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Abstract The aim of this paper is to develop a new

methodology for solving bi-matrix games with payoffs of

Atanassov’s intuitionistic fuzzy (I-fuzzy) numbers. In this

methodology, we define the concepts of I-fuzzy numbers,

the value-index and ambiguity-index, and develop a dif-

ference-index based ranking method. Hereby the parame-

terized non-linear programming models are derived from a

pair of auxiliary I-fuzzy mathematical programming

models, which are used to determine solutions of bi-matrix

games with payoffs represented by I-fuzzy numbers.

Validity and applicability of the models and method pro-

posed in this paper are illustrated with a practical example.

Keywords Atanassov’s intuitionistic fuzzy (I-fuzzy)

number � Fuzzy set � Fuzzy game theory � Mathematical

programming � Fuzzy optimization

1 Introduction

Usually, the bi-matrix games assume that the payoffs are

represented with crisp values, which indicate that the

payoffs are exactly known by players. However, players

often are not able to evaluate exactly the payoffs due to

imprecision or lack of available information in real game

situations [1, 2]. In order to make bi-matrix game theory

more applicable to real competitive decision problems, the

fuzzy set has been used to describe imprecise and uncertain

information appearing in bi-matrix games [3, 4]. The

common feature of these fuzzy games is that fuzziness is

described by the fuzzy set with the membership degree.

The non-membership degree is just automatically equal to

the complement of the membership degree to 1. In reality,

however, players often do not express the non-membership

degree of a given element as the complement of the

membership degree to 1. In other words, players may have

some hesitation degree. The fuzzy set has no means to

incorporate the hesitation degree.

The hesitation degree seems to be suitably expressed with

the intuitionistic fuzzy (I-fuzzy) set [5]. The I-fuzzy set is of

use in matrix game modelling due to the fact that in some

situations players may describe their negative feelings, i.e.

the degrees of dissatisfaction on the outcomes of the games.

On the other hand, players could only approximately esti-

mate their payoffs with some hesitation degrees. But it is

possible that players are not so sure about them. Thus, the

I-fuzzy set may provide players a natural tool for modelling

such uncertain situations. As far as we know, however, there

exists less investigation on matrix games using the I-fuzzy

set. Dimitrov [6] used the I-fuzzy set to discuss some market

structure problems. His work only involved the simple

representation of game problems using the I-fuzzy set. Using

the similar idea of the fuzzy goals, Nayak and Pal [7] and Li

[8] constructed the linear programming models to solve bi-

matrix games with goals expressed by I-fuzzy sets. Seikh

and Pal [9] applied triangular I-fuzzy numbers to bi-matrix

games. In this paper, we introduce the concepts of general

I-fuzzy numbers and the value-index and ambiguity-index.

Furthermore, we develop a difference-index-based ranking
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method and hereby derive a pair of parameterized non-linear

programming models from the I-fuzzy mathematical pro-

gramming models of bi-matrix games with payoffs repre-

sented by I-fuzzy numbers, which are called I-fuzzy number

bi-matrix games for short in the sequent.

The rest of this paper is organized as follows. Section 2

gives the concepts of I-fuzzy numbers and arithmetic

operations of their cut sets. Section 3 defines the value-

index and ambiguity-index of an I-fuzzy number, and

proposes a difference-index-based ranking method and

discusses its properties. Section 4 formulates I-fuzzy

number bi-matrix games and develops a parameterized

non-linear programming method. An example of the

strategy choice problem is given in Sect. 5. Section 6

concludes this paper.

2 Concepts of I-fuzzy numbers and cut sets

2.1 Concepts of I-fuzzy numbers

I-fuzzy numbers play an important role in optimization and

decision-making problems [10, 11]. Inspired by the concept

of the fuzzy number [12], an I-fuzzy number ~A is defined as

a special I-fuzzy set on the real number set R [13, 14],

whose membership function l ~A : R ! ½0; 1� and non-

membership function t ~A : R ! ½0; 1� should satisfy the four

conditions (1)–(4) as follows: (1) there exist at least two

real numbers x00 2 R and x000 2 R such that l ~Aðx00Þ ¼ 1 and

t ~Aðx000Þ ¼ 0; (2) l ~A is quasi concave and upper semi-con-

tinuous on R; (3) t ~A is quasi convex and lower semi-con-

tinuous on R; and (4) the support sets fxjl ~AðxÞ[ 0; x 2 Rg
and fxjt ~AðxÞ\1; x 2 Rg are bounded.

From the above definition of an I-fuzzy number, we can

easily construct an I-fuzzy number ~A ¼ hða1; a1l; a1r; �a1Þ;
fl; fr; ða2; a2l; a2r; �a2Þ; gl; gri, whose membership and non-

membership functions are given as follows:

l ~AðxÞ ¼

0 ðx\a1Þ
flðxÞ ða1 � x\a1lÞ
1 ða1l � x� a1rÞ
frðxÞ ða1r\x� �a1Þ
0 ðx[ �a1Þ

8
>>>><

>>>>:

ð1Þ

and

t ~AðxÞ ¼

1 ðx\a2Þ
glðxÞ ða2 � x\a2lÞ
0 ða2l � x� a2rÞ
grðxÞ ða2r\x� �a2Þ
1 ðx[ �a2Þ

8
>>>><

>>>>:

; ð2Þ

respectively, depicted as in Fig. 1, where a2 � a1 �
a2l � a1l � a1r � a2r � �a1 � �a2; fl : ½a1; a1lÞ ! ½0; 1� and gr :

ða2r; �a2� ! ½0; 1� are non-decreasing and piecewise upper

semi-continuous functions, which satisfy the conditions:

flða1Þ ¼ 0, flða1lÞ ¼ 1, grða2rÞ ¼ 0 and grð�a2Þ ¼ 1; fr :

ða1r; �a1� ! ½0; 1� and gl : ½a2; a2lÞ ! ½0; 1� are non-in-

creasing and piecewise lower semi-continuous functions,

which fulfil the conditions: frða1rÞ ¼ 1, frð�a1Þ ¼ 0,

glða2Þ ¼ 1 and glða2lÞ ¼ 0. ½a1l; a1r�, a1 and �a1 are called

the mean interval and the lower and upper limits of the

I-fuzzy number ~A for the membership function, respec-

tively. ½a2l; a2r�, a2 and �a2 are called the mean interval and

the lower and upper limits of the I-fuzzy number ~A for the

non-membership function, respectively.

Let p ~AðxÞ ¼ 1 � l ~AðxÞ � t ~AðxÞ, which is called the

I-fuzzy index of an element x in the I-fuzzy number ~A. It is

the degree of indeterminacy membership of the element x

to ~A.

If a2 � 0, then the I-fuzzy number ~A is called non-neg-

ative, denoted by ~A� 0. Conversely, if �a2 � 0, then ~A is

called non-positive, denoted by ~A� 0. Further, ~A is called

positive if a2 � 0 and �a2 [ 0, denoted by ~A[ 0. Likewise,
~A is called negative if a2\0 and �a2 � 0, denoted by ~A\0.

Particularly, if

Fig. 1 An I-fuzzy number ~A
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l ~AðxÞ ¼

0 ðx\a1Þ
ðx� a1Þ=ða1l � a1Þ ða1 � x\a1lÞ
1 ða1l � x� a1rÞ
ð�a1 � xÞ=ð�a1 � a1rÞ ða1r\x� �a1Þ
0 ðx[ �a1Þ

8
>>>><

>>>>:

;

and

t ~AðxÞ ¼

1 ðx\a2Þ
ða2l � xÞ=ða2l � a2Þ ða2 � x\a2lÞ
0 ða2l � x� a2rÞ
ðx� a2rÞ=ð�a2 � a2rÞ ða2r\x� �a2Þ
1 ðx[ �a2Þ;

8
>>>><

>>>>:

then the I-fuzzy number ~A is reduced to a trapezoidal

I-fuzzy number, denoted by ~A ¼ hða1; a1l; a1r; �a1Þ;
ða2; a2l; a2r; �a2Þi. Further, if a2l ¼ a2r (hereby a1l ¼ a1r),

i.e. a2 � a1 � a� �a1 � �a2, where a ¼ a2l ¼ a2r ¼ a1l ¼ a1r,

then the trapezoidal I-fuzzy number ~A is reduced to the

triangular I-fuzzy number, denoted by ~A ¼ \ða1; a; �a1Þ;
ða2; a; �a2Þ[ .

Obviously, if a2 ¼ a1, a2l ¼ a1l, a2r ¼ a1r and �a2 ¼ �a1,

then l ~AðxÞ þ t ~AðxÞ ¼ 1 for all x 2 R. In this case, the trape-

zoidal I-fuzzy number ~A degenerates to ~A ¼ ða1; a1l; a1r; �a1Þ,
which is just the trapezoidal fuzzy number. Therefore, the

trapezoidal I-fuzzy numbers are a generalization of the

trapezoidal fuzzy numbers. Thus, the I-fuzzy numbers are

also a generalization of the fuzzy numbers [15].

Generally, arithmetic operations of I-fuzzy numbers can

be derived from the extension principle of I-fuzzy sets [14].

In the following, we discuss the addition and scalar mul-

tiplication of I-fuzzy numbers based on the concept of cut

sets.

2.2 Cut sets of I-fuzzy Numbers and Arithmetic

Operations

For any a 2 ½0; 1�, a a-cut set of an I-fuzzy number ~A can

be expressed as a crisp subset of R, denoted by
~Aa ¼ fxjl ~AðxÞ� a; x 2 Rg. It easily follows from the def-

inition of the I-fuzzy number that ~Aa is a closed interval,

denoted by ~Aa ¼ ½Lað~AÞ;Rað~AÞ�. It is directly derived from

Eq. (1) that

½Lað~AÞ;Rað~AÞ� ¼ ½f�1
l ðaÞ; f�1

r ðaÞ�; ð3Þ

where f�1
l and f�1

r are the inverse functions of fl and fr,

respectively.

Likewise, for any b 2 ½0; 1�, a b-cut set of an I-fuzzy

number ~A can be expressed as a crisp subset of R, denoted

by ~Ab ¼ fxjt ~AðxÞ� b; x 2 Rg. Obviously, ~Ab is a closed

interval, denoted by ~Ab ¼ ½Lbð~AÞ;Rbð~AÞ�. It is directly

derived from Eq. (2) that

½Lbð~AÞ;Rbð~AÞ� ¼ ½g�1
l ðbÞ; g�1

r ðbÞ�; ð4Þ

where g�1
l and g�1

r are the inverse functions of gl and gr,

respectively.

According to the arithmetic operations of intervals [16]

and the above concept of cut sets of I-fuzzy numbers, we

can define the addition and scalar multiplication of I-fuzzy

numbers.

Specifically, for any I-fuzzy number ~A ¼ hða1; a1l; a1r; �a1Þ;
fl; fr; ða2; a2l; a2r; �a2Þ; gl; gri and ~A0 ¼ hða01; a01l; a01r; �a01Þ;
f 0l ; f

0
r ; ða02; a02l; a02r; �a02Þ; g0l; g0ri, the sum of ~A and ~A0 is defined as

an I-fuzzy number ~Aþ ~A0, whose a-cut set and b-cut set are,

respectively, given as follows:

ð~Aþ ~A0Þa ¼ ~Aa þ ~A0
a ¼ Lað~AÞ þ Lað~A0Þ;Rað~AÞ þ Rað~A0Þ

� �

¼ f�1
l ðaÞ þ f 0�1

l ðaÞ; f�1
r ðaÞ þ f 0�1

l ðaÞ
� �

;

ð5Þ

and

ð~Aþ ~A0Þb ¼ ~Ab þ ~A0
b ¼ Lbð~AÞ þ Lbð~A0Þ;Rbð~AÞ þ Rbð~A0Þ

� �

¼ g�1
l ðbÞ þ g0�1

l ðbÞ; g�1
r ðbÞ þ g0�1

r ðbÞ
� �

:

ð6Þ

The scalar multiplication of ~A and any real number q is

defined as an I-fuzzy number q~A, whose a-cut set and b-cut

set are respectively given as follows:

ðq~AÞa ¼ q~Aa ¼ ½qLað~AÞ; qRað~AÞ�
½qRað~AÞ; qLað~AÞ�

�

¼ ½qf�1
l ðaÞ; qf�1

r ðaÞ� ðq� 0Þ
½qf�1

r ðaÞ; qf�1
l ðaÞ� ðq\0Þ

�

; ð7Þ

and

ðq~AÞb¼q~Ab

¼ ½qLbð~AÞ;qRbð~AÞ�
½qRbð~AÞ;qLbð~AÞ�

¼ ½qg�1
l ðbÞ;qg�1

r ðbÞ� ðq�0Þ
½qg�1

r ðbÞ;qg�1
l ðbÞ� ðq\0Þ

��

:

ð8Þ

3 The Difference-Index-Based Ranking Method
of I-fuzzy Numbers and Properties

3.1 The Value-Index and Ambiguity-Index of an I-

fuzzy Number

For any I-fuzzy number ~A, its values of the membership

and non-membership functions are defined as follows:

Vlð~AÞ ¼
Z 1

0

ðLað~AÞ þ Rað~AÞÞ=2
� �

f ðaÞda; ð9Þ

and

Vtð~AÞ ¼
Z 1

0

ðLbð~AÞ þ Rbð~AÞÞ=2
� �

gðbÞdb; ð10Þ
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respectively, where f(a) is a non-decreasing function on the

interval [0,1], which should satisfy the conditions: f(0) = 0

and f(1) = 1; g(b) is a non-increasing function on the

interval [0,1], which should fulfil the conditions: g(0) = 0

and g(1) = 0.

f ðaÞ and gðbÞ may reflect the attitude of players (or

decision makers) towards uncertainty, which can be con-

sidered as weighting functions. f ðaÞ gives different weights

to elements at the a-cut sets of the I-fuzzy number ~A so that

the contribution of the lower a-cut sets can be lessened due

to the fact that these cut sets arising from l ~AðxÞ have a

considerable amount of uncertainty. Therefore, Vlð~AÞ
synthetically reflects the membership degrees of ~A. Like-

wise, gðbÞ can lessen the contribution of the higher b-cut

sets of ~A since these cut sets arising from t ~AðxÞ have a

considerable amount of uncertainty. Vtð~AÞ synthetically

reflects the non-membership degrees of ~A. And f ðaÞ and

gðbÞ are specifically chosen according to need in real sit-

uations. Jafarian and Rezvani [17] gave more explanations

and specific forms of the functions f ðaÞ and gðbÞ, respec-

tively. For example, f ðaÞ ¼ a and gðbÞ ¼ 1 � b are simpler

forms of such functions.

It is easy to see from Eqs. (9) and (10) that Vlð~AÞ� 0

and Vtð~AÞ� 0 for any I-fuzzy number ~A� 0.

Likewise, the ambiguities of the membership and non-

membership functions for any I-fuzzy number ~A are

defined as follows:

Wlð~AÞ ¼
Z 1

0

Rað~AÞ � Lað~AÞ
� �

f ðaÞda; ð11Þ

and

Wtð~AÞ ¼
Z 1

0

Rbð~AÞ � Lbð~AÞ
� �

gðbÞdb; ð12Þ

respectively. Clearly, Rað~AÞ � Lað~AÞ and Rbð~AÞ � Lbð~AÞ
are just the lengths of the intervals ~Aa and ~Ab. Wlð~AÞ and

Wtð~AÞ basically measure how much there is uncertainty in
~A.

It is easy to see from Eqs. (11) and (12) that Wlð~AÞ� 0

and Wtð~AÞ� 0 for any I-fuzzy number ~A. Further, we can

draw the following conclusion, which is summarized as in

Theorem 1.

Theorem 1 Assume that ~A and ~A0 are any I-fuzzy num-

bers. Then, for any real number q 2 R, the following

equalities are always valid:

Vlðq~Aþ ~A0Þ ¼ qVlð~AÞ þ Vlð~A0Þ;

Vtðq~Aþ ~A0Þ ¼ qVtð~AÞ þ Vtð~A0Þ;

Wlðq~Aþ ~A0Þ ¼ qWlð~AÞ þWlð~A0Þ;

and

Wtðq~Aþ ~A0Þ ¼ qWtð~AÞ þWtð~A0Þ:

Proof See Appendix 1. h

Theorem 1 shows that the values and ambiguities of any

I-fuzzy number are linear.

The value-index and ambiguity-index of any I-fuzzy

number ~A are defined as follows:

Vkð~AÞ ¼ kVtð~AÞ þ ð1 � kÞVlð~AÞ; ð13Þ

and

Wkð~AÞ ¼ kWlð~AÞ þ ð1 � kÞWtð~AÞ; ð14Þ

respectively, where k 2 ½0; 1� is the weight which repre-

sents the attitude or preference information of players (or

decision makers). k 2 ½0; 1=2Þ shows that the player prefers

to uncertainty or negative feeling; k 2 ð1=2; 1� shows that

the player prefers to certainty or positive feeling; k = 1/2

shows that the player is indifferent between positive feeling

and negative feeling. Therefore, the value-index and

ambiguity-index may reflect players’ attitude or preference

to the I-fuzzy number.

Theorem 2 Assume that ~A and ~A0 are any I-fuzzy number.
Then, for any real number q 2 R, the following equalities

are always valid:

Vkðq~Aþ ~A0Þ ¼ qVkð~AÞ þ Vkð~A0Þ;

and

Wkðq~Aþ ~A0Þ ¼ qWkð~AÞ þWkð~A0Þ:

Proof See Appendix 2. h

Theorem 2 shows that the value-index and ambiguity-

index of any I-fuzzy number are linear.

3.2 The Difference-Index of an I-fuzzy Number

and the Ranking Method

From Eqs. (13) and (14), obviously, the larger the value-

index and the smaller the ambiguity-index hereby the

bigger the I-fuzzy number. Therefore, a ranking-index of

any I-fuzzy number is defined as follows:

Dkð~aÞ ¼ Vkð~aÞ �Wkð~aÞ; ð15Þ

which is usually called the difference-index of the I-fuzzy

number ~A for short.

Theorem 3 Assume that ~A and ~A0 are any I-fuzzy num-

ber. Then, for any real number q 2 R, the following

equality is always valid:
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Dkðq~Aþ ~A0Þ ¼ qDkð~AÞ þ Dkð~A0Þ:

Proof See Appendix 2. h

Theorem 3 shows that the difference-index of any

I-fuzzy number is linear. Further, it can be easily seen from

Eq. (15) that the larger the difference-index the bigger the

I-fuzzy number. Thus, the difference-index-based ranking

method is proposed as follows.

Definition 1 Assume that k 2 ½0; 1� is any real number.

For any I-fuzzy numbers ~A and ~A0, we stipulate as follows:

(1) Dkð~AÞ[Dkð~A0Þ if and only if ~A is larger than ~A0,

denoted by ~A[ IF
~A0;

(2) Dkð~AÞ[Dkð~A0Þ if and only if ~A is equal to ~A0,

denoted by ~A ¼IF
~A0; and

(3) ~A� IF
~A0 if and only if ~A[ IF

~A0 or ~A ¼IF
~A0:

The symbol ‘‘[IF’’ is an I-fuzzy version of the order

relation ‘‘[’’ on the real line and has the linguistic inter-

pretation ‘‘essentially larger than’’. Similarly, ‘‘=IF’’ and

‘‘CIF’’ are I-fuzzy versions of ‘‘=’’ and ‘‘C’’ on the real line

and have the linguistic interpretations ‘‘essentially being

equal to’’ and ‘‘essentially larger than or being equal to’’,

respectively. Analogously, we can define the order rela-

tions ‘‘\IF’’ and ‘‘BIF’’.

The above ranking method has some useful properties,

which are summarized as in Theorem 4.

Theorem 4 The difference-index-based ranking method

of I-fuzzy numbers has the five properties as follows:

(P1) For any I-fuzzy number ~A, then ~A� IF
~A is always

valid;

(P2) For any I-fuzzy numbers ~A and ~A0, if ~A� IF
~A0 and

~A0 � IF
~A, then ~A ¼IF

~A0;

(P3) For I-fuzzy numbers ~A, ~A0 and ~A00, if ~A� IF
~A0 and

~A0 � IF
~A00, then ~A� IF

~A00;
(P4) Assume that F1 and F2 are arbitrary finite subsets of

I-fuzzy numbers. For any I-fuzzy number ~A 2 F1 \ F2 and
~A0 2 F1 \ F2, then ~A[ IF

~A0 on F1 if and only if ~A[ IF
~A0

on F2;

(P5) For any I-fuzzy numbers ~A and ~A0, if ~A� IF
~A0, then

~Aþ ~A00 � IF
~A0 þ ~A00 for any I-fuzzy number ~A00;

(P50) For any I-fuzzy numbers ~A and ~A0, if ~A[ IF
~A0,

then ~Aþ ~A00 [ IF
~A0 þ ~A00 for any I-fuzzy number ~A00.

Proof See Appendix 3. h

Remark 1 Wang and Kerre [18] proposed seven axioms

A1–A7, which serve as the reasonable properties to figure

out the rationality of a ranking method for the ordering of

fuzzy quantities. The above properties (P1)–(P6) (or (P60))
correspond to the axioms A1–A6 (or A60), respectively.

Unfortunately, it is very difficult to prove whether the last

properties corresponding to the axioms A7 are valid.

It can be easily seen from the properties (P1)–(P3) of

Theorem 4 that the difference-index-based ranking method

of I-fuzzy numbers is a total order. Therefore, the above

ranking method is different from those [19, 20].

4 Parameterized Non-linear Programming Models
for I-fuzzy Number Bi-matrix Games

4.1 Bi-matrix Games and Non-linear Programming

Models

The sets of pure strategies for players I and II are denoted

by S1 ¼ fa1; a2; . . .; amg and S2 ¼ fb1; b2; . . .; bng; their

payoff matrices are expressed with A ¼ ðaijÞm�n and

B ¼ ðbijÞm�n; their mixed strategy vectors are denoted by

y ¼ ðy1; y2; . . .; ymÞT and z ¼ ðz1; z2; . . .; znÞT , respectively,

where yi ði ¼ 1; 2; . . .;mÞ and zj ðj ¼ 1; 2; . . .; nÞ are prob-

abilities in which I and II choose their pure strategies ai 2
S1 ði ¼ 1; 2; . . .;mÞ and bj 2 S2 ðj ¼ 1; 2; . . .; nÞ, respec-

tively; the symbol ‘‘T’’ is the transpose of a vector/matrix.

Their sets of mixed strategies are denoted by Y ¼
fyj

Pm
i¼1 yi ¼ 1; yi � 0 ði ¼ 1; 2; . . .;mÞg and Z ¼ fzj

Pn
j¼1

zj ¼ 1; zj � 0 ðj ¼ 1; 2; . . .; nÞg. Thus, a two-person non-

zero-sum finite game is simply called the bi-matrix game

ðA;BÞ in which both players want to maximize his/her own

payoffs. When I chooses any mixed strategy y 2 Y and II

chooses any mixed strategy z 2 Z, the expected payoffs of

I and II can be computed as E1ðy; zÞ ¼ yTAz ¼
Pm

i¼1Pn
i¼1 yiaijzj and E2ðy; zÞ ¼ yTBz ¼

Pm
i¼1

Pn
i¼1 yibijzj,

respectively.

Definition 2 If there is a pair ðy�; z�Þ 2 Y � Z so that

yTAz� � y�TAz� for any y 2 Y and y�TBz� y�TBz� for any

z 2 Z, then ðy�; z�Þ is called a Nash equilibrium point of the

bi-matrix game ðA;BÞ, y� and z� are called Nash equilib-

rium strategies of players I and II, u� ¼ y�TAz� and v� ¼
y�TBz� are called Nash equilibrium values of I and II,

respectively. And ðy�T ; z�T ; u�; v�Þ is called a Nash equi-

librium solution of ðA;BÞ.

The following theorem guarantees the existence of Nash

equilibrium solutions of any bi-matrix game.

Theorem 5 Any bi-matrix game ðA;BÞ has at least one

Nash equilibrium solution.

A Nash equilibrium solution of any bi-matrix game

ðA;BÞ can be obtained by solving the non-linear pro-

gramming model stated as the following Theorem 6 [21].
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Theorem 6 Let ðA;BÞ be any bi-matrix game.

ðy�T ; z�T ; u�; v�Þ is a Nash equilibrium solution of the bi-

matrix game ðA;BÞ if and only if it is a solution of the

mathematical programming model, which is shown as

follows:

max yTðAþ BÞz� u� v
� �

s:t:

Az� uem

BTy� ven

yTem ¼ 1

zTen ¼ 1

y� 0; z� 0

8
>>>>>><

>>>>>>:

: ð16Þ

Furthermore, if ðy�T ; z�T ; u�; v�Þ is a solution of the above

mathematical programming model, then u� ¼ y�TAz�, v� ¼
y�TBz� and y�TðAþ BÞz� � u� � v� ¼ 0.

4.2 Models and Method for I-fuzzy Number Bi-

matrix Games

Let us consider an I-fuzzy number bi-matrix game, where

sets of pure strategies S1 and S2 and sets of mixed strategies

Y and Z for players I and II are defined as the above sec-

tions. If player I chooses any pure strategy ai 2 S1 ði ¼
1; 2; . . .;mÞ and player II chooses any pure strategy

bj 2 S2 ðj ¼ 1; 2; . . .; nÞ, then at the situation ðai;bjÞ
players I and II gain payoffs, which are expressed as

I-fuzzy numbers

~Aijðai; bjÞ ¼ fhðai; bjÞ; ða1ij; a1lij; a1rij; �a1ijÞ;
fijl; fijr; ða2ij; a2lij; a2rij; �a2ijÞ; gijl; gijrig
ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ;

where

a2ij � a1ij � a2ijl � a1ijl � a1ijr � a2ijr � �a1ij � �a2ij

and

~Bijðai; bjÞ ¼ fhðai; bjÞ; ðb1ij; b1lij; b1rij; �b1ijÞ;
fijl; fijr; ðb2ij; b2lij; b2rij; �b2ijÞ; gijl; gijrig
ði ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; nÞ;

where b2ij � b1ij � b2ijl � b1ijl � b1ijr � b2ijr � �b1ij � �b2ij.

Thus, the payoff matrices of players I and II are expressed

as ~A ¼ ð~Aijðai; bjÞÞm�n and ~B ¼ ð~Bijðai; bjÞÞm�n, respec-

tively. In the sequel, the above I-fuzzy number bi-matrix

game is denoted by ð ~A; ~BÞ for short.

If players I and II, respectively, choose mixed strategies

y 2 Y and z 2 Z, then the expected payoff of player I is

~E1ðy; zÞ ¼ yT ~Az ¼
Pm

i¼1

Pn
j¼1 yi

~Aijzj, whose a-cut set and

b-cut set can be, respectively, computed as follows:

ð~Eðy; zÞÞa ¼
Xm

i¼1

Xn

j¼1

yiLað~AijÞzj;
Xm

i¼1

Xn

j¼1

yiRað~AijÞzj

" #

¼
Xm

i¼1

Xn

j¼1

f�1
ijl ðaÞyizj;

Xm

i¼1

Xn

j¼1

yif
�1
ijr ðaÞzj

" #

;

and

ð~Eðy; zÞÞb ¼
Xm

i¼1

Xn

j¼1

yiLbð~AijÞzj;
Xm

i¼1

Xn

j¼1

yiRbð~AijÞzj

" #

¼
Xm

i¼1

Xn

j¼1

yig
�1
ijl ðbÞzj;

Xm

i¼1

Xn

j¼1

yig
�1
ijr ðbÞzj

" #

;

where a 2 ½0; 1� and b 2 ½0; 1�.
According to the operations of I-fuzzy numbers, the

expected payoff ~E1ðy; zÞ of player I is an I-fuzzy number,

which can be calculated as follows:

~E1ðy; zÞ ¼ h
Xn

i¼1

Xn

j¼1

yiða1ij; a1lij; a1rij; �a1ijÞzj;minffijl; fijrg;
(

Xn

i¼1

Xn

j¼1

yiða2ij; a2lij; a2rij; �a2ijÞzj;maxfgijl; gijrgi
)

:

Similarly, the expected payoff of player II is

~E2ðy; zÞ ¼ yT ~Bz, which can be calculated as follows:

~E2ðy; zÞ ¼ h
Xn

i¼1

Xn

j¼1

yiðb1ij; b1lij; b1rij; �b1ijÞzj;minffijl; fijrg;
(

Xn

i¼1

Xn

j¼1

yiðb2ij; b2lij; b2rij; �b2ijÞzj;maxfgijl; gijrgi
)

:

Definition 3 Assume that there is a pair ðy�; z�Þ 2 Y � Z.

If any y 2 Y and z 2 Z satisfy yT ~Az� � IF y�T ~Az� and

y�T ~Bz� IFy
�T ~Bz�, then ðy�; z�Þ is called a Nash equilibrium

point of the I-fuzzy number bi-matrix game ð ~A; ~BÞ, y� and

z� are called Nash equilibrium strategies of players I and II,

~u� ¼ y�T ~Az� and ~v� ¼ y�T ~Bz� are called Nash equilibrium

values of I and II, respectively. ðy�; z�; ~u�; ~v�Þ is called a

Nash equilibrium solution of ð ~A; ~BÞ.

Stated as earlier, however, player I’s expected payoff

yT ~Az and player II’s expected payoff yT ~Bz are I-fuzzy

numbers. Therefore, there are no commonly used concepts

of solutions of the bi-matrix games. Furthermore, it is not

easy to compute the membership degrees and the non-

membership degrees of players’ expected payoffs. As a

result, solving Nash equilibrium solutions of I-fuzzy

number bi-matrix games are very difficult. In the sequel,

we use the ranking function Dk to develop a new method

for solving ð ~A; ~BÞ.
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Using Eq. (15), we can transform ~A and ~B into the

payoff matrices as follows:

~Ak1
¼ Dk1ðð ~Aijðai; bjÞÞm�nÞ ¼ ðDk1ð ~Aijðai; bjÞÞÞm�n ð17Þ

~Bk2
¼ Dk2

ðð ~Bijðai; bjÞÞm�nÞ ¼ ðDk2
ð ~Bijðai; bjÞÞÞm�n; ð18Þ

where k1 2 ½0; 1�, k2 2 ½0; 1�, Dk1
ð ~Aijðai; bjÞÞ ¼ V ~Aijðai;bjÞ �

A ~Aijðai;bjÞ and Dk2
ð ~Bijðai; bjÞÞ ¼ V ~Bijðai; bjÞ � A ~Bijðai;bjÞ

ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ:
According to the above usage and notations, the above

parametric bi-matrix game can be simply denoted by

ð ~Ak1
; ~Bk2

Þ, where the pure (or mixed) strategy sets of

players I and II are S1 and S2 (or Y and Z) defined as the

above. Then, the I-fuzzy number bi-matrix game ð ~A; ~BÞ is

transformed into the parametric bi-matrix game ð ~Ak1
; ~Bk2

Þ.
Hereby, according to Definitions 1–3 and Theorem 3, we

can give the definition of satisfying Nash equilibrium

solutions of ð ~Ak1
; ~Bk2

Þ as follows.

Definition 4 For given parameters k1 2 ½0; 1� and

k2 2 ½0; 1�, if there is a pair ðy�; z�Þ 2 Y � Z so that any y 2 Y

and z 2 Z satisfy the following conditions:

yT ~Ak1
z� � y�T ~Ak1

z� and y�T ~Bk2
z� y�T ~Bk2

z�, then ðy�; z�Þ is

called a satisfying Nash equilibrium point of the I-fuzzy

number bi-matrix game ð ~Ak1
; ~Bk2

Þ, y� and z� are called sat-

isfying Nash equilibrium strategies of players I and II,

u�ðk1Þ ¼ y�T ~Ak1
z� and v�ðk2Þ ¼ y�T ~Bk2

z� are called satisfy-

ing equilibrium values of I and II, respectively.

ðy�; z�; u�ðk1Þ; v�ðk2ÞÞ is called a satisfying Nash equilibrium

solution of the I-fuzzy number bi-matrix game ð ~Ak1
; ~Bk2

Þ

Thus, for given parameters k1 2 ½0; 1� and k2 2 ½0; 1�,
according to Theorem 4, the parametric bi-matrix game

ð ~Ak1
; ~Bk2

Þ has at least one Nash equilibrium solution.

Namely, the I-fuzzy number bi-matrix game ð ~Ak1
; ~Bk2

Þ has

at least one satisfying Nash equilibrium solution, which can

be obtained through solving the following parametric non-

linear programming model according to Theorem 6:

max
Xn

j¼1

Xm

i¼1

yi Dk1
ð~Aijðai; bjÞÞ þ Dk2

ð~Bijðai; bjÞÞ
� �

zj

(

�uðk1Þ � vðk2Þg

s:t:

Pn

j¼1

½Dk1
ð~Aijðai; bjÞÞ�zj � uðk1Þ ði ¼ 1; 2; . . .;mÞ

Pm

i¼1

½Dk2
ð~Bijðai; bjÞÞ�yi � vðk2Þ ðj ¼ 1; 2; . . .; nÞ

y1 þ y2 þ � � � þ ym ¼ 1

z1 þ z2 þ � � � þ zn ¼ 1

vðk2Þ� 0; uðk1Þ� 0

yi � 0 ði ¼ 1; 2; . . .;mÞ; zj � 0 ðj ¼ 1; 2; . . .; nÞ;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð19Þ

where yiði ¼ 1; 2; . . .;mÞ; zjðj ¼ 1; 2; . . .; nÞ; uðk1Þ and

vðk2Þ are decision variables.

According to Theorem 5, if ðy�; z�; u�ðk1Þ; v�ðk2ÞÞ is a

solution of Eq. (19), then we have

u�ðk1Þ ¼ y�T ~Ak1
z�

¼
Xn

j¼1

Xm

i¼1

Vk1ð~Aijðai; bjÞÞ �Wk1ð~Aijðai; bjÞÞ
� �

y�i z
�
j ;

v�ðk2Þ ¼ y�T ~Bk2
z�

¼
Xn

j¼1

Xm

i¼1

Vk2
~Bijðai; bjÞ

� �
�Wk2

ð~Bijðai; bjÞÞ
� �

y�i z
�
j

and

y�TðDk1
ðeAÞ þ Dk2

ð ~BÞÞz� � u�ðk1Þ � v�ðk2Þ ¼ 0

Noticing that y�i � 0, z�j � 0, and Vkð~aÞ and Akð~aÞ are,

respectively, continuous non-decreasing and non-increas-

ing functions of the parameter k 2 ½0; 1� if ~a is a non-

negative I-fuzzy number. Then, u�ðk1Þ and v�ðk2Þ are

monotonic and non-decreasing functions of the parameters

k1 2 ½0; 1� and k2 2 ½0; 1�, respectively. Thus, the satisfying

Nash equilibrium values of players I and II are obtained as

½u�ð0Þ; u�ð1Þ� and ½v�ð0Þ; v�ð1Þ�, respectively, and can be

written as the I-fuzzy numbers fhð�y�; �z�Þ; u�ð0Þ; 1 �
u�ð1Þig and fhð�y�; �z�Þ; v�ð0Þ; 1 � v�ð1Þig, where ð�y�; �z�Þ
represents a mixed situation. Thus, ~u�ð�y�; �z�Þ and ~v�ð�y�; �z�Þ
is Nash equilibrium values of players I and II, respectively.

In particular, for the parameters k1 = 0 and k2 = 0,

Eq. (19) becomes the non-linear programming model as

follows:

max
Xn

j¼1

Xm

i¼1

yi½Vlð~Aijðai; bjÞÞ �Wtð~Aijðai;bjÞÞ
(

þVlð~Bijðai; bjÞÞ �Wtð~Bijðai;bjÞÞ�zj � uð0Þ � vð0Þ
�

s:t:

Pn

j¼1

½Vlð~Aijðai;bjÞÞ �Wtð~Aijðai;bjÞÞ�zj � uð0Þ ði ¼ 1; 2; . . .;mÞ

Pm

i¼1

½Vlð~Bijðai;bjÞÞ �Wtð~Bijðai;bjÞÞ�yi � vð0Þ ðj ¼ 1; 2; . . .; nÞ

y1 þ y2 þ � � � þ ym ¼ 1

z1 þ z2 þ � � � þ zn ¼ 1

zj � 0; yi � 0 ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ
uð0Þ� 0; vð0Þ� 0

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

;

ð20Þ

where uð0Þ ¼ Vlð~uð�y; �zÞÞ �Wtð~uð�y; �zÞÞ, vð0Þ ¼ Vlð~v
ð�y; �zÞÞ �Wtð~vð�y; �zÞÞ, yiði ¼ 1; 2; . . .;mÞ; zjðj ¼ 1; 2; . . .; nÞ;
uð0Þ, and vð0Þ are decision variables. The solution of

Eq. (20) can be obtained by ðy�T ; z�T ;Vlð~u�ð�y�; �z�ÞÞ �
Wtð~u�ð�y�; �z�ÞÞ; Vlð~v�ð�y�; �z�ÞÞ �Wtð~v�ð�y�; �z�ÞÞÞ.

Similarly, for the parameters k1 ¼ 1 and k2 ¼ 1,

Eq. (19) becomes the non-linear programming model as

follows:
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max
Xn

j¼1

Xm

i¼1

yi½Vtð~Aijðai; bjÞÞ �Wlð~Aijðai;bjÞÞ
(

þVtð~Bijðai; bjÞÞ �Wlð~Bijðai;bjÞÞ�zj � uð1Þ � vð1Þ
�

s:t:

Pn

j¼1

½Vlð~Aijðai;bjÞÞ �Wtð~Aijðai;bjÞÞ�zj � uð1Þ ði ¼ 1; 2; . . .;mÞ

Pm

i¼1

½Vlð~Bijðai;bjÞÞ �Wtð~Bijðai;bjÞÞ�yi � vð1Þ ðj ¼ 1; 2; . . .; nÞ

y1 þ y2 þ � � � þ ym ¼ 1

z1 þ z2 þ � � � þ zn ¼ 1

zj � 0; yi � 0 ði ¼ 1; 2; � � � ;m; j ¼ 1; 2; . . .;mÞ
uð1Þ� 0; vð1Þ� 0

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

;

ð21Þ

where uð1Þ ¼ Vtð~u�ð�y�; �z�ÞÞ �Wlð~u�ð�y�; �z�ÞÞ, vð1Þ ¼ Vt

ð~v�ð�y�; �z�ÞÞ �Wlð~v�ð�y�; �z�ÞÞ, yiði ¼ 1; 2; . . .;mÞ; zjðj ¼
1; 2; . . .; nÞ, uð1Þ and vð1Þ are decision variables. Likewise,

the solution of Eq. (21) can be obtained by ðy0�T ; z0�T ;
Vtð~u�ð�y�; �z�ÞÞ �Wlð~u�ð�y�; �z�ÞÞ; Vtð~v�ð�y�; �z�ÞÞ �Wlð~v�
ð�y�; �z�ÞÞÞ.

Thus, we can explicitly obtain the satisfying Nash

equilibrium values and corresponding satisfying Nash

equilibrium strategies of players I and II through solving

Eqs. (20) and (21). Furthermore, according to Eq. (19), any

satisfying Nash equilibrium values and corresponding sat-

isfying Nash equilibrium strategies of players I and II can

be obtained through choosing different parameters k1 2
½0; 1� and k2 2 ½0; 1�.

5 An Application to the Strategy Choice Problem

There are lots of competitive decision problems which may

be solved by using the game theory. In this section, we

consider a manufacturers’ production plan (or strategy)

choice problem, which is used as a demonstration of the

possible applications of the proposed methodology in

realistic scenario.

Let us consider the case of two manufacturers P1 and P2

making a decision aiming to enhance the satisfaction

degrees of customers. Assume that manufacturers P1 and

P2 are rational, i.e. they will choose optimal strategies to

maximize their own profits without cooperation. Suppose

that manufacturer P1 has two pure strategies: establishing a

scientific and rational service system a1 and providing

customers with satisfying product a2. Manufacturer P2 has

the same pure strategies as manufacturer P1, i.e. estab-

lishing a scientific and rational service system b1 and

providing customers with satisfaction products b2. Due to

lack of information or imprecision of the available

information, the customers’ preference and satisfaction

degrees are often vague, and the players’ estimation often

by their intuitive experience. Thus, the sales amount is not

able to forecast exactly. In order to deal with the uncer-

tainty, I-fuzzy numbers are used to express the sales

amount of the product. The payoff matrices of manufac-

turers P1 and P2 are, respectively, expressed as follows:

and

where ~A11¼hð160; 170; 180Þ; f11l; f11r; ð150; 170; 180; 190Þ;
g11l; g11ri is an I-fuzzy number with the membership (or

satisfaction) and non-membership (or dissatisfaction)

functions as follows:

l ~A11
ðxÞ ¼

0 ðx\160Þ
ðx� 160Þ2=100 ð160� x\170Þ
1 ðx ¼ 170Þ
ð180 � xÞ=10 ð170\x� 180Þ
0 ðx[ 180Þ

;

8
>>>>>><

>>>>>>:

t ~A11
ðxÞ ¼

1 ðx\150Þ
ð170 � xÞ2=400 ð150� x\170Þ
0 ð170� x� 180Þ
ðx� 180Þ=10 ð180\x� 190Þ
1 ðx[ 200Þ;

8
>>>>>><

>>>>>>:

~A12¼hð150; 160; 170; 180Þ; f12l; f12r; ð140; 160; 180; 190Þ;
g12l; g12ri is an I-fuzzy number with the membership and

non-membership functions as follows:

l ~A12
ðxÞ ¼

0 ðx\150Þ
ðx� 150Þ=10 ð150� x\160Þ
1 ð160� x� 170Þ
ð180 � xÞ2=100 ð170\x� 180Þ
0 ðx[ 180Þ

8
>>>><

>>>>:

t ~A12
ðxÞ ¼

1 ðx\140Þ
ð160 � xÞ=20 ð140� x\160Þ
0 ð160� x� 180Þ
ðx� 180Þ2=100 ð180\x� 190Þ
1 ðx[ 190Þ

8
>>>><

>>>>:

;

~A21¼hð140; 150; 170; 190Þ; ð130; 145; 180; 190Þi is a

trapezoidal I-fuzzy number with the membership and non-

membership functions as follows:
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l ~A21
ðxÞ ¼

0 ðx\140Þ
ðx� 140Þ=10 ð140� x\150Þ
1 ð150� x� 170Þ
ð190 � xÞ=20 ð170\x� 190Þ
0 ðx[ 190Þ

8
>>>><

>>>>:

;

t ~A21
ðxÞ ¼

1 ðx\130Þ
ð145 � xÞ=15 ð130� x\145Þ
0 ð145� x� 180Þ
ðx� 180Þ=10 ð180\x� 190Þ
1 ðx[ 190Þ;

8
>>>><

>>>>:

Others in payoff matrices ~A and ~B can be similarly

explained.

Taking f ðaÞ ¼ a (a 2 ½0; 1�) and gðbÞ ¼ 1 � b
(b 2 ½0; 1�), according to Eqs. (9)–(15) and (19), the para-

metric non-linear programming model is constructed as

follows:

maxfð148:3þ10:6k1 þ4:5k2Þy1z1

þð127:9þ9k1 þ8k2Þy1z2 þð120:8þ7:5k1 þ6:7k2Þy2z1

þð144:2þ1:7k1 þ 3:3k2Þy2z2 �uðk1Þ� vðk2Þg

s:t:

ð73:9þ10:6k1Þz1 þð65:9þ9k1Þz2�uðk1Þ
ð61:7þ7:5k1Þz1 þð68:3þ1:7k1Þz2�uðk1Þ
ð74:4þ4:5k2Þy1 þð62þ 8k2Þy2�vðk2Þ
ð59:1þ6:72Þy1 þð75:9þ3:3k2Þy2�vðk2Þ
y1 þ y2 ¼ 1

z1 þ z2 ¼ 1

uðk1Þ�0;vðk2Þ�0

yi�0;zj�0ði¼ 1;2; j¼ 1;2Þ:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

:

ð22Þ

For the parameters k1 2 ½0; 1� and k2 2 ½0; 1�, solving

Eq. (22), we can obtain the satisfying Nash equilibrium

values and corresponding satisfying Nash equilibrium

strategies of manufacturers P1 and P2, respectively,

depicted as in Tables 1, 2 and 3.

It is easy to see from Tables 1, 2 and 3 that the satisfying

Nash equilibrium value of a manufacturer P1 (or P2) only

depends on his/her own preference/parameter regardless of

other player’s preference/parameter. However, strategy

choice of a player is only affected by other player’

preference/parameter.

6 Conclusion

Determining payoffs of bi-matrix games absolutely

depends on players’ judgments and intuition, which are

often vague and not easy to be represented with crisp

values and fuzzy numbers. This paper formulates bi-matrix

games with payoffs expressed by I-fuzzy numbers and

propose corresponding parameterized non-linear program-

ming method. The main contributions include (1) giving

the concepts of general I-fuzzy numbers and the value-

index and ambiguity-index; (2) proposing the new ranking

method based on the difference-index, which is proven to

be a total order and has some useful properties; and (3)

establishing parameterized non-linear programming mod-

els and method for any bi-matrix game with payoffs rep-

resented by I-fuzzy numbers.

Obviously, for any given parameter k 2 ½0; 1�, the

parameterized non-linear programming models become a

pair of primal–dual linear programming models, which are

easily solved by using the simplex method of linear pro-

gramming. Our work is remarkably different from those

[6–9, 11, 13, 17, 19, 20], in that players’ payoffs and/or

goals were expressed with I-fuzzy sets [6–9, 11, 13] or

fuzzy numbers [17, 20], and Nehi [19] established multi-

objective programming models based on the average

Table 1 Satisfying Nash equilibrium values and corresponding

strategies

Parameters P1 P2

k1 k2 y�T u�ðk1Þ z�T v�ðk2Þ

0 0 (0.476, 0.524) 67.22 (0.164, 0.836) 67.90

0.3 0.3 (0.460, 0.540) 68.73 (0.016, 0.984) 69.63

0.5 0.5 (0.449, 0.551) 70.40 (0, 1) 70.78

0.8 0.8 (0.428, 0.571) 73.10 (0, 1) 72.50

1 1 (0.413, 0.587) 74.90 (0, 1) 73.67

Table 2 Satisfying Nash equilibrium values and corresponding

strategies

Parameters P1 P2

k1 k2 y�T u�ðk1Þ z�T v�ðk2Þ

0 1 (0.413, 0.587) 67.22 (0.164, 0.836) 73.67

0.3 0.8 (0.428, 0.571) 68.73 (0.016, 0.984) 72.50

0.5 0.5 (0.449, 0.551) 70.40 (0, 1) 70.78

0.8 0.3 (0.460, 0.540) 73.10 (0, 1) 69.63

1 0 (0.476, 0.524) 74.90 (0, 1) 67.90

Table 3 Satisfying Nash equilibrium values and corresponding

strategies

Parameters P1 P2

k1 k2 y�T u�ðk1Þ z�T v�ðk2Þ

1 0 (0.476, 0.524) 74.90 (0, 1) 67.90

0.8 0.3 (0.460, 0.540) 73.10 (0, 1) 69.63

0.5 0.5 (0.449, 0.551) 70.40 (0, 1) 70.78

0.3 0.8 (0.428, 0.571) 68.73 (0.016, 0.984) 72.50

0 1 (0.413, 0.587) 67.22 (0.164, 0.836) 73.67
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indices of the membership and non-membership functions

of triangular I-fuzzy numbers, which are only a special

form of I-fuzzy numbers.

Furthermore, it is easy to see that the derived parame-

terized non-linear programming models for bi-matrix

games with payoffs represented by I-fuzzy numbers are an

extension of the linear programming models for fuzzy

matrix games. Therefore, effective and efficient methods

for explicitly determining values of matrix games with

payoffs of I-fuzzy numbers will be investigated in the near

future.
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Appendix 1: Proof of Theorem 1

According to Eqs. (5) and (7), for any a 2 ½0; 1�, we have

ðq~Aþ ~A0Þa ¼ q~Aa þ ~A0a. Hence, we have

Laðq~Aþ ~A0Þ þ Raðq~Aþ ~A0Þ
¼ Laðq~AÞ þ Lað~A0Þ þ Raðq~AÞ þ Rað~A0Þ
¼ qðLað~AÞ þ Rað~AÞÞ þ Lað~A0Þ þ Rað~A0Þ:

Combining with Eq. (9), we have

Vlðq~Aþ ~A0Þ ¼ q
Z 1

0

½ðLað~AÞ þ Rað~AÞÞ=2�f ðaÞda

þ
Z 1

0

½ðLað~A0Þ þ Rað~A0ÞÞ=2�f ðaÞda

¼ qVlðw; ~AÞ þ Vlðw; ~A0Þ;

i.e. Vlðq~Aþ ~A0Þ ¼ qVlð~AÞ þ Vlð~A0Þ.
For any b 2 ½0; 1�, it easily follows from Eqs. (6) and (8)

that ðq~Aþ ~A0Þb ¼ q~Ab þ ~A0
b. According to Eq. (10), we

can similarly prove that Vtðq~Aþ ~A0Þ ¼ qVtð~AÞ þ Vtð~A0Þ.
For any a 2 ½0; 1�, if q� 0, it is easily derived from

Eqs. (5) and (7) that

Raðq~Aþ ~A0Þ � Laðq~Aþ ~A0Þ
¼ Raðq~AÞ � Laðq~AÞ þ Rað~A0Þ � Lað~A0Þ
¼ qðRað~AÞ � Lað~AÞÞ þ Rað~A0Þ � Lað~A0Þ:

Then, combining with Eq. (11), we have

Wlðq~Aþ ~A0Þ ¼ q
Z 1

0

ðRað~AÞ � Lað~AÞÞf ðaÞda

þ
Z 1

0

ðRað~A0Þ � Lað~A0ÞÞf ðaÞda

¼ qWlð~AÞ þWlð~A0Þ:

Likewise, if q\ 0, then Raðq~Aþ ~A0Þ � Laðq~Aþ ~A0Þ ¼
qðLað~AÞ� Rað~AÞÞ þ Rað~A0Þ � Lað~A0Þ. Hereby, we have

Wlðq~Aþ ~A0Þ ¼ q
Z 1

0

ðLað~AÞ � Rað~AÞÞf ðaÞda

þ
Z 1

0

ðRað~A0Þ � Lað~A0ÞÞf ðaÞda

¼ qWlð~AÞ þWlð~A0Þ:

Therefore, we have proven that Wlðq~Aþ ~A0Þ ¼
qWlð~AÞ þWlð~A0Þ for any q 2 R.

Similarly, according to Eqs. (6), (8) and (12), we can

prove that Wtðu; q~Aþ ~A0Þ ¼ qWtðu; ~AÞ þWtðu; ~A0Þ:

Appendix 2: Proof of Theorem 2

According to Theorem 1, it is derived from Eq. (13) that

Vkðq~Aþ ~A0Þ ¼ kVtðq~Aþ ~A0Þ þ ð1 � kÞVlðq~Aþ ~A0Þ
¼q½kVtð~AÞ þ ð1 � kÞVlð~AÞ� þ kVtð~A0Þ þ ð1 � kÞVlð~A0Þ

¼ qVkð~AÞ þ Vkð~A0Þ

i.e. Vkðq~Aþ ~A0Þ ¼ qVkð~AÞ þ Vkð~A0Þ:
Likewise, according to Theorem 1 and Eq. (14), we can

prove that Wkðq~Aþ ~A0Þ ¼ qWkð~AÞ þWkð~A0Þ:

Proof of Theorem 3

According to Theorem 2, it is derived from Eq. (15) that

Dkðq~Aþ ~A0Þ ¼ Vkðq~Aþ ~A0Þ �Wkðq~Aþ ~A0Þ
¼ ðqVkð~AÞ þ Vkð~A0ÞÞ � ðqWkð~AÞ þWkð~A0ÞÞ
¼ qðVkð~AÞ �Wkð~AÞÞ þ ðVkð~A0Þ �Wkð~A0ÞÞ
¼ qDkð~AÞ þ Dkð~A0Þ:

Thus, we have completed the proof of Theorem 3.

Appendix 3: Proof of Theorem 4

(P1) For any I-fuzzy number ~A, it directly follows from

Eq. (15) that Dkð~AÞ�Dkð~AÞ for any k 2 ½0; 1�. Hereby,

according to Definition 1, we have ~A� IF
~A.

(P2) For any I-fuzzy numbers ~A and ~A0, according to

Definition 1, we have Dkð~AÞ�Dkð~A0Þ and Dkð~A0Þ �Dkð~AÞ
for any k 2 ½0; 1�. Thus, Dkð~AÞ ¼ Dkð~A0Þ. Hereby, we have

proven that ~A ¼ IF
~A0.

(P3) For any I-fuzzy numbers ~A, ~A0 and ~A00, according to

Definition 1, we have Dkð~AÞ�Dkð~A0Þ and Dkð~A0Þ �Dkð~A00Þ
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for any k 2 ½0; 1�. Hence, Dkð~AÞ�Dkð~A00Þ. Therefore, we

have proven that ~A � IF
~A00.

(P4) It can be easily seen from Eqs. (9)–(15) that the

difference-indices of I-fuzzy numbers ~A and ~A0 are com-

pletely determined by themselves. Thus, the ranking order

of ~A and ~A0 completely depends on Dkð~AÞ and Dkð~A0Þ,
which have nothing to do with the other I-fuzzy numbers

under comparison. Therefore, we have proven that
~A[ IF

~A0 on F1 if and only if ~A[ IF
~A0 on F2.

(P5) It is derived from Eqs. (9)–(10), we can obtain

Vlð~AÞ ¼
Z 1

0

½ðLað~AÞ þ Rað~AÞÞ=2�f ðaÞda�
Z 1

0

2a2 ada

¼ a

and

Vlð~A0Þ ¼
R 1

0
½ðLað~BÞ þ Rað~BÞÞ=2�f ðaÞda�

R 1

0
2�a0 ada ¼ �a0

Combining with sup pð~AÞ[ sup sup pð~A0Þ, it directly

follows that Vlð~AÞ[Vlð~A0Þ.
Similarly, it follows that Vtð~AÞ ¼

R 1

0
½ðLbð~AÞþ

Rbð~AÞÞ=2�gðbÞdb�
R 1

0
2a ada ¼ a and Vtð~A0Þ ¼

R 1

0
½ðLb

ð~BÞ þ Rbð~BÞÞ=2�gðbÞdb�
R 1

0
2�a0 ada ¼ �a0. Combining

with sup pð~AÞ[ sup sup pð~A0Þ, it directly follows that

Vtð~AÞ[Vtð~A
0 Þ. Therefore, kVtð~AÞ þ ð1 � kÞVlð~AÞ[

kVtð~A0Þ þ ð1 � kÞVlð~A0Þ, i.e. Vkð~AÞ[Vkð~A0Þ.
In a similar way, we have kWlð~AÞ þ ð1 � kÞWtð~AÞ[

kWlð~A0Þ þ ð1 � kÞWtð~A0Þ, i.e. Wkð~AÞ[Wkð~A0Þ.
According to Definition 1, for any k 2 ½0; 1�, we have

Dkð~AÞ[Dkð~A0Þ if and only if ~A is larger than ~A0, i.e.

Vð~A; kÞ �Wð~A; kÞ[Vð~A0; kÞ �Wð~A0; kÞ. Hence,
~A[ IF

~A0.
For instance, taking f ðaÞ ¼ a (a 2 ½0; 1�) and gðbÞ ¼

1 � b (b 2 ½0; 1�), by using Eqs. (9)–(15), the difference-

indexes of any I-fuzzy number ~A can be obtained as

follows:

Dkð~AÞ ¼ Vð~A; kÞ �Wð~A; kÞ ¼ ½kVtð~AÞ þ ð1 � kÞVlð~AÞ�
� ½kWlð~AÞ þ ð1 � kÞWtð~AÞ�

¼ ½ð3k� 2Þ�a2 þ ð6k� 4Þa2r þ ð4 � 2kÞa2l

þð2 � kÞa2Þ�=12 þ ½ð1 � 3kÞ�a1 þ ð2 � 6kÞa1r

þð2 þ 2kÞa1l þ ð1 þ kÞa1Þ�=12;

ð23Þ

where a2 � a1 � a2l � a1l � a1r � a2r � �a1 � �a2. If

sup pð~AÞ[ sup sup pð~A0Þ, i.e. a01 � a02l � a01l � a01r � a02r �
�a01 � �a02\a2 � a1 � a2l � a1l � a1r � a2r � �a1 � �a2, then it

follows from Eq. (23) that

Dkð~AÞ � Dkð~A0Þ[ ð3k� 2Þð�a2 � a2Þ
þð6k� 4Þða2r � a2Þ þ ð4 � 2kÞða2l � a2Þ�=12

þ ½ð1 � 3kÞð�a1 � a2Þ þ ð2 � 6kÞða1r � a2Þ
þð2 þ 2kÞða1l � a2Þ þ ð1 þ kÞða1 � a2Þ�=12

� ½ð7k� 2Þða2l � a2Þ þ ð6 � 6kÞða1 � a2Þ�=12

�ðkþ 4Þða1 � a2Þ� 0

:

Therefore, we have proven that if sup pð~AÞ[
sup sup pð~A0Þ, then ~A[ IF

~A0.
(P6) In the same way to that of (P3), for any k 2 ½0; 1�, it

follows from Definition 1 that

Dkð~AÞ�Dkð~A0Þ: ð24Þ

Combining with Theorem 1, we have Dkð~Aþ ~A00Þ ¼
Dkð~AÞþ Dkð~A00Þ �Dkð~A0Þ þ Dkð~A00Þ¼Dkð~A0þ~A00Þ, i.e.

Dkð~Aþ ~A00Þ �Dkð~A0þ~A00Þ: ð25Þ

Hence, we have ~Aþ ~A00 � IF
~A0 þ ~A00.

(P60) Eq. (24) is a strictly inequality due to ~A [ IF
~A0.

Thus, Eq. (25) is also a strictly inequality. According to

Definition 1, we have proven that ~Aþ ~A00 [ IF
~A0 þ ~A00.
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