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Abstract A new definition of a fuzzy lattice ( L-E-fuzzy

lattice) as a particular fuzzy algebraic structure is intro-

duced in the framework of fuzzy equalities and fuzzy

identities. The membership values structure is a complete

lattice. An L-E-fuzzy lattice is defined on a bi-groupoid M,

as its fuzzy sub-bi-groupoid l equipped with a fuzzy

equality E, fulfilling fuzzy lattice identities. It is proved

that the new notion is a generalization of known lattice-

valued structures. Basic properties of the introduced new

fuzzy lattices are presented. In particular, it is proved that

the quotients of cuts of l over the corresponding cuts of

E are classical lattices. By a suitable example, it is shown

how the new introduced structures can be applied.
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1 Introduction

The topic of this research is fuzzy lattice investigated in the

framework of (a) lattice-valued structures, (b) fuzzy

equality and (c) fuzzy identities.

(a) Lattice-valued structures in which the unit interval is

replaced by a complete lattice date from Goguen’s

paper [1]. This approach is widely used for dealing

with fuzzy algebraic topics (see e.g. [2], then also [3,

4]), and with the fuzzy topology (starting with [5]

and many others). In the recent decades, a complete

lattice is often replaced by a complete residuated

lattice [6]. Our approach uses complete lattice, since

it allows cutworthy [7] investigations of main

algebraic properties.

(b) A fuzzy equality generalizing the crisp one has been

introduced in fuzzy mathematics by Höhle in [8],

and then it was used in investigations of fuzzy

functions and fuzzy algebraic structures by many

authors, in particular by Demirci [9], Bělohlávek and

V. Vychodil [10] and others.

(c) Fuzzy identities were introduced in [11], and then

developed in [12, 13]. These are lattice-theoretic

formulas fuzzifying classical identities.

From the above mentioned aspects, we investigate fuzzy

lattices. In [14], anL-valued fuzzy latticewas introduced both,

as a lattice-valued fuzzy set on a lattice, and as a special L-

valued fuzzy poset. Two definitions were proved to be

equivalent, as in the classical case. Later, there were several

further approaches to fuzzy lattices. Some of them were

connected to fuzzy formal concept analysis (see [6]); there

were also some recent investigations of fuzzy (complete)

lattices [15, 16]. In particular, in a series of papers [9, 17, 18],

Demirci investigates fuzzy equality, and in this framework

fuzzy functions and fuzzy lattices as ordering structures. Our

approach proposed in this paper is also based on a fuzzy

equality instead of a crisp one; however, we use fuzzy iden-

tities, hence introducing a fuzzy lattice as a fuzzy algebra. In

this way, our structure is more general than the classical fuzzy
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lattices [14, 19], since it covers the previous definitions. In our

case, a fuzzy lattice is defined on a crisp bi-groupoid, and it is

equippedwith a fuzzy equalitywhich is a fuzzy relationon this

fuzzy structure, hence fulfillingparticular reflexivity property.

In this framework, we introduce fuzzy lattice identities.

Namely, an L-E-fuzzy lattice on a bi-groupoid M, is a fuzzy

sub-bi-groupoid l of M equipped with a fuzzy equality E,

fulfilling fuzzy lattice identities. Basic properties of these new

fuzzy lattices are presented. In particular, it is proved that the

quotient structures obtained by cuts of l over the corre-

sponding cuts of E are classical lattices.

1.1 Organization of the Paper

In the preliminary section, we review algebraic and lattice-

theoretic notions, and we recall a fuzzy framework in

which we define a fuzzy lattice.

The subsequent section contains the main results of the

paper. We start with an algebra M with two binary oper-

ations (a bi-groupoid) and a fuzzy subalgebra l of M,

where the membership values structure is a complete lattice

L. We also equip l with an L-valued equality E, which is

compatible with the operations in M. Then, using E instead

of the classical equality, we introduce L-valued identities

which are fuzzified identities analogous to the ones defin-

ing the lattice in the classical algebra. In this way, we

obtain the structure (M, l, E), which we call an L-E-fuzzy

lattice. We prove that idempotency holds for both opera-

tions in the fuzzy framework, and also that the bi-groupoid

M has to fulfil the same (crisp) property.

We also present a simple suitable example, and in

concluding remarks we indicate some topics for future

investigations.

2 Preliminaries

2.1 Lattices, Fuzzy Sets

Here, we fuzzify a lattice as an algebraic structure, which

is known to be an algebra ðM;^;_Þ with two binary

operations, both commutative, associative and fulfilling

absorbtion laws: x ^ ðx _ yÞ ¼ x, and x _ ðx ^ yÞ ¼ x. An

ordering relation can be defined onM by x 6 y if x ^ y ¼ x.

Equivalently, a lattice is an ordered set ðM;6Þ in which the

greatest lower bound (infimum) and the least upper bound

(supremum) exist for every two-element subset fx; yg. As it
is known, infimum and supremum can be considered as

binary operations in ðM;6Þ, fulfilling the above mentioned

properties of ^ and _; conversely x ^ y and x _ y are

respectively infimum and supremum of x and y in

ðM;^;_Þ, with respect to the corresponding order.

Next, we introduce the membership values structure for

fuzzy notions. This is a complete lattice, i.e. a structure

ðL;^;_;6Þ; where 6 is an ordering relation on a none-

mpty set L, such that for every subset there is an infimum

(meet, greatest lower bound—glb) and a supremum (join,

least upper bound—lub). Infimum and supremum of an

arbitrary family fpi j i 2 Ig of elements from L are denoted

by
V

i2I pi and
W

i2I pi, respectively. Every complete lattice

possesses the smallest element, the bottom, 0, and the

greatest element, the top, 1.

Remark 1 In this research, both, the domain and the co-

domain of fuzzy structures are algebraic structures with two

binary operations, since we introduce fuzzy i.e. lattice-valued

lattices. The operations in these two lattices are denoted in the

same way. A confusion could not arise, since the context

determines the lattice in which the operations are used.

A fuzzy set l on a nonempty set A (or a fuzzy subset of

A) is a function l : A ! L, where L is a complete lattice. In

the present framework the adjective fuzzy has the same

meaning as lattice valued.

For p 2 L, a cut set or a p-cut of a fuzzy set l : A ! L is

a subset lp of A which is the inverse image of the principal

filter in L, generated by p:

lp ¼ fx 2 X j lðxÞ > pg:

A fuzzy (binary) relation q on A is a fuzzy set on A2, i.e. it

is a mapping q : A2 ! L.

Let l : A ! L be a fuzzy set on A and let q : A2 ! L be

a fuzzy relation on A. If for all x; y 2 A, q satisfies

qðx; yÞ 6 lðxÞ ^ lðyÞ; ð1Þ

then we say that q is a fuzzy relation on l (see e.g. [20]).

Let q be a fuzzy relation on a fuzzy set l of A.

q is reflexive if qðx; xÞ ¼ lðxÞ for every x 2 A: ð2Þ

Observe that by (1 and 2), for a reflexive relation q on l we

have that for all x; y 2 A

qðx; yÞ 6 qðx; xÞ and qðy; xÞ 6 qðx; xÞ:
q is symmetric if qðx; yÞ ¼ qðy; xÞ for all x; y 2 A;

ð3Þ

q is transitive if qðx; zÞ ^ qðz; yÞ 6 qðx; yÞ for all

x; y; z 2 A: ð4Þ

A reflexive, symmetric and transitive relation q on l is a

fuzzy equivalence on l.
A fuzzy equivalence relation q on l, fulfilling for all

x; y 2 A, x 6¼ y :

if qðx; xÞ 6¼ 0; then qðx; yÞ\qðx; xÞ; ð5Þ

is called a fuzzy equality relation on a fuzzy set l.
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2.2 Fuzzy Subalgebras, Fuzzy Identities

If A ¼ ðA;FÞ is an algebra, i.e. a nonempty set equipped

with operations, then as it is known, a fuzzy subalgebra of

A is any mapping l : A ! L which is not constantly equal

to 0, and which fulfils the following: For any operation f

from F with arity greater than 0, f : An ! A; n 2 N, and for

all a1; . . .; an 2 A, we have that

n̂

i¼1

lðaiÞ 6 lðf ða1; . . .; anÞÞ; ð6Þ

and for a nullary operation (constant) c 2 F, lðcÞ ¼ 1.

Next, we formulate a fuzzy version of a known property

of term operations in universal algebra (the proof follows

by induction on the complexity of terms).

Proposition 1 Let l : A ! L be a fuzzy subalgebra of an

algebra A and let tðx1; . . .; xnÞ be a term in the language of

A. If tA is the corresponding term-operation on A and

a1; . . .; an 2 A, then the following holds:

n̂

i¼1

lðaiÞ 6 lðtAða1; . . .; anÞÞ:

Let A ¼ ðA;FÞ be an algebra. A fuzzy relation q : A2 !
L is compatible with the operations in F if the following

holds: for every n-ary operation f 2 F and for all

a1; . . .; an; b1; . . .; bn 2 A

n̂

i¼1

qðai; biÞ 6 qðf ða1; . . .; anÞ; f ðb1; . . .; bnÞÞ; ð7Þ

and

qðc; cÞ ¼ 1 for every constant (nullary operation)

c 2 F:
ð8Þ

If q is a fuzzy relation on fuzzy subalgebra l of A, then

we say that it is compatible on l if it is compatible with

the operations in F, i.e. if (7) and (8) hold.

The following topics are introduced in [21] (see also [11,

13]). A compatible fuzzy equivalence on l is a fuzzy con-

gruence on this fuzzy subalgebra. A fuzzy equality on a

fuzzy subalgebra l is a fuzzy congruence on l, fulfilling (5).
If uðx1; . . .; xnÞ and vðx1; . . .; xnÞ are terms in the lan-

guage of an algebra A, where variables appearing in these

terms are among x1; . . .; xn, and E is a binary relational

symbol, we say that the expression

Eðuðx1; . . .; xnÞ; vðx1; . . .; xnÞÞ

is a fuzzy identity. Then, a fuzzy subalgebra l of A sat-

isfies a fuzzy identity E(u, v) (or, a fuzzy identity is valid

on a fuzzy subalgebra l) with respect to fuzzy equality El

on l, if the following condition is fulfilled for all

a1; . . .; an 2 A and the term operations uA and vA on A
corresponding to terms u and v, respectively:

n̂

i¼1

lðaiÞ 6 ElðuAða1; . . .; anÞ; vAða1; . . .; anÞÞ: ð9Þ

In other words, a fuzzy identity E(u, v) is valid on a

fuzzy subalgebra l of A with respect to El, if for any

valuation replacing variables with elements from A,

inequality (9) holds in lattice L.

The fact that a fuzzy subalgebra l of an algebra A fulfils

a fuzzy identity E(u, v), does not imply that the crisp

identity u = v holds on A. However, the converse does hold

and we prove it in the sequel.

Proposition 2 Let u = v be an identity which holds on an

algebra A. If l : A ! L is a fuzzy subalgebra on A, and El

a fuzzy equality on l, then the fuzzy identity E(u, v) is

satisfied on l with respect to El.

Proof Suppose that x1; x2; . . .; xn are variables appearing

in terms u, v. If u = v holds on A, then by (2) and by

Proposition 1, for any a1; . . .; an 2 A;

ElðuAða1; . . .; anÞ; vAða1; . . .; anÞÞ ¼ lðuAða1; . . .; anÞÞ
> lða1Þ ^ . . . ^ lðanÞ:

3 Results

In order to define a new concept of a fuzzy lattice, we start

from an algebra with two binary operations ðM;^;_Þ
without any additional conditions. This algebra is called a

bi-groupoid. In this context and in connection with pre-

vious concepts, a fuzzy bi-groupoid is a fuzzy set l : M !
L satisfying for all x; y 2 M,

lðxÞ ^ lðyÞ 6 lðx ^ yÞ and lðxÞ ^ lðyÞ 6 lðx _ yÞ:

Let E : M2 ! L be a fuzzy equality on l which is also

compatible with operations ^ and _ in the following sense:

Eðx; yÞ ^ Eðz; tÞ 6 Eðx ^ z; y ^ tÞ and Eðx; yÞ ^ Eðz; tÞ
6 Eðx _ z; y _ tÞ:

Remark 2 In order to simplify notation, we omit the up-

script (as in the previous section), i.e. instead of El, we

write E, for the fuzzy equality on l.

Then we say that M ¼ ðM; l;EÞ is an L-E-fuzzy lattice

if the following six formulas are satisfied:

lðxÞ ^ lðyÞ 6 Eðx ^ y; y ^ xÞ commutative law; ð10Þ
lðxÞ ^ lðyÞ 6 Eðx _ y; y _ xÞ commutative law; ð11Þ

368 International Journal of Fuzzy Systems, Vol. 17, No. 3, September 2015

123



lðxÞ ^ lðyÞ ^ lðzÞ 6 Eððx ^ yÞ ^ z; x ^ ðy ^ zÞÞ
associative law; ð12Þ

lðxÞ ^ lðyÞ ^ lðzÞ 6 Eððx _ yÞ _ z; x _ ðy _ zÞÞ
associative law; ð13Þ

lðxÞ ^ lðyÞ 6 Eððx ^ yÞ _ x; xÞ absorptive law; ð14Þ
lðxÞ ^ lðyÞ 6 Eððx _ yÞ ^ x; xÞ absorptive law ð15Þ

Clearly, the above formulas are fuzzy identities, as they are

defined in Section 2.2.

Lemma 1 If (M, l, E) is an L-E-fuzzy lattice, then the

following is satisfied:

lðxÞ ^ lðyÞ 6 Eððy ^ xÞ _ x; xÞ; ð16Þ
lðxÞ ^ lðyÞ 6 Eððy _ xÞ ^ x; xÞ: ð17Þ

Proof By compatibility and (10), we have that

lðxÞ ^ lðyÞ 6 Eðx ^ y; y ^ xÞ ^ Eðx; xÞ
6 Eððx ^ yÞ _ x; ðy ^ xÞ _ xÞ:

By (14), symmetry and transitivity of E,

lðxÞ ^ lðyÞ 6 Eððx ^ yÞ _ x; ðy ^ xÞ _ xÞ ^ Eððx ^ yÞ _ x; xÞ
6 Eððy ^ xÞ _ x; xÞ:

(17) is proved dually.

Proposition 3 Let ðM; l;EÞ be an L-E-fuzzy lattice,

Then, the idempotent laws lðxÞ 6 Eðx ^ x; xÞ and lðxÞ 6
Eðx _ x; xÞ are valid.

Proof By the absorptive law (15) taking y ¼ x, and using

the fact that E is a reflexive relation on l, we have that

lðxÞ 6 Eððx _ xÞ ^ x; xÞ ^ Eðx; xÞ:

Now, by the fact that E is a compatible relation, we obtain

Eðx; xÞ ^ Eððx _ xÞ ^ x; xÞ 6 Eðððx _ xÞ ^ xÞ _ x; x _ xÞ:

Hence, we have that

lðxÞ 6 Eðððx _ xÞ ^ xÞ _ x; x _ xÞ:

By (16) from Lemma 1, taking y ¼ x _ x, it follows that

lðxÞ 6 Eðððx _ xÞ ^ xÞ _ x; xÞ

Further, by symmetry and transitivity of E, we have that

lðxÞ 6 Eðððx _ xÞ ^ xÞ _ x; xÞ ^ Eðððx _ xÞ ^ xÞ _ x; x _ xÞ
6 Eðx _ x; xÞ:

Hence, lðxÞ 6 Eðx _ x; xÞ, which means that one of the

idempotent laws is valid. The validity of the other law is

proved analogously.

Next we prove that the idempotency in the fuzzy

framework implies that the analogue crisp identity should

be satisfied by the bi-groupoid on which an L-E-fuzzy

lattice is defined.

Proposition 4 The idempotent law lðxÞ 6 Eðx ^ x; xÞ is

valid in an L-E-fuzzy lattice (M, l, E) if and only if operation
^ is idempotent in bi-groupoid ðM;^;_Þ, and analogously

lðxÞ 6 Eðx _ x; xÞ is valid if and only if _ is idempotent.

Proof Suppose that the idempotent law lðxÞ 6 Eðx ^
x; xÞ is valid. Since Eðx ^ x; xÞ 6 Eðx; xÞ ¼ lðxÞ, we have

that Eðx ^ x; xÞ ¼ lðxÞ. By the definition of the fuzzy

equality, we have that x ^ x ¼ x. To prove the converse, if

x ^ x ¼ x, then Eðx ^ x; xÞ ¼ lðxÞ, and lðxÞ 6 Eðx ^ x; xÞ
is valid. Another part is proved analogously.

By the known definition (see [14]), a fuzzy lattice of a

lattice ðM;^;_Þ is a mapping l : M ! L, fulfilling

lðxÞ ^ lðyÞ 6 lðx ^ yÞ and lðxÞ ^ lðyÞ 6 lðx _ yÞ:

In the following, we prove that a fuzzy lattice of a lattice

M, which is equipped with a fuzzy equality E is an L-E-

fuzzy lattice as well. In other words, classical lattice

properties imply fuzzy identities (10),..., (15).

Proposition 5 If ðM;^;_Þ is a lattice, E is a compatible

fuzzy equality, and l : M ! L is a fuzzy lattice, then (M, l,
E) is an L-E-fuzzy lattice.

Proof Since ðM;^;_Þ is a lattice, we have that all the

lattice identities holds. Since, x ^ y ¼ y ^ x, and since E is

a fuzzy equality, we have that Eðx ^ y; y ^ xÞ ¼ lðx ^ yÞ.
Since l is a fuzzy lattice, we have that lðx ^ yÞ > lðxÞ

^lðyÞ, hence, lðxÞ ^ lðyÞ 6 Eðx ^ y; y ^ xÞ. The proof for

other five laws is analogous. h

The converse of Proposition 5 is not true, since not all L-

E-fuzzy lattices are L-valued fuzzy lattices in the sense of

[14]. This is illustrated by the following example present-

ing an L-E-fuzzy lattice, which is not a fuzzy lattice in the

classical sense.

Example 1 Let M ¼ fa; b; cg, let ðM;^;_Þ be a three-

element bi-groupoid given in Tables 1 and 2, and let L be a

lattice in Figure 1.

Let l : M ! L be a fuzzy bi-groupoid of M, given by:

lðxÞ ¼ a b c

p q r

� �

:

A fuzzy equality on l is given in Table 3.

Table 1 Bi-groupoid M

^ a b c

a a a a

b a b b

c a c c
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Now, we can see that the commutative laws for both

operations in the bi-groupoid are not satisfied, neither are the

absorptive laws, since e.g.b ^ ða _ bÞ ¼ a 6¼ bTables 1 and2.

However, it is easy to check that (M, l, E) is an L-E-

fuzzy lattice.

Hence, (M, l, E) is not a fuzzy lattice by the classical

definition, but it is an L-E fuzzy lattice.

The following theorem presents a connection of an L-E-

fuzzy lattice (M, l, E) and classical lattices obtained by

cuts of the bi-groupoid M.

Theorem 1 Let l : M ! L be a fuzzy set on a bi-

groupoid ðM;^;_Þ and let E be a fuzzy equality on l.
Then, (M, l, E) is an L-E-fuzzy lattice if and only if for

every p 2 L, cut lp is a subalgebra (sub-bi-groupoid) of M,

the cut relation Ep is a congruence on lp and a quotient

structure lp=Ep is a lattice.

Proof Let l : M ! L be a fuzzy set on a bi-groupoid

M and let E be a fuzzy equality on l, such that (M, l, E) is
an L-E-fuzzy lattice. Since E is compatible with the oper-

ations on bi-groupoid l, we have that lðxÞ ^ lðyÞ 6
lðx ^ yÞ and lðxÞ ^ lðyÞ 6 lðx _ yÞ. Now, we prove that

the cut lp is closed under operations _ and ^. Let x; y 2 lp,
i.e. let lðxÞ > p and lðyÞ > p. We have that p 6 lðxÞ ^
lðyÞ 6 lðx ^ yÞ and p 6 lðxÞ ^ lðyÞ 6 lðx _ yÞ, hence

x ^ y 2 lp and x _ y 2 lp.
Therefore, lp is a subalgebra of ðM;^;_Þ.
Now, we prove that Ep is a congruence relation on lp.

First, we prove that Ep is an equivalence relation on lp.
Reflexivity: ðx; xÞ 2 Ep if and only if Eðx; xÞ ¼ lðxÞ > p, if

and only if x 2 lp. Symmetry and transitivity are proved

straightforwardly. Finally, we prove that Ep is compatible

with the operations in lp. We take x; y; u; v 2 lp, and

suppose that ðx; yÞ; ðu; vÞ 2 Ep. Then Eðx; yÞ > p and

Eðu; vÞ > p. Now, we have that

Eðx ^ u; y ^ vÞ > Eðx; yÞ ^ Eðu; vÞ > p;

i.e. ðx ^ u; y ^ vÞ 2 Ep. Analogously we prove that Ep is

compatible with operation _.
Now, we consider the quotient set of lp over Ep, lp=Ep.

We denote operations on congruence classes in the same way

as operations on ðM;^;_Þ, namely with ^ and _ (these

operations can be always distinguished from the context). We

define these operations in a natural way (by class represen-

tatives) and it is easy to prove that they are well defined. Now,

ðlp=Ep;^;_Þ is a bi-groupoid. We prove that this bi-

groupoid is a lattice. Let ½x�Ep
; ½y�Ep

; ½z�Ep
be three elements

from lp=Ep. We have to prove six lattice axioms.

For x; y 2 lp, we have

Eðx ^ y; y ^ xÞ > lðxÞ ^ lðyÞ > p;

hence ðx ^ y; y ^ xÞ 2 Ep: Therefore, for x; y 2 lp, we have
that

½x�Ep
^ ½y�Ep

¼ ½x ^ y�Ep
¼ ½y ^ x�Ep

¼ ½y�Ep
^ ½x�Ep

;

so we proved that the operation ^ in Mp=Ep is

commutative.

Similarly, we prove all six lattice axioms, and Mp=Ep is

a lattice.

Conversely, suppose that for every p from L, the cut lp
is a sub-bi-groupoid of M, the cut relation Ep is a

congruence on lp and a quotient structure lp=Ep is a

lattice. Now, we would like to prove that ðM; l;EÞ is an L-

E-fuzzy lattice, i.e. that six axioms for the fuzzy lattice

hold. We will prove one of them, and others are proved

analogously. We prove the absorptive law,

lðxÞ ^ lðyÞ 6 Eððx _ yÞ ^ x; xÞ:

Let lðxÞ ^ lðyÞ ¼ p. Then x; y 2 lp. Since lp=Ep is a

lattice by assumption, we have ð½x�Ep
_ ½y�Ep

Þ ^ ½x�Ep
¼

½x�Ep
; hence ½ðx _ yÞ ^ x�Ep

¼ ½x�Ep
; and hence

Eððx _ yÞ ^ x; xÞ > p ¼ lðxÞ ^ lðyÞ:
Next, we deal with the relational aspect of L-E-fuzzy

lattices.

Table 2 Bi-groupoid M

_ a b c

a a a a

b a b c

c a b c

Fig. 1 Lattice L

Table 3 Fuzzy equality

E a b c

a p s s

b s q s

c s s r
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As it is known, in a lattice as an algebra, it is possible to

define the order in the following way: x 6 y if and only if

x ^ y ¼ x.

What is the analogue situation with L-E-fuzzy lattices?

Since we use a fuzzy equality instead of the crisp one, in

the sequel we introduce the notion of an L-E- fuzzy order.

First, we deal with antisymmetry in the framework of a

fuzzy equality.

Let E : A2 ! L be a fuzzy equality over a nonempty set

A. We say that a fuzzy relation q : A2 ! L is E-antisym-

metric, if the following holds:

qðx; yÞ ^ qðy; xÞ 6 Eðx; yÞ; for all x; y 2 A: ð18Þ

Let a : A ! L be a fuzzy set on a nonempty domain

A, and E : A2 ! L a fuzzy equality over a. We say that

ðA; a;EÞ is an L-E-fuzzy structure. The set A in an L-

E-fuzzy structure may be equipped with operations; an

example of such a fuzzy structure is an L-E-fuzzy

lattice.

We say that a fuzzy relation q : A2 ! L on a : A ! L is

an L-E-fuzzy order on L-E-fuzzy structure (A, a, E) , if it
is reflexive in the sense of (2), E-antisymmetric, and

transitive in the sense of (4).

For the main theorem of this part we need the following

lemma.

Lemma 2 Let ðM; l;EÞ be an L-E-fuzzy lattice, and q :

M2 ! L a fuzzy relation on l defined by qðx; yÞ :¼
lðxÞ ^ lðyÞ ^ Eðx ^ y; xÞ. Let p 2 L. Then, for x; y 2 lp
and ½x�Ep

; ½y�Ep
2 lp=Ep,

½x�Ep
6 ½y�Ep

if and only if qðx; yÞ > p:

Proof By Theorem 1, lp=Ep is a lattice, hence ½x�Ep
6

½y�Ep
if and only if ½x�Ep

^ ½y�Ep
¼ ½x�Ep

if and only if ½x ^ y�Ep
¼ ½x�Ep

if and only if ðx ^ y;

xÞ 2 Ep

if and only if Eðx ^ y; xÞ > p if and only if qðx; yÞ > p,

since

lðxÞ > p and lðyÞ > p. h

Theorem 2 If M ¼ ðM; l;EÞ is an L-E-fuzzy lattice,

then a fuzzy relation q : M2 ! L, such that qðx; yÞ :¼
lðxÞ ^ lðyÞ ^ Eðx ^ y; xÞ is an L-E-fuzzy order on M.

Proof By the definition, q is a fuzzy relation on l.
To prove the reflexivity, we note that qðx; xÞ ¼ lðxÞ^

Eðx ^ x; xÞ ¼ lðxÞ ^ Eðx; xÞ ¼ lðxÞ:
We prove that q is E-antisymmetric, i.e. that the formula

qðx; yÞ ^ qðy; xÞ 6 Eðx; yÞ holds for all x; y 2 M. Indeed,

suppose qðx; yÞ ^ qðy; xÞ ¼ p 2 L. Then, by the definition

of q, lðxÞ > p and lðyÞ > p, hence x; y 2 lp. Further by

qðx; yÞ > p and qðy; xÞ > p,

by Lemma 2, we have also ½x�Ep
6 ½y�Ep

, and ½y�Ep
6

½x�Ep
. Hence ½x�Ep

¼ ½y�Ep
, i.e. ðx; yÞ 2 Ep, or equivalently,

Eðx; yÞ > p. Therefore, qðx; yÞ ^ qðy; xÞ 6 Eðx; yÞ:
In order to prove transitivity, we prove that all the cuts

of relation q are transitive as ordinary relations on the

corresponding cuts of l. Let p 2 L. Now, suppose that

ðx; yÞ 2 qp and ðy; zÞ 2 qp. By the definition of q, this

means that x; y; z 2 lp, ðx ^ y; xÞ 2 Ep and ðy ^ z; yÞ 2 Ep.

By ðz; zÞ 2 Ep and ðx ^ y; xÞ 2 Ep, we have that

ððx ^ yÞ ^ z; x ^ zÞ 2 Ep. On the other hand, from ðx; xÞ 2
Ep and ðy ^ z; yÞ 2 Ep, we have that ðx ^ ðy ^ zÞ;
x ^ yÞ 2 Ep. By transitivity of Ep and ðx ^ ðy ^ zÞ; ðx ^
yÞ ^ zÞ 2 Ep (which follows by Theorem 1), we have that

ðx ^ y; x ^ zÞ 2 Ep. By ðx ^ y; xÞ 2 Ep, and transitivity

again, we have that ðx ^ z; xÞ 2 Ep, hence ðx; zÞ 2 qp.
Therefore, all the cuts are transitive relations.

Now, we have to prove that from transitivity of all the

cuts, it follows that also fuzzy relation q is transitive.

Let qðx; yÞ ^ qðy; zÞ ¼ p. By qðx; yÞ ^ qðy; zÞ ¼ p, it

follows that qðx; yÞ > p and qðy; zÞ > p., i.e. ðx; yÞ 2 qp
and ðy; zÞ 2 qp. Since qp is a transitive relation, we have

that ðx; zÞ 2 qp, hence qðx; zÞ > p ¼ qðx; yÞ ^ qðy; zÞ. h

4 Application

As it is known, lattices appear in many mathematical

branches (algebraic and ordering structures, vector spaces,

topology, etc.) and consequently in applications of these

fields. Let us mention the whole digital informatics which

uses Boolean lattices, then Quantum Structures which are

based on algebras derived from lattices [22], and also

Formal Concept Analysis [23], having an impressive

application in social sciences and related fields. In all

mentioned disciplines also fuzzy logic has an important

role [6] e.g., fuzzy relational equations are widely applied

in connection to fuzzy control.

Fuzzy lattices have already been introduced and inves-

tigated [14, 16–19]. Why do we introduce this new con-

cept? Our main reason is a fuzzy approach to identities. By

this concept, our L-E-fuzzy lattice is defined on a weaker

structure (idempotent bi-groupoid), hence it could be

applied to many situations arising in real life problems.

Moreover, by Proposition 5, the classical fuzzy lattice [14,

19] is a special case of our L-E-fuzzy lattice.

As an example of an application, consider a set A ¼
fa; b; c; d; e; f ; g; 1; hg of, say, members of some unit in a

company, or enterprize. By ten different tasks,T1; . . .; T10 that

are performed by some of people from A, each of members of

A is connected to other members of the unit, as follows:
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Clearly, for some task a single member of A is responsible,

some are performed by several members; these groups form a

collection of subsets of A, completed by the empty set; we

denote them by x0; x1; . . .; x10, as follows: x0 ¼ ;; x1 ¼
fa; hg; x2 ¼ fa; b; hg; x3 ¼ fe; hg; x4 ¼ fc; e; hg; x5 ¼
fd; e; hg; x6 ¼ fc; d; e; f ; hg; x7 ¼ fc; d; e; g; 1; hg; x8 ¼
fc; d; e; f ; g; 1; hg; x9 ¼ fa; b; c; d; e; f ; g; 1:hg; x10 ¼ fhg.

For analysing inter-relations among members and

groups, or among groups and several tasks, it is convenient

to organize these groups structurally. Then, using set-in-

tersection and set-union together with the lexicographic

order where intersection and union are not closed within

the sets of performers of tasks, we obtain the following

tables of two binary operations ^ and _ over the set

F ¼ fx0; x1; . . .; x10g:

^ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0

x1 x0 x1 x1 x10 x10 x10 x10 x10 x10 x1 x10

x2 x0 x1 x2 x0 x10 x10 x10 x10 x10 x2 x10

x3 x0 x10 x10 x3 x3 x3 x3 x3 x3 x3 x10

x4 x0 x10 x10 x3 x4 x3 x4 x4 x4 x4 x10

x5 x0 x10 x10 x3 x3 x5 x5 x5 x5 x5 x10

x6 x0 x10 x10 x3 x4 x5 x6 x4 x6 x6 x10

x7 x0 x10 x10 x3 x4 x5 x4 x7 x7 x7 x10

x8 x0 x0 x0 x3 x4 x5 x6 x7 x8 x8 x10

x9 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x10 x0 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10

_ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x1 x1 x2 x9 x9 x9 x9 x9 x9 x9 x1

x2 x2 x2 x2 x9 x9 x9 x9 x9 x9 x9 x2

x3 x3 x9 x9 x3 x4 x5 x6 x7 x8 x9 x3

x4 x4 x9 x9 x4 x4 x6 x6 x7 x8 x9 x4

x5 x5 x9 x9 x5 x6 x5 x6 x7 x8 x9 x5

x6 x6 x9 x9 x6 x6 x6 x6 x8 x8 x9 x6

x7 x7 x9 x9 x7 x7 x7 x8 x7 x8 x9 x7

x8 x8 x9 x9 x8 x8 x8 x8 x8 x8 x9 x8

x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9

x10 x10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Specific various priorities concerning tasks (like e.g.

relevance to the company, importance, etc.) are ordered as

a lattice L ¼ f1; p; q; r1; r2; r3; r4; r5; r6; s; t; v;w; z; 0g in

Figure 2 (where an element in the lattice is greater i.e.

higher in the diagram, if it corresponds to a higher priority).

According to the assigned priorities, the collection F of

groups can be considered as a fuzzy set:

l ¼
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

p q q r1 r2 r3 r4 r5 r6 s p

� �

:

Finally, inter-relations among groups, according to the

same priorities of assigned tasks, are presented as a fuzzy

equality, given in the table.

E x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 p 0 0 0 0 0 0 0 0 0 z

x1 0 q t 0 0 0 0 0 0 0 0

x2 0 t q 0 0 0 0 0 0 0 0

x3 0 0 0 r1 w w w z z 0 0

x4 0 0 0 w r2 w w z z 0 0

x5 0 0 0 w w r3 w z z 0 0

x6 0 0 0 w w w r4 z z 0 0

x7 0 0 0 z z z z r5 v 0 0

x8 0 0 0 z z z z v r6 0 0

x9 0 0 0 0 0 0 0 0 0 s 0

x10 z 0 0 0 0 0 0 0 0 0 p

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

a, h a, b, h e, h c, e, h d, e, h c, d, e, f, h c, d, e, g, h c, d, e, f, g, h A h

Fig. 2 Lattice L
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Now, the collection F is under the operations ^ and _
an idempotent bi-groupoid, l is a fuzzy sub(bi)groupoid of

F , and E is an L-fuzzy equality on F . Moreover, formulas

(axioms) (10)–(15) are satisfied. These can be checked

straightforwardly. Therefore, ðF ; l;EÞ is an L-E-fuzzy

lattice, where the co-domain lattice L is given in Figure 2.

Applying Theorem 1, it is possible to get answers to

queries about groups and their connections with respect to

criteria given in the lattice L. E.g. criterion z organize

groups into a four-element Boolean lattice, consisting of

sets fx0; x10g, fx1; x2g, fx3; . . .; x8g and fx9g; this structure
is obtained as a cut-structure lz=Ez. Similarly, lq=Eq is a

two-element lattice fx1g; fx2g, etc.

5 Conclusion

Using fuzzy identities and a fuzzy equality instead of the

corresponding classical notions, we have introduced L-E-

fuzzy lattices and investigated their basic properties. There

are many important lattice-theoretic properties that could

still be investigated in this framework (e.g. distributive

lattices, concept lattices). In addition, applications of this

concept could be developed in several fields (economy,

management, informatics in wider sense, etc.), as indicated

by our example.

Acknowledgments Research supported by Ministry of Education,

Science and Technological Development, Republic of Serbia, Grant

No. 174013 and by the Provincial Secretariat for Science and Tech-

nological Development, Autonomous Province of Vojvodina, Grant

‘‘Ordered structures and applications’’.

References

1. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174
(1967)

2. Di Nola, A., Gerla, G.: Lattice valued algebras. Stochastica 11,
137–150 (1987)
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Branimir Šešelja had gradu-

ated in Mathematics in 1972 at

the Faculty of Sciences Novi

Sad, defended MSc in 1976,

Faculty of Sciences Belgrade

and obtained Ph.D. in 1981 at

the Faculty of Sciences Novi

Sad, both in the field of algebra.

Presently, he is a full-time pro-

fessor at the Department of

Mathematics and Informatics,

Faculty of Sciences, University

of Novi Sad. He is a member of

AMS and IEEE. His research

interests include ordered struc-

tures, universal algebra and algebraic aspects of fuzzy set theory. He

had published more than 140 scientific papers (e.g. in Algebra

Universalis, Order, Discrete Mathematics, Fuzzy Sets and Systems), a

monograph and several university text books. He has delivered more

than 70 lectures at international conferences. He had study visits to
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