general operator, we use common parts

from the different families’ implementations as shown in

Fig. 8, together with the controlmodule,Ctrl, that generalizes

the differences of all types (see Fig. 9). Ctrlmodule has X, Y,

Di, ii, ti and type inputs for configuring the selt and sell and

xyGEp outputs that are plugged to inputs of t-norm module
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Fig. 8 Schemes of families of parametric conjunctors and t-norms. a 4T y 4Tc, b 3DT, c 3DTs, d TMMT, e TMMTs

Table 4 Conditions for

configuring Ctrl1 module
Inputs Di

x\ p & y\ p D1

x\ p & y C p D2

x C p & y\ p D3

x C p & y C p D4
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and multiplexors according to specification of Table 5. The p

input parameter is used for dividing the L 9 L space on four

sections:D1, D2, D3, andD4 as shown inFig. 2a. The values of

p belong to [0, n] interval. xyGEp signal is set to 1, when (x,y)

tuple is in the regionD4 andType input is[3, otherwise xyGEp

signal is set to zero. The input selectors of t-norm and multi-

plexor MULL modules will be configured according to the

type of parametric family of t-norm or conjunctors and to

some of the input values of the parameters i1; i4; X; Y; p;

corresponding to the type of the operator.

For simplicity of the design, the Ctrl module was

implemented using behavioral description, i.e., the behav-

ior of the logic as shown in Table 5 was described using

switch-case and if-else Verilog sentences [16].

Note that the implementation of the conjunctor is not

validated to avoid the user errors, i.e., to verify the ful-

fillment of the conditions T1 � T2 � T4 and T1 � T3 � T4.

Such module is not hard to develop. However, the authors

consider that it affects the latency time of the operator, and

as it is only necessary for families of conjunctors, so it is

not included in the design. The generation of valid con-

junctors is the responsibility of the users.

The assignation of specific t-norm to each section is defined

by user or, by default, according to the type of the chosen

conjunctor or t-norm. The users can define a specific t-norm

using T1; T2; T3; T4 configuration parameters, which can be

configured according to the values of Table 2a, b (depending

of the number of the basic t-norms), for example, if the user

wants to defineLukasiewicz andNilpotent t-norms in sections

D1 and D4, respectively, then T1 ¼ 1 and T4 ¼ 2.

When a commutative conjunctor from 4Tc family is

selected, the type input should be assigned the value 2 or 3,

then the value of T3 input is not matter, because it is set

equal to T2 by default. For the cases of type = 4, 5 t-norms,

only the value of T4 input is user-defined and the other ones

are set to TD by default. Finally, for type = 6, 7 t-norms,

the values of T2; T3 are not matter and they are equal to

TM, i.e., selT signal is set to 3 by default.

As it was mentioned in Sect. 3, type 5 and 7 t-norms can

have shifted domains; therefore, the design has (m ? 1)-

bits inputs i1 and i4, for setting the domains of T1 (only for

type 7) and T4; respectively.

In the next section, we will depict some examples of the

input configuration for performing some conjunctors and

t-norms. Also, the resources and latency time used for the

implementation of the operators with different numbers of

bits representation are given.

5 Results

The design of parametric operator for hardware implemen-

tation on FPGA was implemented on EP4CE115F29C7

device of Cyclone IV E of Altera [71–73], using Verilog

Table 5 Conditions for

configuring Ctrl module
Type x; y 2 D1 x; y 2 D2 x; y 2 D3 x; y 2 D4

selT selL xyGEp selT selL xyGEp selT selL xyGEp selT selL xyGEp

0, 1 T1 n 0 T2 N 0 T3 n 0 T4 n 0

2, 3 T1 n 0 T2 N 0 T2 n 0 T4 n 0

4 TD n 0 TD N 0 TD n 0 T4 n-p 1

5 TD n 0 TD N 0 TD n 0 ½T4jTM �** i4 1

6 T1 p 0 TM N 0 TM n 0 T4 n-p 1

7 T1 i1 0 ½T1jTM �* N 0 TM n 0 ½T4jTM �** i4 1

* First t-norm is set when x, y inputs are less than min (p, ii), TM is used otherwise

** T4 t-norm is set when x - p, y - p inputs are less than min (I - p, i4), TM is used otherwise
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Fig. 9 Logic scheme of the implementation of parametric conjunc-

tors and t-norms
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language [16], for four different sizes of digital representa-

tions, when m equals to 5, 8, 16, and 32-bits, using product

quasi-t-norm (the scheme presented in section IV) and

without product quasi-t-norm, respectively.

We present a comparative analysis of the latency time and

resources used in the implementations on EP4CE115F29C7

device of (a) the basic t-norms, (b) the six methodologies

separately, and (c) the general parametric operator. Table 6

shows the resources and latency times used on the imple-

mentation of basics t-norm, in which one can note that all

t-normswith exception of product t-normhave similar latency

times and number of resources used for their respective

implementations. The product t-norm is about 40 times slower

in latency time and requires 10 times more resources than

other ones, so we recommend including this t-norm in general

parametric operator only when it is really necessary.

Table 6 also shows the resources and latency time of

t-norm multiplexed and we can see that the time latency is

about 14 % slower than for the slowest individual t-norm,

and the resources used are less than for the sum of indi-

vidual t-norms. It is possible because of more combina-

tional functions could be mapped in the same

reconfigurable area (Logic Elements) of the device.

Table 7 shows the resources and latency times used in

the implementation of the different families of the opera-

tions, corresponding to the designs shown in Fig. 8, on the

EP4CE115F29C7 device, where basic t-norm product is

not included. We can watch that all families have similar

latency time for the same m-bit size with the exception of

the generation of 4T and 4Tc conjunctors (which are

basically implemented only using a multiplexor).

We can say that latency time in parametric conjunctors

4T and 4Tc is about 30 % slower than the slowest indi-

vidual t-norm (TL, Lukasiewicz, as shown in Table 6) and

they use less resources than the overall sum of individual

basic t-norms by the same reason of t-norm multiplexed,

and the implementation of a parametric t-norms (3DT,

3DTs, TMMT, and TMMTs) uses about three times more

resources than implementation of a parametric conjunctors,

and its latency time is about two times slower.

Table 8 shows the values of resources consumed and

latency time in the implementation of general operator using

and not using product basic t-norm. Without product t-norm,

the resources used are less than 1 % of total resources of this

device [51] and the results are getting in one clock cycle with

Fmax = 60.42 MHz in the case of 32-bits representation.

Table 6 Cost for implementing

basic t-norms
t-Norm or conjunctor m-Bit Combinational functions Fmax (MHz) Latency time (ns)

TM (Minimum) 5 9 337.38 2.96

8 16 307.69 3.25

16 32 241.66 4.13

32 64 191.86 5.21

TN (Nilpotent) 5 17 317.66 3.15

8 25 300.48 3.33

16 49 232.72 4.30

32 97 182.65 5.47

TL (Lukasiewicz) 5 17 268.89 3.72

8 26 267.31 3.74

16 50 217.39 4.60

32 98 170.33 5.87

TD (Drastic) 5 9 477.78 2.09

8 14 415.11 2.41

16 27 377.07 2.65

32 54 252.53 3.96

TP (Product) 5 111 (1) 46.9 21.32

8 279 (1) 23.47 42.61

16 1079 (2) 8.7 114.94

32 4296 (8) 2.91 343.64

Multiplexed without product 5 35 234.74 4.26

8 54 201.41 4.96

16 99 178.67 5.60

32 189 148.68 6.73

Information in brackets indicates the number of embedded multipliers used
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Comparing this result with the implementation of sep-

arated t-norm and conjunctors families, we can determine

that the latency time is similar, and resources used are only

14 % more than the family TMMTs, so we can say that

there is no degradation in latency time, and cost of

resources is good for implementing general parametric

operator. These results can be attributed to similar struc-

tures that have the six different families of t-norm and

conjunctors, and optimization performed by Altera syn-

thesizer, and mapped of different functions in same

reconfigurable area.

Table 8 also shows latency time and resources used,

when product t-norm is included, and as we expected, the

cost of the operator is very bigger compared with same

operator without the product t-norm. However, its imple-

mentation is feasible because this uses 4 % of total

resources of the device, and its latency time is in the order

of nanoseconds.

Finally, we present a comparison of our results with the

results presented in [31] in which the cost of hardware

implementation of one conjunctor was reported. In that

work, the implementation was performed on 3E3S500

EFG320-5 FPGA from Xilinx and the parametric con-

junctor used 382 gates and latency time of 14.03 ns on

8-bits representation. For better comparison, we reimple-

ment the operator on Altera FPGA using basic t-norm

introduced in Fig. 7. Table 9 presents the cost of imple-

mentation of the parametric conjunctor and it also presents

Table 7 Cost for implementing

parametric conjunctors and

t-norm families

t-Norm or conjunctor m-Bits Combinational functions Fmax (MHz) Latency (ns)

4T, 4Tc 5 46 192.53 5.19

8 74 190.77 5.24

16 134 164.28 6.09

32 257 128.83 7.76

3DT 5 91 113.52 8.81

8 141 98.02 10.20

16 272 76.81 13.02

32 533 59.42 16.83

3DTs 5 115 106.87 9.36

8 180 98.99 10.10

16 344 78.2 12.79

32 668 60.64 16.49

TMMT 5 92 105.21 9.50

8 141 105.57 9.47

16 272 76.64 13.05

32 533 62.10 16.10

TMMTs 5 129 110.38 9.06

8 202 98.91 10.11

16 381 73.13 13.67

32 739 63.67 15.71

Table 8 Resources and latency time used for implementing parametric operator

Category resource With product quasi-t-norm Without product Total on

FPGA
n = 5 n = 8 n = 16 n = 32 n = 5 n = 8 n = 16 n = 32

Total combinational functions 242

(0.2 %)

467

(0.4 %)

1424

(1.2 %)

5068

(4.4 %)

162

(0.1 %)

239

(0.2 %)

442

(0.4 %)

849

(0.7 %)

114,480

Embedded multiplier 9-bit elements 1

(0.2 %)

1

(0.2 %)

2

(0.4 %)

8

(1.5 %)

0 0 0 0 532

Fmax (MHz) 35.3 19.78 7.99 2.79 102.27 75.78 75.78 60.42

Latency time (ns) 28.33 50.56 125.16 358.42 9.52 10.94 13.90 24.24

PIN 40 68 116 212 46 64 112 400 529

570 International Journal of Fuzzy Systems, Vol. 17, No. 4, December 2015

123



the cost of some of the conjunctors and t-norm designed

from a particular family introduced in this work. From this

table, we can infer that the conjunctor generated from 4T

and 4Tc families is the fastest and with low-complexity of

resources and the conjunctor from [31] has similar latency

times that of t-norms presented in this work.

We did not implement traditional complex parametric

t-norm such as Yager, Hamacher, Dombi, etc., analyzed in

[4, 48] because we can deduce that these do not have

efficient hardware implementation due to a) these require

product t-norm and other complex mathematic functions

and b) their implementation is not good for digital

representation.

For testing, the hardware implementation was simulated

in model-sim simulator of mentor graphics using a 5-bits

representation (N 2 ½0� 31�), then the design was syn-

thesized in the FPGA device and for verifying its hardware

operation, it used hardware in the loop (HIL) approach, in

which basically all possible values of (X, Y) from Matlab

software to FPGA implementation were send, and the

values of Z output of FPGA were returned to Matlab, for

more details of HIL see [57, 58], and we obtained same

results that in simulations. The data obtained were potted

using Matlab software. For other representations, n equal to

8, 16, and 32, only some samples were verified.

Figure 10 shows the graphic surfaces corresponding to

the t-norms and conjunctors specified in Table 10 for dif-

ferent values of parameterized inputs. Note that the cells

with X value, corresponds to do not care condition, and

then their values are not considered. With Fig. 10 and

Table 10, we are trying to show all general different cases

of configuring the operator because it is not practical to

show each different family of the operator (see Table 11).

Note that the cells with X value correspond to do not

care condition, and then their values are not considered.

With Fig. 10 and Table 10, we are trying to show all

general different cases of configuring the operator because

it is not practical to show each different family of the

operator (see Table 11).

Finally, Table 11 shows the number of conjunctors and

t-norms families that can be configured according to

number of basic t-norms used, i.e., for 3 (as was imple-

mented in [53]), 4 and 5 basic t-norms (presented in this

paper). The cases of commutative and non-commutative

Table 9 Cost for implementing

individual parametric

conjunctor and t-norm

t-Norm or conjunctor Family Bits Combinational

functions

Fmax (MHz) Latency

time (ns)

Operator from [31] 5 50 134.26 7.45

8 82 121.97 8.20

16 162 90.63 11.03

32 322 68.67 14.56

Lukasiewicz 3DT 5 80 129.99 7.69

8 121 114.82 8.71

16 239 82.67 12.10

32 462 65.92 15.17

Nilpotent 3DTs 5 111 115.17 8.68

8 177 107.09 9.34

16 340 80.76 12.38

32 673 61.9 16.16

Lukasiewicz-Nilpotent TMMT 5 81 120.98 8.27

8 126 108.67 9.20

16 246 83.79 11.93

32 486 65.56 15.25

Drastic-Lukasiewicz TMMTs 5 107 138.2 7.24

8 156 115.19 8.68

16 302 98.67 10.13

32 596 74.34 13.45

LLLM 4Tc 5 36 207.51 4.82

8 59 196.46 5.09

16 115 179.82 5.56

32 451 135.78 7.36
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conjunctors using 5 basic t-norm were taking into account

that TP and TN cannot be compared, and so both of them

cannot be included in the same parametric conjunctor.

Therefore, the total different parametric operators that can

be implemented in general operator are 41, 95, or 135 when

3, 4, or 5 different basic t-norms are used, respectively.
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Fig. 10 Surfaces of t-norms and conjunctors corresponding to Table 10

Table 10 Configuration of t-norms and conjunctors

Surface in Fig. 10 Type Methodology Basic t-norms used seli
ðoctalÞ

P i1 i4

(a) 0, 1 4T T1 ¼ TD; T2 ¼ TL; T3 ¼ TN ; T4 ¼ TM 0134 11 X X

(b) 2, 3 4Tc T1 ¼ TD; T2 ¼ TL; T4 ¼ TM 01X4 10 X X

(c) 4 3DT T4 ¼ TP 0002 11 X X

(d) 4 3DT T4 ¼ TD XXX0 11 X X

(e) 5 3DTs T4 ¼ TL XXX0 11 X 15

(f) 5 3DTs T4 ¼ TL XXX0 11 X 25

(g) 6 TMMT T1 ¼ TL; T4 ¼ TD 1XX0 11 X X

(h) 6 TMMT T1 ¼ TL; T4 ¼ TL 1XX1 11 X X

(i) 7 TMMTs T1 ¼ TL; T4 ¼ X 1XXX 31 22 X

(j) 7 TMMTs T1 ¼ TL; T4 ¼ TM 1XX4 25 35 x

(k) 7 TMMTs T1 ¼ TL; T4 ¼ TN 1443 11 15 25

(l) 7 TMMTs T1 ¼ TD; T4 ¼ TL 1XX3 11 18 15
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6 Conclusions

This paper presents the implementation of a generalized

digital operator on FPGA that can be configured as a para-

metric conjunctor or a t-norm in fuzzy inference system.

This design consists of Drastic, Lukasiewicz, Product,

Nilpotent, and Minimum basic t-norms. This design is more

complicated than the another one presented in [53], because

it includes more basic t-norms, different methods of aggre-

gation of t-norms such as an ordinal sum of t-norms, an

ordinal sum of subnorms based on basic t-norms, monotone

sum of t-norms, and extension of basic t-norms by Drastic

t-norm [28, 47–50]. The efficient implementation in one

scheme of the several parametric methods of generation of

conjunctors and t-norms was achieved due to a unified

representation of simplified versions of different methods of

aggregation of t-norms considered in [47].

This design has efficient implementation with similar

latency time of the different families presented, and the

resources used are less than 1 % of the total resources of

EP4CE115F29C7 device FPGA.

This design can be extended directly for implementation

also (p, I - p)-monotone sum methodology presented in

[54] by a simple modification in control unit. We present

the results of this operator implementation considering

until a 32-bits for digital representation, because we think

that for a more precise representation it is better to use

floating point representation.

This implementation does not contain a validation

module for protecting operator from bad configurations

that user can generate, because such module will make the

implementation slower. For solving this problem, we rec-

ommend two solutions: (a) to make the validation in soft-

ware or (b) to make a hardware validation module as it was

done in [53].

As it was shown in Sect. 5, the implementation can be

configured to obtain one of the 135 operators; therefore, we

can suppose that this operator is very useful at imple-

mentations of adaptive fuzzy systems with reconfigurable

logic operations that include a learning algorithm.
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