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Abstract In this paper, a composite adaptive fuzzy out-

put feedback control problem is investigated for a class of

single-input and single-output stochastic nonlinear sys-

tems, where the input signal takes quantized values. In the

control design, by using fuzzy logic systems to approxi-

mate the unknown nonlinear functions, a fuzzy adaptive

state observer is designed to estimate the unmeasured

states. By utilizing the designed fuzzy state observer, a

serial–parallel estimation model is established. Based on

adaptive backstepping dynamic surface control technique

and the prediction error between the system states observer

model and the serial–parallel estimation model, an adaptive

output feedback controller is constructed. The designed

fuzzy controller with the composite parameters adaptive

laws ensures that all the variables of closed-loop system are

bounded in probability, and tracking error converges to a

small neighborhood of zero. Two examples are provided to

verify the effectiveness of the proposed approach.

Keywords Composite adaptive fuzzy control � Dynamic

surface control � Input quantization � Stochastic nonlinear

systems � Serial–parallel estimation mode

1 Introduction

In the past decades, stability analysis and control design on

stochastic nonlinear systems [1] have received consider-

able attention. For example, the authors in [2] first inves-

tigated adaptive backstepping control design problem for a

class of strict-feedback stochastic systems by using the

approach of risk-sensitive cost criterion. Deng and Krstic

[3] and Liu et al. [4] proposed output feedback backstep-

ping controllers for a class of stochastic nonlinear systems.

However, it should be pointed out that the aforementioned

results in [2–4] are only suitable for nonlinear systems in

which the nonlinearities are known or with the unknown

parameters appearing linearly with respect to known non-

linear functions. Therefore, the approaches in [1–4] cannot

be applied to those stochastic systems with completed

unknown structured uncertainties. To overcome the limi-

tations existing in the aforementioned adaptive backstep-

ping control approaches, many adaptive fuzzy and neural

network backstepping control design methods have been

developed for uncertain stochastic nonlinear systems via

fuzzy logic systems or neural networks (NNs). For exam-

ple, Wang et al. [5] and Yu and Du [6] proposed adaptive

NN state feedback control approaches for a class of single-

input and single-output (SISO) stochastic nonlinear sys-

tems; Wang et al. [7] developed a robust adaptive fuzzy

pure-feedback control approach for a class of SISO

stochastic nonlinear systems. However, the aforementioned

control approaches are developed based on the assumption

that the states of controlled systems are measured directly.

The authors in [8–11] investigated the adaptive fuzzy and

neural network backstepping control design methods for

SISO, MIMO nonlinear systems, or large-scale stochastic

nonlinear systems with immeasurable states. Although the

adaptive fuzzy or NN backstepping stochastic nonlinear
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control has achieved a great progress, the existing results

do not consider the problem of ‘‘explosion of complexity.’’

It should be mentioned that because of the employment

of the backstepping design technique, the previous control

design methods in [2–11] inevitably suffer from the prob-

lem of ‘‘explosion of complexity,’’ which is caused by

repeating differentiations of some nonlinear functions, i.e.,

the virtual controllers designed at each step with the con-

ventional backstepping technique. As a result, the com-

plexity of a controller drastically grows as the order of the

system increases. To solve the problem of the ‘‘explosion

of complexity’’ inherent in adaptive backstepping design

method, some adaptive fuzzy or NN dynamic surface

control approaches have been extensively studied in [12–

14] for several classes of uncertain stochastic nonlinear

systems. However, the control approaches in [12–14] all

can not solve the control problem for uncertain stochastic

nonlinear systems with input quantization. Quantized

feedback control has attracted a great deal of attention. An

important aspect is that utilizing quantization schemes can

not only have sufficient precision, but also require low

communication rate. Therefore, the analysis and control

design of the systems with input quantization has been

studied by many authors, for example [15–18]. Among

them, Hayakawaa et al. [15] proposed an adaptive quan-

tized control method for a class of linear uncertain discrete-

time systems. Compared to the traditional logarithmic

quantizer, Hayakawaa et al. [15, 16] extend the results

from uncertain linear systems to uncertain nonlinear sys-

tems, and first developed a hysteretic quantizer, which can

avoid the oscillation caused by logarithmic quantizer. The

work in [17] investigated the quantized robust control

problem for uncertain strict-feedback systems, and the

authors in [18] investigated the adaptive quantized back-

stepping feedback control problems for SISO strict-feed-

back uncertain nonlinear systems with hysteretic quantized

input. However, the choice of quantization parameters

depends on controller design parameters and certain system

parameters; it is difficult to choose appropriate quantizer

parameters for a complex nonlinear systems.

Though the adaptive fuzzy or NN control design gained

much progress, the original intention employing fuzzy sys-

tem/NN for approximating the system uncertainty is miss-

ing. Intuitively, the more precise approximation of the

nonlinear function is achieved, the better performance is

expected. However, most efforts have been directed toward

achieving the stability and tracking performance. Little

attention has been paid to the accuracy of the identified

intelligent models and to the transparency and inter-

pretability. By designing a serial–parallel estimation model

and by using the modeling error, the hybrid adaptive fuzzy

identification and control was proposed in [19]. The method

achieves faster and improved tracking performance.

However, the nth derivative of the plant output is required to

be known in [20], which is quite impractical. Thus, some

similar control design methods are developed in [21, 22] by

using the prediction error and different serial–parallel esti-

mation model [20], respectively. It should be pointed out

that the controlled systems under study in [19–22] are

restricted to the canonical form (satisfying the matching

conditions). Recently, the authors in [23] proposed a novel

composite neural dynamic surface controller for a class of

uncertain nonlinear strict-feedback systems without satisfy-

ing the matching conditions. The proposed control method

used the prediction error between system states and serial–

parallel estimation model to construct the composite laws

for NN weights updating, and achieved better tracking

performance than the previous methods [24]. However, the

result in [23] requires that the states of the controlled system

are measured directly. The authors in [25] proposed a

composite adaptive fuzzy dynamic surface control approach

for a class of uncertain nonlinear strict-feedback systems

with input saturation and unmeasured states, but the con-

sidered systems in [25] does not contain the stochastic dis-

turbance or input quantization. To the author’s best

knowledge, by far, no composite control results are available

for uncertain stochastic nonlinear strict-feedback systems

with input quantization, which does not require that the

states are available for measurement.

Motivated by the aforementioned observations, in this

paper, an observer-based composite adaptive fuzzy back-

stepping output feedback DSC approach is proposed for a

class of uncertain stochastic nonlinear systems containing

unmeasured states and input quantization. Fuzzy logic

systems are used to approximate the unknown nonlinear

functions of the new system, a fuzzy adaptive observer is

designed for state estimations. By utilizing the designed

fuzzy state observer, a serial–parallel estimation model is

established, and by introducing a hysteretic quantizer to

avoid chattering. Based on adaptive backstepping dynamic

surface control technique and utilizing the prediction error

between the system states observer model and the serial–

parallel estimation model, an adaptive output feedback

controller is constructed. It has proved that the designed

fuzzy controller with the composite parameters adaptive

laws ensures that all the variables of closed-loop system are

bounded in probability, and tracking error converges to a

small neighborhood of zero. Compared with the existed

results, the main advantages of the proposed control

scheme are as follows:

(1) By using the decomposition technique of input

quantization, the logarithmic quantizer is decom-

posed into an actual control and a bounded uncertain

term, and this paper first investigated the adaptive

fuzzy output feedback quantized control design
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problem for uncertain stochastic nonlinear system

with hysteretic quantized input. The proposed con-

trol scheme can not only guarantee the stability of

the whole controlled system, but also can attenuate

the effect of the hysteretic quantizer on the control

performance.

(2) By designing a serial–parallel estimation model, the

prediction errors between controlled stochastic non-

linear system model and serial–parallel estimation

model have been incorporated into the control design

scheme, and the proposed control scheme can

achieve good control and tracking performances.

(3) By using the new DSC technique, the proposed

fuzzy adaptive control approach can overcome the

defect of ‘‘explosion of complexity’’ existed in the

references [2–11], thus the computational burden of

the control algorithm can be reduced greatly. In

addition, the DSC technique design in this paper uses

two kinds of first-order filters instead of a first-order

filter in [12–14, 24]. Consequently, the restrictive

assumption on the bounds of the derivative of virtual

control functions being known is removed.

2 Problem Formulations and Preliminaries

2.1 System descriptions

Consider a class of SISO stochastic nonlinear systems in

the following form:

dx1 ¼ f1ðx1Þ þ x2 þ d1ðx; tÞ½ �dtþ g1ðxÞdw

dx2 ¼ f2 x2ð Þ þ x3 þ d2ðx; tÞ½ �dtþ g2ðxÞdw

..

.

dxn�1 ¼ fn�1 xn�1ð Þ þ xn þ dn�1ðx; tÞ½ �dtþ gn�1ðxÞdw

dxn ¼ fn xnð Þ þ qðuðtÞÞ þ dnðx; tÞ½ �dtþ gnðxÞdw

y¼ x1;

ð1Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

where x ¼ xn ¼ x1; . . .; xn½ �T2 Rn is the system state vec-

tor; y 2 R and qðuðtÞÞ 2 R are the control output and input

of the controlled system, respectively. xi ¼ x1; . . .; xi½ �T

2 Ri; di (i ¼ 1; 2; . . .; n) is the bounded disturbance and

satisfy dij j � di;M with diM being known positive constant.

The input qðuðtÞÞ represents the quantizer and takes the

quantized values, where uðtÞ 2 R is the control input signal

to be quantized at the encoder side. fið�Þ (i ¼ 1; 2; . . .; n) is

an unknown smooth function, giðxÞ is an uncertain func-

tions, and wi 2 R is an independent standard Brownian

motion defined on a complete probability space, with the

incremental covariance E dw � dwTf g ¼ rðtÞrðtÞT
dt.

Throughout this paper, it is assumed that the only output

y is available for measurement.

To facilitate the control system design, we need the

following assumptions.

Assumption 1 [25] There exists a constant Li such that

fiðxiÞ � fi x̂ið Þj j � Li xi � x̂ik k; i ¼ 1; 2; . . .; n;

where x̂i ¼ x̂1; x̂2; . . .; x̂i½ �T is the estimate of xi ¼ x1; x2;½
. . .; xi�T; where Xk k denotes the two-norm of a vector X.

Assumption 2 [1] The disturbance covariance gTrrTg ¼
�r�rT is bounded, where gðxÞ ¼ g1; . . .; gn½ �T.

Control objective The control objective is to design an

adaptive fuzzy output feedback control controller such that

all the variables of the closed-loop system are bounded in

probability. Moreover, the system output y(t) can track the

signal yr(t) as closely as possible.

In this paper, we use hysteresis quantizer to avoid

chattering. The quantizer q(u(t)) represents the hysteretic

quantizer in the following form similar to those in [16, 18]:

qðuðtÞÞ¼D

uisgnðuÞ; if
ui

1þa
\ uj j�ui; _u\0; or

ui\ uj j� ui

1�a
; _u[0

uið1þaÞsgnðuÞ; if ui\ uj j� ui

1�a
; _u\0; or

ui

1�a
� uj j�uið1þaÞ

1�a
; _u[0

0; if 0� uj j\ umin

1þa
; _u\0; or

umin

1þa
� uj j�umin; _u[0

qðuðt�ÞÞ; if _u¼0

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð2Þ

Here ui ¼ qð1�iÞumin with integer i ¼ 1; 2; . . .; n and

parameters umin [ 0 and 0\q\1, a ¼ ð1 � qÞ=ð1 þ qÞ.
qðuÞ is the set U ¼ 0; �u; �uið1 þ aÞf g. umin determi-

nes the size of the dead-zone for qðuðtÞÞ. The map of

the hysteretic quantizer qðuðtÞÞ for u[ 0 is shown in

Fig. 1.

Remark 1 The parameter q is considered as a measure of

quantization density. The smaller q is, the coarser the

quantizer is. When q approaches to zero, a approaches to 1,

then qðuðtÞÞ will have fewer quantization levels as u ranges

over that interval.

Remark 2 The control action for the hysteretic quantizer

(2) should be satisfied in terms of existence and uniqueness

of solution of the closed-loop systems. Since the system (1)

is uncertain so the parameter q of the hysteretic quantizer is

not given a prior. Instead, it should be chosen based on a

guideline that ensures the stability of the closed-loop

system.
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In order to propose a suitable control scheme, we

decompose the logarithmic quantizer qðuðtÞÞ into the fol-

lowing form:

qðuðtÞÞ ¼ DðuÞuþ sðtÞ; ð3Þ

where DðuÞ and sðtÞ are nonlinear functions. Regarding the

nonlinearity DðuÞ and sðtÞ, we have the following lemma.

Lemma 1 The nonlinearities DðuÞ and sðtÞ satisfy
1 � a�DðuÞ� 1 þ a ð4Þ
sðtÞj j � umin: ð5Þ

Proof From Fig. 1 and using sector bound property, we

can get that for uj j � umin

ð1 � aÞu� qðuÞ� ð1 þ aÞu: ð6Þ

For uj j � umin, qðuðtÞÞ ¼ 0 from the definition (3), we have

0 ¼ DðuÞuþ sðtÞ: ð7Þ

Define

DðuÞ ¼
qðuÞ
u

; uj j[ umin

1; uj j � umin

(

ð8Þ

and

sðtÞ ¼ 0; uj j[ umin

�u; uj j � umin

�

ð9Þ

Then qðuðtÞÞ ¼ DðuÞuþ sðtÞ holds, where DðuÞ and sðtÞ
satisfy (4) and (5), respectively. h

2.2 Fuzzy Logic Systems

Fuzzy logic system (FLS) contains the knowledge base, the

fuzzifier, the fuzzy inference engine working on fuzzy

rules, and the defuzzifier, and the knowledge base com-

prises a collection of fuzzy If–then rules of the following

form:

Rl : If x1 is Fl
1 and x2 is Fl

2 and. . . and xn is Fl
n;

Then y is Gl; l ¼ 1; 2; . . .; N

where x ¼ x1; . . .; xn½ �T and y are the fuzzy logic system

input and output, respectively. Fuzzy sets Fl
i and Gl,

associated with the fuzzy functions lFl
i
ðxiÞ and lGlðyÞ,

respectively. N is the rules number.

Through singleton function, center average defuzzifica-

tion and product inference [26], the fuzzy logic system can

be expressed as follows:

yðxÞ ¼
PN

l¼1 �yl
Qn

i¼1 lFl
i
ðxiÞ

PN
l¼1

Qn
i¼1 lFl

i
ðxiÞ

h i ; ð10Þ

where �yl ¼ max
y2R

lGlðyÞ.
Fuzzy basis functions can be expressed as

ul ¼
Qn

i¼1 lFl
i
ðxiÞ

PN

l¼1

Qn
i¼1 lFl

i
ðxiÞ

� � : ð11Þ

Denote h ¼ �y1; �y2; . . .; �yN½ �T¼ h1; h2; . . .; hN½ �T and

/TðxÞ ¼ /1ðxÞ; . . .; /NðxÞ½ �, then fuzzy logic system (10)

can be rewritten as follows:

yðxÞ ¼ hT/ðxÞ: ð12Þ

Lemma 2 [26] f ðxÞ is a continuous function defined on a

compact set X, and we can obtain that for any constant

e[ 0, there exists a fuzzy logic system (12) such as

sup
x2X

f ðxÞ � hT/ðxÞ
�
�

�
�� e: ð13Þ

3 Fuzzy State Observer and Serial–Parallel
Estimation Model Designs

It is assumed that the states of system (1) are not available

for feedback; therefore, a state observer should be estab-

lished to estimate the unmeasured states, and then fuzzy

adaptive output feedback control scheme is investigated

based on the designed state observer. Then system (1) is

equivalent to the following system:

dx1 ¼ x2 þ f1ðx1Þþd1½ �dtþg1ðxÞdw

dx2 ¼ x3 þ f2ðx̂2ÞþDf2 þd2½ �dtþg2ðxÞdw

..

.

dxn�1 ¼ xnþ fn�1ðx̂n�1ÞþDfn�1 þdn�1½ �dtþgn�1ðxÞdw

dxn ¼ DðuÞuþ sðtÞþ fnðx̂nÞþDfnþdn½ �dtþgnðxÞdw

y¼ x1

8
>>>>>>>>>><

>>>>>>>>>>:

ð14Þ

Here Dfi ¼ fi xið Þ � fi x̂ið Þ, i ¼ 2; . . .; n� 1; x̂i is the esti-

mate of xi.

)(uq

)1(2 α+u

2u

)1(1 α+u

u

Slope α+=1

Slope α−=1

1u

)1(
)1(

1)1(
)1(

11 2
2

1
1

1
1

α
α

αα
α

αα −
+

−−
+

−+
uuuuuu

Fig. 1 Map of q(u(t)) for u[ 0
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By Lemma 1, the fuzzy logic system is a universal

approximator, i.e., it can approximate any a smooth func-

tion on a compact space, thus we can assume that the

nonlinear terms in (14) can be approximated as follows:

f̂1 x1 h1jð Þ ¼ hT
1/1ðx1Þ; f̂i x̂i hijð Þ ¼ hT

i /i x̂ið Þ; 2� i� n:

ð15Þ

The optimal parameter vectors h�1 and h�i are defined as

follows:

h�1 ¼ arg min
h12X1

sup
x12U1

f̂1 x1 h1jð Þ � f1ðx1Þ
�
�

�
�

� �

; ð16Þ

h�i ¼ arg min
hi2Xi

sup
x̂i2Ui

f̂iðx̂i hij Þ � fiðx̂iÞ
�
�

�
�

" #

; 2� i� n; ð17Þ

where X1, Xi, U1; and Ui are bounding compact regions for

h1, hi, x1; and x̂i, respectively (i ¼ 2; . . .; n). The corre-

sponding minimum approximation errors ei(i ¼ 1; 2;

. . .; n) are defined as

e1ðx1Þ ¼ f1ðx1Þ � f̂1 x1 h�1
�
�

� 	
; ei x̂ið Þ ¼ f1 x̂ið Þ � f̂i x̂i h

�
i

�
�

� 	
;

2� i� n;

ð18Þ

where ei satisfies that eij j � e�i , and e�i are known positive

constants, i ¼ 1; 2; . . .; n.

Design a fuzzy state observer as follows:

_̂x1 ¼ x̂2 þ hT
1/1ðx1Þ þ k1 y� x̂1ð Þ

_̂x2 ¼ x̂3 þ hT
2/2 x̂2ð Þ þ k2 y� x̂1ð Þ

..

.

_̂xn�1 ¼ x̂n þ hT
n�1/n�1 x̂n�1ð Þ þ kn�1 y� x̂1ð Þ

_̂xn ¼ DðuÞuþ hT
n/n x̂nð Þ þ kn y� x̂1ð Þ

ŷ ¼ x̂1

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð19Þ

Here ki (i ¼ 1; 2; . . .; n) is a positive design parameter.

Rewrite (19) as follows:

_̂xn ¼Ax̂n þ Kyþ B1h
T
1/1ðx1Þ þ

Xn

i¼2

Bih
T
i /i x̂ið Þ þ bDðuÞu

ŷ ¼Cx̂n; ð20Þ

where A ¼
�k1

..

.
I

�kn 0 . . . 0

2

6
4

3

7
5, K ¼

k1

..

.

kn

2

6
4

3

7
5, b ¼

0

..

.

1

2

4

3

5,

Bi ¼ 0 . . . 1 . . . 0½ �T, and C ¼ 1 . . . 0 . . . 0½ �.
Choose the vector K to make matrix A be a strict Hur-

witz matrix. Thus, given a positive definite matrix

Q ¼ QT [ 0, there exists a positive definite matrix P ¼
PT [ 0 satisfying

ATPþ PA ¼ �2Q: ð21Þ

Let e ¼ xn � x̂n be an observer error vector, then from (14)

and (20), the observer error equation can be obtained as

follows:

de ¼
�

Aeþ B1 f1ðx1Þ � hT
1u1ðx1Þ

� 	

þ
Xn

i¼2

Bi fi x̂ið Þ � hT
i ui x̂ið Þ

� 	
þ Dfi

� 	
þ bsðtÞ þ D

#

dt

þ GðxÞ dw ¼ Aeþ eþ DF þ
Xn

i¼1

Bi
~hT
i ui

"

þ bsðtÞ þ D

�

dt þ GðxÞdw;

ð22Þ

where e ¼ e1ðx1Þ; . . .; en x̂nð Þ½ �T, DF ¼ 0; Df2; . . .; Dfn½ �T,

D ¼ d1; d2; . . .; dn½ �T, GðxÞ ¼ g1ðxÞ; g2ðxÞ; . . .; gnðxÞ½ �T;
and ~hi ¼ h�i � hi, i ¼ 1; 2; . . .; n.

Based on (19) and according to [27], a serial–parallel

estimation model is designed as follows:

_̂
x̂1¼ x̂2þhT

1/1ðx1Þþb1 x̂1� ^̂x1

� �

_̂
x̂2¼ x̂3þhT

2/2 x̂2ð Þþb2 x̂2� ^̂x2

� �

..

.

_̂
x̂n�1¼ x̂nþhT

n�1/n�1 x̂n�1ð Þþbn�1 x̂n�1� ^̂xn�1

� �

_̂
x̂n¼DðuÞuþhT

n/n x̂nð Þþbn x̂n� ^̂xn

� �

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð23Þ

Here bi [ 0 (i ¼ 1; . . .; n) is a designed constant.

Define the prediction error as follows:

di ¼ x̂i � ^̂xi: ð24Þ

From (19) and (23), we have

dd ¼ ki y� x̂ið Þ � bi x̂i � ^̂xi

� �h i
dt: ð25Þ

4 Composite Adaptive Output Feedback Dynamic
Surface Control with Prediction Errors

In this section, an adaptive fuzzy output feedback con-

troller will be developed based on the backstepping

dynamic surface control design technique, and the

parameter adaptive laws will be obtained by using the

prediction error, which is derived from the difference

between the system state observer model and designed the

serial–parallel estimation model in each backstepping

design.
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Step 1 Define the first error surface S1 as follows:

S1 ¼ x1 � yr: ð26Þ

Expressing x2 in terms of its estimate as x2 ¼ x̂2 þ e2,

the time derivative of S1 is written as follows:

dS1 ¼ _x1 dt � _yr dt ¼
�

x̂2 þ hT
1/1ðx1Þ þ d1 � _yr þ e2

þ ~hT
1/1ðx1Þ þ e1

i
dt þ g1ðxÞ dw: ð27Þ

Choose the first virtual control function x̂2;d as follows:

x̂2;d ¼ �c1S1 � hT
1/1ðx1Þ þ _yr; ð28Þ

where c1 [ 0 is a design parameter.

Introduce a new state variable x̂2;c and let x̂2;d pass

through a first-order filter with a constant s2 [ 0, and the

dynamics of x̂2;c can be expressed as follows:

s2
_̂x2;c þ x̂2;c ¼ x̂2;d; x̂2;cð0Þ ¼ x̂2;dð0Þ: ð29Þ

Define the following compensating signal

_z1 ¼ �c1z1 þ z2 þ x̂2;c � x̂2;d

� 	
 �
dt; z1ð0Þ ¼ 0; ð30Þ

where z2 will be defined in the next step, the compen-

sating signal z1 come form the auxiliary system (30), and

it can overcome the instability from x̂2;c � x̂2;d.

Define the compensated tracking error signals as v1 ¼
S1 � z1 and v2 ¼ S2 � z2, and choose the adaptive law of

parameter h1 as follows:

_h1 ¼ c1 v1 þ
d1

�c1

� 

/1ðx1Þ � r1h1; ð31Þ

where c1 [ 0, �c1 [ 0; and r1 [ 0 are design parameters,

and d1 is the predict error, which is obtained from (25).

Step i (i = 2, …, n-1). Define the ith error surface Si as

follows:

Si ¼ x̂i � x̂i;c; ð32Þ

where x̂i;c will be defined in (34). Choose the ith virtual

control function x̂iþ1;d as follows:

x̂iþ1;d ¼ �ciSi � hT
i /i x̂ið Þ � Si�1 þ _̂xi;c � kiðy� x̂1Þ

� gi tanh
v3
i gi
1

� 

; ð33Þ

where ci [ 0 is a design parameter.

Introduce a new state variable x̂iþ1;c and let x̂iþ1;d pass

through a first-order filter with a constant siþ1 [ 0, the

dynamics of x̂iþ1;c can be expressed as follows:

siþ1
_̂xiþ1;c þ x̂iþ1;c ¼ x̂iþ1;d; x̂iþ1;cð0Þ ¼ x̂iþ1;dð0Þ:

ð34Þ

Define the following compensating signal to remove the

defect known error x̂iþ1;c � x̂iþ1;d:

_zi ¼ �cizi � zi�1 þ ziþ1 þ x̂iþ1;c � x̂iþ1;d

� 	
 �
dt;

zið0Þ ¼ 0:
ð35Þ

Define the compensated tracking error signal

vi ¼ Si � zi, and choose the adaptive law of parameter hi
as follows:

_hi ¼ ci vi þ
di
�ci

� 

/i x̂ið Þ � rihi; ð36Þ

where ci [ 0, �ci [ 0; and ri [ 0 are design parameters.

Step n In the last step, define the nth error surface Sn as

follows:

Sn ¼ x̂n � x̂n;c: ð37Þ

Design the input of the quantized input u and parameter

adaptation functions as follows:

u ¼ 1

1 � a

�

�cnSn � hT
n/n x̂nð Þ � Sn�1 þ _̂xn;c

� kn y� x̂1ð Þ � gn tanh
v3
ngn
1

�

;

ð38Þ

where cn [ 0 is a design parameter.

Note that, from (4) and (38), we can obtain the

following:

DðuÞu� � cnSn � hT
n/n x̂nð Þ � Sn�1 þ _̂xn;c � kn y� x̂1ð Þ

� gn tanh
v3
ngn
1

: ð39Þ

Define the following compensating signal as follows:

_zn ¼ �cnzn � zn�1½ � dt; znð0Þ ¼ 0: ð40Þ

Define the compensated tracking error signal vn ¼ Sn �
zn and the prediction error as follows:

dn ¼ x̂n � ^̂xn; ð41Þ

where ^̂xn is obtained from the following serial–parallel

estimation model:

_̂
x̂n ¼ DðuÞuþ hT

n/n x̂nð Þ þ bn x̂n � ^̂xn

� �
;

^̂xnð0Þ ¼ x̂nð0Þ;
ð42Þ

where bn [ 0 is a design parameter.

Choose the adaptive law of parameter hn as follows:
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_hn ¼ cn vn þ
dn
�cn

� 

/n x̂nð Þ � rnhn ð43Þ

where cn [ 0, �cn [ 0; and rn [ 0 are design parameters.

The configuration of the aforementioned adaptive fuzzy

control scheme is shown in Fig. 2.

5 Stability Analysis

Theorem 1 For nonlinear output feedback system (1)

with unmeasured states, under Assumption 1, the con-

troller and the state observer are adopted by (38) and (19),

the serial–parallel estimation models (23), together with

the virtual control functions (28) and (33), adaptive laws of

parameter (31), (36), and (43), guarantee that all signals of

the closed-loop system consisting of (38) and (19) are

bounded in probability. Moreover, the tracking error

converges to a small neighborhood of zero by suitably

choosing the design parameters.

Proof Consider the Lyapunov function candidate:

V ¼ 1

2
eTPeþ 1

4

Xn

i¼1

v4
i þ

Xn

i¼1

1

2�ci
d2
i þ

Xn

i¼1

1

2ci
~hT
i
~hi: ð44Þ

The time derivative of V along with (22) and (25) is as

follows:

Fig. 2 Composite adaptive fuzzy dynamic surface control scheme
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‘V ¼1

2
_eTPeþ 1

2
eTP _eþ

Xn

i¼1

v3
i _viþ

Xn

i¼1

1

�ci
di _diþ

Xn

i¼1

1

ci
~hT
i
_~hi

¼1

2
eT ATPþPA
� 	

eþ eTP eþDFþ
Xn

i¼1

Bi
~hT
i uiþbsðtÞþD

 !

þTr rGTPGrT

 �

þ
Xn

i¼1

v3
i _viþ

Xn

i¼1

1

�ci
di _diþ

Xn

i¼1

1

ci
~hT
i
_~hi

¼� eTQeþeTP eþDFþ
Xn

i¼1

Bi
~hT
i /iþ bsðtÞþD

 !

þ Tr rGTPGrT

 �

þ
Xn

i¼1

v3
i _viþ

Xn

i¼1

1

�ci
di _diþ

Xn

i¼1

1

ci
~hTi

_~hi

:

ð45Þ

By using Assumption 1 and Lemma 1, and the Young’s

inequality, we have the following inequalities:

eTPe� ek k2þ 1

4
Pk k2
Xn

i¼1

e�2
i ; ð46Þ

eTPDF� ek k2þ 1

4
Pk k2
Xn

i¼1

L2
i ek k2 ¼ p1 ek k2; ð47Þ

eTP
Xn

i¼1

Bi
~hT
i ui � ek k2

Pk k2þ
Xn

i¼1

~hT
i
~hi; ð48Þ

eTPD� 1

2
ek k2þ 1

2
Pk k2
Xn

i¼1

d2
i;M ; ð49Þ

Tr rGTPGrT

 �

� 1

2
Pk k2þ 1

2
�r�rT
�
�

�
�2; ð50Þ

eTPbsðtÞ� 1

2
ek k2þ 1

2
Pk k2

u2
min; ð51Þ

where p1 ¼ 1 þ 1
4

Pk k2Pn
i¼1 L

2
i . From (19), (32), and (35),

we have

dvi¼ _Sidt� _zidt¼ _̂xidt� _̂xi;cdt� _zidt

¼ x̂iþ1� x̂iþ1;d�ciSi�Si�1þciziþzi�1�ziþ1

� x̂iþ1;c� x̂iþ1;d

� 	
�gi tanh

v3
i gi
1

� 

¼ ~hT
i /i x̂ið Þ�civi�vi�1þviþ1� ~hT

i /i x̂ið Þ

�gi tanh
v3
i gi
1

� 

: ð52Þ

From (19), (20), and (23), we have

ddi ¼ _̂xidt � _̂
x̂i dt

¼~hT
i ui x̂ið Þ þ ki y� x̂1ð Þ � bidi � ~hT

i ui x̂ið Þ
: ð53Þ

Substituting (46)–(53) into (45) yields the following:

‘V � � kminðQÞ � p2ð Þ ek k2þ
Xn

i¼1

~hT
i
~hi þM1

þ
Xn

i¼1

v3
i
~hT
i /i x̂ið Þ � civi � vi�1

h

þ viþ1 � ~hT
i /i x̂ið Þ � gi tanh

v3
i gi
1

� �

þ
Xn

i¼1

1

�ci
di ~hT

i /i x̂ið Þ
h

þ ki y� x̂1ð Þ � bidi � ~hT
i /i x̂ið Þ

i
þ
Xn

i¼1

1

ci
~hT
i
_~hi

; ð54Þ

where vnþ1 ¼ 0, p2 ¼ p1 þ Pk k2þ2; and M1 ¼ 1
4

Pk k2

Pn

i¼1

e�2
i þ 1

2
Pk k2P

n

i¼1

d2
iM þ 1

2
Pk k2þ 1

2
�r�rTj j2þ 1

2
Pk k2

u2
min.

By using the Young’s inequality, we have the following

inequalities:

�di~h
T
i /i x̂ið Þ� d2

i

4
þ ~hT

i
~hi; ð55Þ

diki y� x̂1ð Þ� k2
i d

2
i

4
þ ek k2; ð56Þ

�v3
i vi�1 �

3

4
v4
i þ

1

4
v4
i�1; ð57Þ

v3
i viþ1 �

3

4
v4
i þ

1

4
v4
iþ1: ð58Þ

Using the inequality xj j � x tanh x=1ð Þ� 0:27851 ¼
10 81[ 0ð Þ and substituting (55)–(58) into (54) yields the

following:

‘V�� kminðQÞ�pð Þ ek k2þ2
Xn

i¼1

~hT
i
~hiþM1

�
Xn

i¼1

ci�3ð Þv4
i þ
Xn

i¼1

vi~h
T
i ui x̂ið Þ

þ v3
i gi

�
�

�
��v3

i gi tanh
v3
i gi
1

� 

�
Xn

i¼1

bi
�ci
�k2

i þ1

4

� 

d2
i

þ
Xn

i¼1

di
�ci
~hT
i ui x̂ið Þ�

Xn

i¼1

1

ci
~hT
i
_hi

�� kminðQÞ�pð Þ ek k2þ2
Xn

i¼1

~hT
i
~hiþM1

�
Xn

i¼1

ci�3ð Þv4
i �
Xn

i¼1

bi
�ci
�k2

i þ1

4

� 

d2
i

þ
Xn

i¼1

~hT
i viui x̂ið Þþdi

�ci
ui x̂ið Þ�1

ci
_hi

� �

þ10

; ð59Þ
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where p = p2 ? p1.

Substituting (36) into (59) yields the following:

‘V � � kminðQÞ � pð Þ ek k2�
Xn

i¼1

ci � 3ð Þv2
i

�
Xn

i¼1

bi
�ci
� k2

i þ 1

4

� 

d2
i

�
Xn

i¼1

ri
2ci

� 2

� 
~hT
i
~hi þM

; ð60Þ

where M ¼ M1 þ
Pn

i¼1

ri
2ci

h�T
i h�i þ 10.

Choose the design parameters kmin(Q), ci, bi, �ci, ri, and

ci such that kminðQÞ � p[ 0, ci � 3[ 0,
bi
�ci
� k2

i þ1

4
[ 0; and

ri
2ci

� 2[ 0, respectively.

Define

c ¼ min
i¼1;...; n

(

2 kminðQÞ � pð Þ=kmaxðPÞ; 2 ci � 3ð Þ;

2
bi
�ci
� k2

i þ 1

4

� 

; 2
ri
2ci

� 2

� )

:

From (60), one can obtain

‘V � � cV þM: ð61Þ

The solution of (61) can be written as follows:

E½VðtÞ� �EVð0Þe�ct þM

c
; ð62Þ

where E(�) is probability expectation.

The above inequality means that E[V(t)] is bounded by

M/c in mean square. Thus, according to (62), it is

concluded that all the signals of the closed-loop system

are SUUB in probability. Moreover, by adjusting the

design parameters, the variables S1 can be made arbitrarily

small. h

Remark 1 Note that from (62), we can only conclude that

the state observer errors and tracking error satisfy that

E ek kð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=ckminðPÞ

p
and E S1j jð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffi
2M=c

p
, we can-

not conclude that the state observer errors and tracking

errors asymptotically converge to zero. However, accord-

ing to the authors in [8–21], we can make both the state

observer errors and tracking errors to be small by

increasing the design parameters ci and ci, or decreasing ri
(i = 1, …, n).

6 Simulation Study

In this section, the feasibility of the proposed method and

the control performances are illustrated by the following

two examples.

Example 1 Consider the following SISO stochastic non-

linear systems:

dx1 ¼ f1ðx1Þ þ x2 þ d1ðx; tÞ½ � dt þ g1ðx1; x2Þ dw

dx2 ¼ f2ðx1; x2Þ þ qðuðtÞÞ þ d2ðx; tÞ½ �dt þ g2ðx1; x2Þ dw

y ¼x1;

8
><

>:

ð63Þ

where f1ðx1Þ ¼ �0:01x2
1, f2ð�Þ ¼ x2 sinðx1Þ, g1ð�Þ ¼ x1

�

1 þ x2
1, g2ð�Þ ¼ x2 cosðx2Þ, d1ðx; tÞ ¼ 0:1 sinðx1x2Þþ

x2
2 cosðtÞ, d2ðx; tÞ ¼ 1

�
10 þ x2

1x
2
2 sin2 t

� 	
, and _wðtÞ is

assumed to be the Gaussian white noise with zero mean

and variance 1.0.

The parameters in the hysteretic quantized input (2) are

selected as a = 0.9, umin = 0.5, and the reference signal is

assumed to be yr = sin(t).

Remark 2 By far, there exist some adaptive fuzzy or

neural output feedback control methods [8–11, 13, 14]

for a class of stochastic nonlinear systems based on

backstepping technique, but these methods all did not

consider the problem of input quantization. Therefore,

they can not be applied to control the system (63). In

addition, since this paper introduced the dynamic surface

control technique into the backstepping control design,

the proposed control method in this study can remove

the restrictive conditions in [13, 14], i.e., the derivative

of virtual control functions must be bounded by the

known bounds.

The fuzzy membership functions for each fuzzy set is

chosen as Gaussian-shaped membership functions, and

they are given as follows:

lFl
i
x̂ið Þ ¼ exp � x̂i � 6 þ 2lð Þ2

2

" #

l ¼ 1; . . .; 5; i ¼ 1; 2:

we can construct the fuzzy logic systems hT
1u1 x̂1ð Þ ¼

P5

j¼1

hT
1ju1j x̂2ð Þ and hT

2u2 x̂2ð Þ ¼
P5

j¼1

hT
2ju2j x̂2ð Þ in terms of

[26], where hT
1 ¼ h11; h12; h13; h14; h15½ � and hT

2 ¼ h21;½
h22; h23; h24; h25�.

Choose observer gain vector K ¼ ½k1; k2�T ¼ ½14; 14�T
so that the matrix A is strict Hurwitz.

Construct the fuzzy state observer as follows:

_̂x1 ¼x̂2 þ hT
1u1ðx1Þ þ k1 y� x̂1ð Þ

_̂x2 ¼DðuÞuþ hT
2u2 x̂2ð Þ þ k2 y� x̂1ð Þ

ŷ ¼x̂1

8
><

>:

Let b1 = 0.9, b2 = 0.9, and construct the serial–parallel

estimation models:
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_̂
x̂1 ¼x̂2 þ hT

1u1ðx1Þ þ b1 x̂1 � ^̂x1

� �
; ^̂x1ð0Þ ¼ x̂1ð0Þ

_̂
x̂2 ¼DðuÞuþ hT

2u2 x̂2ð Þ þ b2 x̂2 � ^̂x2

� �
; ^̂x2ð0Þ ¼ x̂2ð0Þ

:

Determine the virtual control functionx̂2;d, controller u,

adaptive laws of parameter h1 and h2, and the first-order

filter as follows:

x̂2;d ¼ �c1S1 � hT
1u1ðx1Þ þ _yr; ð64Þ

u ¼ 1

1 � a
�c2S2 � hT

2u2 x̂2ð Þ � S1 þ _̂x2;c � k2 y� x̂1ð Þ



� g2 tanh
v3

2g2

1

�

; ð65Þ

_h1 ¼ c1 v1 þ
d1

�c1

� 

u1ðx1Þ � r1h1; ð66Þ

_h2 ¼ c2 v2 þ
d2

�c2

� 

u2 x̂2ð Þ � r2h2; ð67Þ

s2
_̂x2;c þ x̂2;c ¼ x̂2;d; x̂2;cð0Þ ¼ x̂2;dð0Þ: ð68Þ

The design parameters are chosen as c1 = 5, c2 = 5,

b1 = 1, b2 = 1, s2 = 0.1, c1 = 10, c2 = 10, �c1 ¼ 0:01,

�c2 ¼ 0:01, r1 ¼ r2 ¼ 50, g2 ¼ 0:2; and 1 ¼ 1.

The initial conditions are chosen as x1ð0Þ ¼ 0:1,

x2ð0Þ ¼ 0, x̂1ð0Þ ¼ 0, x̂2ð0Þ ¼ 0, ^̂x1ð0Þ ¼ 0, ^̂x2ð0Þ ¼ 0,

hT1 ð0Þ ¼ ½h11ð0Þ; h12ð0Þ; h13ð0Þ; h14ð0Þ; h15ð0Þ� ¼ ½0; 0;

0; 0; 0�, hT2 ð0Þ ¼ ½h21ð0Þ; h22ð0Þ; h23ð0Þ; h24ð0Þ; h25ð0Þ� ¼
½0; 0; 0; 0; 0�:

The simulation results are shown in Figs. 3, 4 and 5,

where Fig. 3 shows the trajectories of output y and yr;

Fig. 4 shows the trajectories of states xi i = 1, 2; Fig. 5

shows the trajectories of u and q(u).

For Example 1, we make a comparison between this

paper with Ref. [13]. Since Ref. [13] only solves the sta-

bilization control problem for stochastic nonlinear systems,

we let yr = 0. In addition, we apply the way dealing with

input quantization of this paper to the control method of

Ref. [13] in order to solve the problem of input quantiza-

tion. We apply the control methods of this paper (Case 1)

and Ref. [13] (Case 2) to control the system of Example 1,

respectively. The initial conditions and design parameters

in Case 1 and Case 2 are chosen as the same as Example 1.

The simulation result is shown Figs. 6 and 7. From Figs. 6

and 7, we can obtain that the control methods of this paper

and Ref. [13] all can guarantee that all the variables are

bounded, but the control method of this paper can achieve

much better control performance than Ref. [13].Fig. 3 The trajectories of y (black line) and yr (red line)

Fig. 4 The trajectories of state x1 (black line) and the state x2 (red

line)

Fig. 5 The trajectories of u (black line) and q(u) (red line)
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Example 2 [27] To further show the effectiveness of the

proposed adaptive fuzzy controller, we consider the elec-

tromechanical system shown in Fig. 8.

The dynamics of the electromechanical system is

described by the following equation:

D€qþ B _qþ N sinðqÞ ¼ s
L _sþ Hs ¼ V � Km _q

�

ð69Þ

Here D ¼ J
Ks
þ mL2

0

3Ks
þ M0L

2
0

Ks
þ 2M0R

2
0

5Ks
, N ¼ mL0G

2Ks
þ M0L0G

Ks
, and

B ¼ B0

Ks
; J is the rotor inertia, m is the link mass, M0 is the

load mass, L0 is the link length, R0 is the radius of the load,

G is the gravity coefficient, B0 is the coefficient of viscous

friction at the joint, q(t) is the angular motor position (and

hence the position of the load), s is the motor armature

current, and Ks is the coefficient which characterizes the

electromechanical conversion of armature current to tor-

que. L is the armature inductance, H is the armature

resistance, Km is the back-emf coefficient, and V is the

input control voltage. The values of the parameters

are chosen as J = 1.625 Kg m2, m = 0.506 Kg, R0 =

0.023 m, M0 = 0.434 Kg, L0 = 0.305 m, B0 = 16.25 9

10-3 N m s rad-1, L = 25.0 9 10-3H, H = 5.0 X, and

Ks = Km = 0.90 N m A-1.

When we consider the stochastic disturbance and input

quantization, and introduce the variable change x1 = q,

x2 ¼ _q, x3 = s, and qu = V, the dynamics given by (63)

can be written in the following form:

dx1 ¼ x2 dtþ g1ðx1; x2; x3Þdw

dx2 ¼ �N

D
sinðx1Þ�

B

D
x2 þ

1

D
x3

� �

dtþ g2ðx1; x2; x3Þdw

dx3 ¼ �Km

L
x2 �

H

L
x3 þ

1

L
qu

� �

dtþ g3ðx1; x2; x3Þdw

y¼ x1

8
>>>>>>>><

>>>>>>>>:

here f1(x1) = 0, f2ðx1; x2Þ ¼ � N
D

sinðx1Þ � B
D
x2 and

f3ðx1; x2; x3Þ ¼ � Km

L
x2 � H

L
x3, g1ðx1; x2; x3Þ ¼ x1

�

1 þ x2
1, g2ðx1; x2; x3Þ ¼ cosðx2Þ, g3ðx1; x2; x3Þ ¼ cosðx3Þ,

and _wðtÞ is assumed to be the Gaussian white noise with

zero mean and variance 1.0.

The parameters in the hysteretic quantized input (2) are

selected as a = 0.8, umin = 0.4, and the reference signal is

assumed to be yr = sin(t).

Define fuzzy membership function as follows:

lFl
1
x̂1ð Þ ¼ exp � x̂1 � 6 þ 2lð Þ2

4

" #

;

lFl
2
x̂2ð Þ ¼ exp � x̂2 � 6 þ 2lð Þ2

4

" #

lFl
3
x̂3ð Þ ¼ exp � x̂3 � 6 þ 2lð Þ2

4

" #

; l ¼ 1; . . .; 5

:

Fig. 7 The trajectories of x2 (black line) of Case 1 and red line of

Case 2

Fig. 6 The trajectories of y (black line) of Case 1 and red line of

Case 2

Fig. 8 Schematic of electromechanical system
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we can construct the fuzzy logic systems hT
2u2 x̂2ð Þ ¼

P5

j¼1

hT
2ju2j x̂2ð Þ and hT

3u3 x̂3ð Þ ¼
P5

j¼1

hT
3ju3j x̂3ð Þ in terms of

[26], where hT
2 ¼ h21; h22; h23; h24; h25½ � and

hT
3 ¼ h31; h32; h33; h34; h35½ �.

Choose observer gain vector K ¼ ½k1; k2; k3�T ¼
½14; 14; 14�T so that the matrix A is a strict Hurwitz.

Construct the fuzzy state observer as follows:

_̂x1 ¼ x̂2 þ k1 y� x̂1ð Þ

_̂x2 ¼ 1

D
x̂3 þ hT

2u2 x̂2ð Þ þ k2 y� x̂1ð Þ

_̂x3 ¼ 1

L
DðuÞuþ hT

3u3 x̂3ð Þ þ k3 y� x̂1ð Þ

ŷ ¼ x̂1

8
>>>>>>><

>>>>>>>:

Let b1 = 0.9, b2 = 0.9, b3 = 0.9, and construct the serial–

parallel estimation models.

_̂
x̂1 ¼ x̂2 þ b1 x̂1 � ^̂x1

� �
; ^̂x1ð0Þ ¼ x̂1ð0Þ

_̂
x̂2 ¼ 1

D
x̂3 þ hT

2u2 x̂2ð Þ þ b2 x̂2 � ^̂x2

� �
; ^̂x2ð0Þ ¼ x̂2ð0Þ

_̂
x̂3 ¼ 1

L
DðuÞuþ hT

3u3 x̂3ð Þ þ b3 x̂3 � ^̂x3

� �
; ^̂x3ð0Þ ¼ x̂3ð0Þ

:

Determine the virtual control function x̂2;d, x̂3;d, controller

u, adaptive laws of parameter h1, h2, and h3, and the first-

order filter as follows:

x̂2;d ¼ �c1S1 þ _yr; ð70Þ

x̂3;d ¼ �c2S2 � hT
2u2ðx2Þ � S1 þ _̂x2;c � k2 y� x̂1ð Þ

� g2 tanh
v3

2g2

1

� 

; ð71Þ

u ¼ 1

1 � a

�

�c3S3 � hT
3u3 x̂3ð Þ � S2 þ _̂x3;c

� k3 y� x̂1ð Þ � g3 tanh
v3

3g3

1

�

;

ð72Þ

_h2 ¼ c2 v2 þ
d2

�c2

� 

u2 x̂2ð Þ � r2h2; ð73Þ

_h3 ¼ c3 v3 þ
d3

�c3

� 

u3 x̂3ð Þ � r3h3; ð74Þ

s2
_̂x2;c þ x̂2;c ¼ x̂2;d; x̂2;cð0Þ ¼ x̂2;dð0Þ; ð75Þ

s3
_̂x3;c þ x̂3;c ¼ x̂3;d; x̂3;cð0Þ ¼ x̂3;dð0Þ: ð76Þ

The design parameters in (70)–(76) are chosen as

c1 = 7, c2 = 7, c3 = 7, s2 = 0.1, s3 = 0.1, c1 = 10,

c2 = 10, c3 = 10, c1 = 0.01, c2 = 0.01, c3 = 0.01,

r1 = r2 = r3 = 70, g2 = 0.02, g3 = 0.02, and 1 = 0.8.

Fig. 9 The trajectories of y (black line) and yr (red line)

Fig. 10 The trajectories of state x1 (black line) the state x2 (red line)

and the state x3 (blue line)

Fig. 11 The trajectories of u (black line) and q(u) (red line)
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The initial conditions are chosen as x1(0) = 0.1,

x2(0) = 0.2, and the others initial values are chosen zero.

The simulation results are shown in Figs. 9, 10, and 11,

where Fig. 9 shows the trajectories of output y and yr;

Fig. 10 shows the trajectories of states xi i = 1, 2, 3;

Fig. 11 shows the trajectories of u and q(u).

From the simulation results in Examples 1 and 2, we

know that the proposed control method can guarantee that

all the variables are bounded. Moreover, the output can

track the bounded reference signal yr.

7 Conclusions

In this paper, a composite adaptive fuzzy output feedback

dynamic surface control approach has been developed for a

class of uncertain stochastic nonlinear systems with hys-

teretic quantized input and without assuming the states

being available for measurement. A hysteretic-type quan-

tizer has been studied to avoid chattering. Fuzzy logic

system has been used to approximate the unknown non-

linear functions, and a fuzzy state observer has been

designed to estimate the unmeasured states. Based on the

backstepping dynamic surface control design technique, a

new fuzzy controller with the composite parameter adap-

tive laws has been developed. The proposed control

method can not only solve the problems of states unmea-

sured and ‘‘explosion of complexity,’’ but solves the

problem of the hysteretic quantized. It has been proven that

all the variables of the closed-loop system are bounded in

probability, and tracking error converges to a small

neighborhood of zero. Although, this paper has made some

achievements, the proposed control strategy has a disad-

vantage, i.e., the virtual control gains of the controlled

system are ‘‘1.’’ If the virtual control gains are unknown

nonlinear functions, then the proposed control method can

not be applied. This also is our future research.
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