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Abstract A new optimal robust control is proposed for

mechanical systems with fuzzy uncertainty. Fuzzy set theory

is used to describe the uncertainty in the mechanical system.

The desirable system performance is deterministic (assuring

the bottom line) and also fuzzy (enhancing the cost consid-

eration). The proposed control is deterministic and is not the

usual if–then rules-based. The resulting controlled system is

uniformly bounded and uniformly ultimately bounded

proved via the Lyapunov minimax approach. A performance

index (the combined cost, which includes average fuzzy

system performance and control effort) is proposed based on

the fuzzy information. The optimal design problem associ-

ated with the control can then be solved by minimizing the

performance index. The unique closed-form optimal gain

and the cost are explicitly shown. The resulting control de-

sign is systematic and is able to guarantee the deterministic

performance as well as minimizing the cost. In the end, an

example is chosen for demonstration.

Keywords Fuzzy mechanical systems � Fuzzy set theory �
Robust control � Optimal design

1 Introduction

There always exist unnoticeable and unknown aspects of

the real system in the dynamic model which captures

prominent features of the mechanical system. Researches

on mechanical system control have always been very ac-

tive, especially on handling uncertainties in the system.

Exploring uncertainty and determining what is known and

what is unknown about the uncertainty is very important.

Once the bound information of the uncertainty is clearly

identified, we can use this known bound information to

develop deterministic control approaches. The well-known

H2/H? control [17, 20], the Lyapunov-based control

[6, 19], the sliding mode control [24], and so on contribute

to this deterministic approach. When the known portion

cannot be completely isolated from the unknown, one may

take the stochastic control approach. The classic Linear–

Quadratic–Gaussian control [23] is in such domain.

The stochastic dynamical system merges the probability

theory with system theory and has been the most out-

standing since 1950s. Kalman initiated the effort of looking

into the estimation problem and control problem [11, 12] in

the state space framework when a system is under

stochastic noise. Although the stochastic approach is quite

self-contained and an impressive arena of practitioners,

concerns on the probability theory’s validity in describing

the real world does exist. That is to say, the link between

the stochastic mathematical tool and the physical world

might be loose. Kalman, among others, despite his early

devotion to stochastic system theory now contends that the

probability theory might not be all that suitable to describe

the majority of randomness [13].

The uncertainty in engineering is often acquired via

observed data and then analyzed by the practitioner.

However, the observed data are, by nature, always limited

and the uncertainty is unlikely to be exactly repeated many

times. The earthquake data can be an example for inter-

pretation [22]. Hence, any interpretation via the frequency

of occurrence, which requires a large number of repeti-

tions, might sometimes be limited due to a lack of basis. As
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a result, the fuzzy view via the degree of occurrence may

be considered as an alternative in certain applications. We

can find more discussions on the relative advantages of

fuzziness versus probability in Bezdek [2].

Fuzzy theory was initially introduced to describe in-

formation (for example, linguistic information) that is in

lack of a sharp boundary with its environment [26]. Most

interest in fuzzy logic theory is attracted to fuzzy reasoning

for control, estimation, decision-making, etc. Therefore,

the merge between the fuzzy theory and system theory

(fuzzy dynamical system) has been less focused on. Past

efforts on fuzzy dynamical systems can be found in Hanss

[9], Bede et al. [1], Lee et al. [15], Huang et al. [10], and

Xu et al. [25]. We stress that these are different from the

very popular Takagi–Sugeno model or other fuzzy if–then

rules-based models. In this paper, from a different angle,

we employ the fuzzy theory to describe the uncertainty in

the mechanical system and then propose optimal robust

control design of fuzzy mechanical systems.

The main contributions are fourfold. First, we not only

guarantee the deterministic performance (including uniform

boundedness and uniform ultimate boundedness), but also

explore fuzzy description of system performance should the

fuzzy information of the uncertainty be provided. Third, we

propose a robust control which is deterministic and is not the

usual if–then rules-based. The resulting controlled system is

uniformly bounded and uniformly ultimately bounded proved

via the Lyapunov minimax approach. Fourth, a performance

index (the combined cost, which includes average fuzzy sys-

tem performance and control effort) is proposed based on the

fuzzy information. The optimal design problem associated

with the control can then be solved by minimizing the per-

formance index. In the end, the unique closed-form solution of

optimal gain and the cost are explicitly presented. The re-

sulting control design is systematic and is able to guarantee the

deterministic performance as well as minimizing the cost.

2 Fuzzy mechanical systems

Consider the following uncertain mechanical system:

MðqðtÞ; rðtÞ; tÞ€qðtÞ þ VðqðtÞ; _qðtÞ; rðtÞ; tÞ þ GðqðtÞ; rðtÞ; tÞ
þ TðqðtÞ; _qðtÞ; rðtÞ; tÞ
¼ sðtÞ:

ð2:1Þ

Here q0 is the time (i.e., the independent variable), q 2
Rn is the coordinate, _q 2 Rn is the velocity, €q 2 Rn is the

acceleration, r 2 Rp is the uncertain parameter, ands 2 Rn

is the control input. Mðq; r; tÞ 2 Rn�n is the inertia matrix,

Vðq; _q;r; tÞ 2 Rn is the Coriolis/centrifugal force vector,

Gðq; r; tÞ 2 Rn is the gravitational force vector, and

Tðq; _q; r; tÞ 2 Rn is the friction force and external distur-

bance or force (we omit arguments of functions where no

confusions may arise).

Assumption 1 The functions M(�), V(�), G(�), and T(�) are

continuous (Lebesgue measurable in t). Furthermore, the

bounding set R is known and compact.

Assumption 2 (i) For each entry of q0i, namely q0i,

i = 1, 2,…, n, there exists a fuzzy set Q0i in a universe of

discourse Ni � R characterized by a membership function

lNi : Ni ! 0; 1½ �. That is,

Q0i ¼ ðq0i; lNi q0ið ÞÞjq0i 2 Nif g: ð2:2Þ

Here Ni is known and compact. (ii) For each entry of the

vector r(t), namely ri tð Þ, i = 1, 2,…, p, the function ri �ð Þ
is Lebesgue measurable. (iii) For each ri tð Þ; there exists a

fuzzy set Si in a universe of discourse Ri � R characterized

by a membership function li : Ri ! 0; 1½ �. That is,

Si ¼ fðri; liðriÞÞjri 2 Rig: ð2:3Þ

Here Ri is known and compact.

Remark Assumption 2 imposes fuzzy restriction on the

uncertainty q0 and r tð Þ. We employ the fuzzy description on

the uncertainties in the mechanical system. This fuzzy de-

scription earns much more advantage than the probability

avenue which often requires a large number of repetitions to

acquire the observed data (always limited by nature).

Assumption 3 The inertia matrix M q; r; tð Þ in me-

chanical systems is uniform positive definite, that is, there

exists a scalar constant r[ 0 such that

Mðq; r; tÞ� cI ð2:4Þ

for all q 2 Rn:

Remark We emphasize that this is an assumption, not a

fact. There are cases that the inertia matrix may be positive

semi-definite (hence, c = 0). One example is documented

in McKerrow [18] where the generalized inertia matrix

M ¼ ml22 cos2 h2 0

0 ml22

� �
: ð2:5Þ

Thus det M½ � ¼ 0 if h2 ¼ 2n þ 1ð Þ p
2
; n ¼ 0;

�1;�2; . . .. That is to say, the generalized inertia matrix M

is singular. When h2 ¼ 2n þ 1ð Þ p
2
; n ¼ 0;�1;�2; . . .,

the kinetic energy 1
2
_qTM _q ¼ 0; 8 _h1 which means the

rotation does not bring up kinetic energy.

Assumption 4 There is a constant c , such that for all

q; tð Þ 2 Rn � R; r 2 R; the inertial matrix M q; r; tð Þ is

bounded as

kMðq; r; tÞk� c: ð2:6Þ
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Unless otherwise stated, �k k always denotes the Euclidean

norm (i.e., �k k2). The l1-norm are sometimes used and

indicated by subscript 1.

Theorem 1 There always exists the factorization

V q; _q; r; tð Þ ¼ C q; _q; r; tð Þ _q ð2:7Þ

such that _M q; _q; r; tð Þ 	 2C q; _q; r; tð Þ is skew symmetric

[21]. Here _M q; _q; r; tð Þ is the time derivative of M q; r; tð Þ.

Remark To satisfy V ¼ Cq
:
, the matrix C may not be

unique. But if you also want M
:
	2C to be skew symmetric,

then the particular choice of C should be defined as

cij ¼
1

2

Xn
k¼1

omij

oqk
_qk þ

1

2

Xn
k¼1

omik

oqj
	 omjk

oqi

� �
_qk; ð2:8Þ

where cij is the ij-element of matrix C.

3 Robust control design of fuzzy mechanical
systems

We wish the mechanical system to follow a desired tra-

jectory qd tð Þ; t 2 t0; t1½ �, with the desired velocity _qd tð Þ.
Assume qdð�Þ : ½t0;1� ! Rn is of class C2 and _qd tð Þ,€qd tð Þ,
and €qd tð Þ are uniformly bounded. Let

e tð Þ ¼ q tð Þ 	 qd tð Þ; ð3:1Þ

and hence _e tð Þ ¼ _q tð Þ 	 _qd tð Þ; €e tð Þ ¼ €q tð Þ 	 €qd tð Þ. The

system (2.1) can be rewritten as

M e þ qd; r; t
� �

€e þ €qd
� �

þ C e þ qd; _e þ _qd; r; t
� �

_e þ _qd
� �

þ G e þ qd; r; t
� �

þ T e þ qd; e
: þ _qd; r; t

� �
¼ s:

ð3:2Þ

The functions M(�), C(�), G(�), and T(�) can be decom-

posed as

:

M e þ qd; r; t
� �

¼ M e þ qd; t
� �

þ DMðe þ qd; r; tÞ;
Cðe þ qd; _e þ _qd; r; tÞ ¼ Cðe þ qd; _e þ _qd; r; tÞ

þ DCðe þ qd; _e þ _qd; r; tÞ;
Gðe þ qd;r; tÞ ¼ G e þ qd; t

� �
þ DGðe þ qd; r; tÞ;

Tðe þ qd; _e þ _qd; r; tÞ ¼ T ðe þ qd; _e þ _qd; r; tÞ
þ DTð _e þ qd; _e þ _qd; r; tÞ;

;

ð3:3Þ

where M;C;G; and T are the nominal terms of corre-

sponding matrix/vector and DM;DC;DG; and DT are the

uncertain terms which depend on r. We now define a

vector

U e; _e; r; tð Þ :

¼ 	DM eþ qd; r; t
� �

€qd 	 S _e
� �

	 DC eþ qd; _eþ _qd; r; t
� �

_qd 	 Se
� �

	 DGðeþ qd; r; tÞ
	 DT eþ qd; _eþ _qd; r; t

� �
;

ð3:4Þ

where S ¼ diag si½ �n�n, si [ 0 is a constant, i = 1, 2,…, n.

Obviously U 
 0 if all uncertain terms vanish.

Assumption 5 There are fuzzy numbers fK _qd; €qd;ð
e; _e; r; tÞ ’s and scalars qK _qd; €qd; e; _e; r; tð Þ’s, k = 1, 2,…,

r, such that

Uk k� 1̂1 1̂2 � � � 1̂r½ �

q̂1

q̂2

..

.

q̂r

2
6664

3
7775 ¼: f̂T e; _e; r; tð Þq̂ e; _e; tð Þ:

ð3:5Þ

From (3.5), we have

k U k � k f̂ kk q̂ k¼: fq: ð3:6Þ

Remark One can employ fuzzy arithmetic and decom-

position theorem (see the Appendix) to calculate the fuzzy

number f based on the fuzzy description of ri’s (As-

sumption 2).

We introduce the following desirable deterministic dy-

namical system performance.

Definition 1 Consider a dynamical system

_n tð Þ ¼ f n tð Þ; tð Þ; n t0ð Þ ¼ n0: ð3:7Þ

The solution of the system (suppose it exists and can be

continued over ½t0;1Þ) is uniformly bounded if for any

r[ 0 with n0k k� r, there is d rð Þ[ 0 with n0k k� d rð Þ for

all t� t0. It is uniformly ultimately bounded if for n0k k� r

there are d rð Þ[ 0 and Tðd rð Þ; rÞ� 0 such that n0k k� d rð Þ
for all t� t0 þ Tðd rð Þ; rÞ.Let

e tð Þ :¼ e tð Þ _e tð Þ½ �T: ð3:8Þ

The control design is to render the tracking error vector e(t)

to be sufficiently small. We propose the control as

s tð Þ ¼ M €qd 	 S _e
� �

þ C _qd 	 Seð Þ þ Gþ T 	 Pe	 D _e

	 c _eþ Seð Þq2;

ð3:9Þ

where P, D are positive definite diagonal matrices and the

scalar c :¼ cr [ 0: The scalar c is a constant design

parameters.

Theorem 2 Subject to Assumptions 1–5, the control (3.9)

renders e tð Þ of the system (3.2) to be uniformly bounded
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and uniformly ultimately bounded. In addition, the size of

the ultimate boundedness ball can be made arbitrarily

small by suitable choices of the design parameters.

Remark The control sðtÞ is based on the nominal system,

the tracking error e(t), the bound of uncertainty, and the

design parameters. Therefore, this proposed control is de-

terministic and is not if–then rules-based.

4 Proof of Theorem 2

The mechanical system with the proposed control is

proved to be stable in this section. The chosen Lyapunov

function candidate is shown to be legitimate and then the

proof of stability follows via Lyapunov minimax ap-

proach [7, 16].

The Lyapunov function candidate is chosen as

V eð Þ ¼ 1

2
_eþ Seð ÞTM _eþ Seð Þ þ 1

2
eT P þ SDð Þe:

V(e) ¼ 1:
ð4:1Þ

To prove V is a legitimate Lyapunov function candidate,

we shall prove that V is (globally) positive definite and

decrescent. By (2.4), we have

V eð Þ� 1

2
c k _eþ Se k2 þ 1

2
eT Pþ SDð Þe

¼ 1

2
c
Xn
i¼1

_e2
i þ 2si _eiei þ s2

i e
2
i

þ 1

2

Xn
i¼1

ðpi þ sidiÞe2
i ¼

1

2

Xn
i¼1

ei _ei½ �Wi

ei

_ei

� �
;

ð4:2Þ

where si, pi’s, and di’s are from (3.4) and (3.9), ei and _ei are

the i-th components of e and _e, respectively, and

Wi ¼
cs2

i þ poi þ sidoi csi
csi c

� �
: ð4:3Þ

It can be easily verified that Wi [ 0 8 i. Thus, by letting

k ¼ min 1
2
km W1ð Þ; � � � ; 1

2
km Wnð Þ

� �
(hence k[ 0), V is

shown to be positive definite:

V � 1

2

Xn
i¼1

km Wið Þðe2
i þ _e2

i Þ� k ek k2: ð4:4Þ

By Assumption 4, we have

V � k _eþ Se k2 cþ eT P þ SDð Þe: ð4:5Þ

For the first term on the right-hand side,

c _eþ Sek k2¼ c _eþ Sek kTð _eþ SeÞ

¼ c e _e½ � S2 S

S I

� �
e

_e

� �
� c kM

S2 S

S I

� �
k e k2

¼: cs ek k2:

ð4:6Þ

For the second term on the right-hand side, by Ray-

leigh’s principle,

eT P þ SDð Þe� kM P þ SDð Þ ek k2: ð4:7Þ

With (4.6) and (4.7) into (4.5), we have

V � cs ek k2þkM Pþ SDð Þ ek k2¼: k ek k2; ð4:8Þ

where k ¼ cs þ kM P þ SDð Þ: Note that k in (4.8) is a

strictly positive constant, which implies that V is decres-

cent. From (4.4) and (4.8), V is a legitimate Lyapunov

function candidate.

Now, we prove the stability of the mechanical system

with the proposed control. For any admissible n �ð Þ, the time

derivative of V along the trajectory of the controlled me-

chanical system of (3.2) is given by

_V ¼ _e þ Seð ÞTM €eþ S _eð Þ þ 1

2
_eþ Seð ÞT _M _eþ Seð Þ

þ eT Pþ SDð Þ _e: ð4:9Þ

By applying €e ¼ €q	 €qd and Eq. (2.1), the first two terms

become

_eþ Seð ÞTM €eþ S _eð Þ þ 1

2
_eþ Seð ÞT _M _eþ Seð Þ

¼ _eþ Seð ÞTðM€q	M€qd þMS _eþ 1

2
_M _eþ Seð ÞÞ

¼ _eþ Seð ÞTðs	 C _eþ _qd
� �

	 G	 T 	M€qd þMS _e

þ 1

2
_M _eþ Seð ÞÞ

¼ _eþ Seð ÞTðs	 C _qd 	 Se
� �

	 G	 T 	M€qd þMS _e

	 C _eþ Seð Þ þ 1

2
_M _eþ Seð ÞÞ

¼ _eþ Seð ÞT s	 C _qd 	 Se
� �

	 G	 T 	M€qd þMS _e
� �

þ _eþ Seð ÞT 1

2
_M 	 C

� �
ð _eþ SeÞ:

ð4:10Þ

With Theorem 1, (3.3) and (3.9), we can get

_eþ Seð ÞTM €eþ S _eð Þ þ 1

2
_eþ Seð ÞT _M _eþ Seð Þ

¼ _eþ Seð ÞT s	 C _qd 	 Se
� �

	 G	 T 	M€qd þMS _e
� �

¼ _eþ Seð ÞTfM €qd 	 S _e
� �

	M €qd 	 S _e
� �

þ C _qd 	 Se
� �

	 C _qd 	 Se
� �

þ G	 Gþ T 	 T 	 cq2 _eþ Seð Þ 	 Pe

	 D _eg
¼ _eþ Seð ÞTf	DM €qd 	 S _e

� �
	 DC _qd 	 Se

� �
	 DG

	 DT 	 cq2 _eþ Seð Þ 	 Pe	 D _eg:
ð4:11Þ
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By (3.4)–(3.6),

_eþ Seð ÞTM €eþ S _eð Þ þ 1

2
eþ Seð ÞT _M _eþ Seð Þ

¼ _eþ Seð ÞT U	 cq2 _eþ Seð Þ
�

	 Pe	 D _e� � _eþ Sek k Uk k 	 cq2 _eþ Sek k2

	 _eþ Seð ÞT Peþ D _eð Þ� fq _eþ Sek k

	 cq2 _eþ Sek k2	 _eþ Seð ÞT Peþ D _eð Þ� f2

4c

	 _eþ Seð ÞT Peþ D _eð Þ: ð4:12Þ

Since

	 _eþ Seð ÞT Pe þ D _eð Þ ¼ 	eTPSe	 _eTD _e	 eT Pþ SDð Þe;
ð4:13Þ

we have

_eþ Seð ÞTM €eþ S _eð Þ þ 1

2
_eþ Seð ÞT _M _eþ Seð Þ� f2

4c
	 eTPSe	 _eTD _e	 eT Pþ SDð Þe:

ð4:14Þ

Substituting (4.14) into (4.9), we get

_V � d
c
	 eTPSe 	 _eTD _e	 eT Pþ SDð Þeþ eT Pþ SDð Þe

¼ f2

4c
	 eTPSe	 _eTD _e� f2

4c
	 k ek k2;

ð4:15Þ

where k ¼ min kmin PSð Þ; kmin Dð Þf g: This in turn means

that _V is negative definite for all ek k such that

d
c
	 k k e k2 \0; ð4:16Þ

where d ¼ f2

4
. Since all universes of discourse Ri’s are

compact (hence closed and bounded), d is bounded. In ad-

dition, both c and k are crisp. Thus, _V is negative definite for

sufficiently large k e k. The uniform boundedness perfor-

mance follows [6]. That is, given any r[ 0 with k e t0ð Þ k
� r; where t0 is the initial time, there is a d(r) given by

d rð Þ ¼
r k=k
� 	

R k=k
� 	1=2

( 1=2

if r [ R;
if r � R;

ð4:17Þ

R ¼ d
kr

� �1=2

; ð4:18Þ

such that k e tð Þ k � d rð Þ for all t� t0: Uniform ultimate

boundedness also follows. That is, given any d with

d[R k k=k k1
2; ð4:19Þ

we have k e tð Þ k � d; 8t� t0 þ T d; rð Þ, with

T d; rð Þ ¼
0

kr2 	 kR
2

kR
2 	 d=c

if r�R;
otherwise;

8<
: ð4:20Þ

R ¼ d k=k
� 	1=2

: ð4:21Þ

The stability of the mechanical system is guaranteed and

tracking error k e k can be made arbitrarily small by

choosing large k and/or c. h

Remark We have shown that fundamental properties ex-

plored in Sect. 3 are quite useful in constructing the le-

gitimate Lyapunov function. The first five terms of the

control scheme (3.9) are only for the nominal system (i.e.,

the system without uncertainty) while the last term is to

compensate the uncertainty. For the last term, the magni-

tude c is still free for we still have freedom on designing c
to determine the size of the ultimate boundedness. The

larger the value of c is, the smaller the size. This stands for

a trade-off between the system performance and the cost

which suggests an interesting optimal quest for the control

design. We will pursue the optimal design in the following

section.

5 Optimal gain design

Sections 3 and 4 show that a system performance can be

guaranteed by a deterministic control scheme. By the

analysis, the size of the uniform ultimate boundedness re-

gion decreases as c increases. As c approaches to infinity,

the size approaches to 0. This rather strong performance is

accompanied by a (possibly) large control effort, which is

reflected by c (assuming r has been chosen). From the

practical design point of view, the designer may be inter-

ested in seeking an optimal choice of c for a compromise

among various conflicting criteria. This is associated with

the minimization of a performance index.

We first explore more on the deterministic performance

of the uncertain mechanical system. Define

j ¼ k
k
; ð5:1Þ

where k is from (4.8) and k is from (4.15) and j[ 0. Then

by (4.8) and (4.15), we get

_V � d
c
	 k ek k2¼ d

c
	 1

j
k ek k2 � d

c
	 1

j
V ð5:2Þ

with V0 ¼ V t0ð Þ ¼ V e t0ð Þð Þ. This is a differential

inequality [8] whose analysis can be made according to

Chen [4] as follows.

Definition 2 If w w; tð Þ is a scalar function of the scalars

w, t in some open connected set D, we say a function
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w tð Þ; t0 � t� t; t[ t0 is a solution of the differential

inequality [8]

_w tð Þ�wðw tð Þ; tÞ ð5:3Þ

on t0; t½ Þ if w(t) is continuous on t0; t½ Þ and its derivative on

t0; t½ Þ satisfies (5.3).

Theorem 3 Let w(u(t), t) be continuous on an open

connected set D [ R2 and such that the initial value problem

for the scalar equation [8]

_/ tð Þ�wð _/ tð Þ; tÞ; u t0ð Þ ¼ /0 ð5:4Þ

has a unique solution. If u(t) is a solution of (5.4) on

t0 � t� t and w(t) is a solution of (5.3) on t0 � t� t with

w t0ð Þ�u t0ð Þ, then w t0ð Þ�u t0ð Þ for t0 � t� t.

Instead of exploring the solution of the differential

inequality, which is often non-unique and not available, the

above theorems suggest that it may be feasible to study the

upper bound of the solution. The reason is, however, based

on that the solution of (5.4) is unique.

Theorem 4 Consider the differential inequality (5.3) and

the differential Eq. (5.4). Suppose that for some constant

L[ 0, the function w(�) satisfies the Lipschitz condition [4]

w v1; tð Þ 	 w v2; tð Þj j � L v1 	 v2j j ð5:5Þ

for all points v1; tð Þ; v2; tð Þ 2 D: Then any function w(t) that

satisfies the differential inequality (5.3) for t0 � t� t sat-

isfies also the inequality

w tð Þ�u tð Þ ð5:6Þ

for t0 � t� t.

We consider the differential equation

_r tð Þ ¼ 	 1

j
r tð Þ þ d

c
; r t0ð Þ ¼ V0: ð5:7Þ

The right-hand side satisfies the global Lipschitz condition

with L = 1/j. We proceed with solving the differential

Eq. (5.7). This result in

r tð Þ ¼ V0 	
jd
c

� �
exp 	 1

j
t 	 t0ð Þ þ jd

c

� �
: ð5:8Þ

Therefore,

V tð Þ� r tð Þ ð5:9Þ

or

V tð Þ� ðV0 	
jd
c
Þexp 	 1

j
t 	 t0ð Þ

� �
þ jd

c
ð5:10Þ

for all t� t0. By the same argument, we also have, for any

ts and any s� ts;

VðsÞ� Vs 	
jd
c

� �
exp 	 1

j
s 	 tsð Þ

� �
þ jd

c
; ð5:11Þ

whereVs ¼ V tsð Þ ¼ V e tsð Þð Þ. The time ts is when the control

scheme (3.9) starts to be executed. It does not need to be t0.

By (4.4) V eð Þ� k ek k2
, the right-hand side of (5.11)

provides an upper bound of k ek k2
. This in turn leads to an

upper bound of ek k2
. For each s� ts; let

g d; c; t; tsð Þ :¼ Vs 	
jd
c

� �
exp 	 1

j
s 	 tsð Þ

� �
: ð5:12Þ

g1ðd; cÞ :¼ jd
c
: ð5:13Þ

Notice that for each d; c; ts; gðd; c; s; tsÞ ! 0 as s ! 1:
One may relate gðd; c; t; t0Þ to the transient performance

and g1ðd; cÞ the steady-state performance. Since there is no

knowledge of the exact value of uncertainty, it is only real-

istic to refer to gðd; c; t; t0Þ and g1ðd; cÞ while analyzing the

system performance. We also notice that both gðd; c; t; t0Þ
and g1ðd; cÞ are dependent on d. The value of d is not known

except that it is characterized by a membership function.

Definition 3 Consider a fuzzy set [5]

N ¼ ðv; vNðvÞÞjv 2 Nf g: ð5:14Þ

For any function f: N ? R, the D-operation D½f ðmÞ� is

given by

D½f ðmÞ� ¼
R
N
f mð ÞlNðvÞdvR
N
lNðvÞdv

: ð5:15Þ

Remark In a sense, the D-operation D f mð Þ½ � takes an av-

erage value of f(m) over lN mð Þ. In the special case that

f mð Þ ¼ m; this is reduced to the well-known center-of-

gravity defuzzification method [14]. Particularly, if N is

crisp (i.e., lNðmÞ ¼ 1 for all m 2 N), D½f ðmÞ� ¼ f ðmÞ:

Lemma 1 For any crisp constant a [ R,

D f ðmÞ½ � ¼
R
N
af mð ÞlNðvÞdvR
N
lNðvÞdv

¼ a

R
N
f mð ÞlNðvÞdvR
N
lNðvÞdv

¼ D½f ðmÞ�:

ð5:16Þ

We now propose the following performance index: For any

ts, let

J c; tsð Þ :

¼ D

Z 1

ts

g2 d; c; s; tsð Þds
� �

þþ aD g2
1
ðd; cÞ

h i

þ bc2

¼: J1 c; tsð Þ þ aJ2 cð Þ þ bJ3 cð Þ;
ð5:17Þ

where a, b[ 0 are scalars. The performance index consists

of three parts. The first part J1 c; tsð Þ may be interpreted as
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the average (via the D-operation) of the overall transient

performance (via the integration) from time ts. The second

part J2 cð Þ may be interpreted as the average (via the D-

operation) of the steady-state performance. The third part

J3 cð Þ is due to the control cost. Both a and b are weighting

factors. The weighting of J1 is normalized to be unity. Our

optimal design problem is to choose c[ 0 such that the

performance index J c; tsð Þ is minimized.

Remark A standard LQG (i.e., linear-quadratic-Gaussian)

problem in stochastic control is to minimize a performance

index, which is the average (via the expectation value

operation in probability) of the overall state and control

accumulation. The proposed new control design approach

may be viewed, loosely speaking, as a parallel problem,

though not equivalent, in fuzzy mechanical systems.

However, one cannot be too careful in distinguishing the

differences. For example, the Gaussian probability distri-

bution implies that the uncertainty is unbounded (although

a higher bound is predicted by a lower probability). In the

current consideration, the uncertainty bound is always fi-

nite. Also, LQG does not take parameter uncertainty into

account.

One can show that

Z 1

ts

g2 d; c; s; tsð Þds ¼ Vs 	
jd
c

� �2Z 1

ts

exp 	 2

j
s	 tsð Þ

� �
ds

¼ Vs 	
jd
c

� �2

	 2

j

� �
exp 	 2

j
s	 tsð Þ

� �
ds







1

ts

¼ Vs 	
jd
c

� �2
2

j
:

ð5:18Þ

Taking the D-operation yields

D r
1
ts
g2 d; c; s; tsð Þds

h i
¼ Vs 	

jd
c

� �2
2

j

" #

¼ D V2
s 	 2Vs

jd
c
þ jd

c

� �2
 !

2

j

" #

¼ D V2
s

� 	
	 2

j
c
D Vsd½ � þ j2

c2
D d2
� 	� �

j
2
:

ð5:19Þ

The last equality is due to Lemma 1. Next, we analyze the

cost J2 cð Þ: Again by Lemma 1, we have

D g2
1 d; cð Þ

� 	
¼ D

jd
c

� �2
" #

¼ j2

c2
D d2
� 	

: ð5:20Þ

With (5.19) and (5.20) into (5.17), we also have

J c; tsð Þ :

¼ D V2
s

� 	
	 2

j
c
D Vsd½ � þ j2

c2
D d2
� 	� �

j
2

þ a
j2

c2
D d2
� 	

þ bc2

¼: j1 	
j2

c
þ j3

c2
þ a

j4

c2
þ bc2; ð5:21Þ

where j1 ¼ j=2ð ÞD V2
s

� 	
; j2 ¼ j2D Vsd½ �; j3 ¼

j3=2ð ÞD d2
� 	

; j4 ¼ j2D d2
� 	

.

The optimal design problem is then equivalent to the

following constrained optimization problem: For any ts,

min
c

J c; tsð Þ subject to c[ 0: ð5:22Þ

By using the performance index in (5.21), we will then

pursue the optimal solution in the next section.

6 The closed-form solution of optimal gain

For any ts, taking the first-order derivative of J with respect

to c

oJ

oc
¼ j2

c2
	 2

j3

c3
	 2a

j4

c3
þ 2bc

¼ 1

c3
j2c	 2j3 	 2aj4 þ 2bc4
� �

:

oJ:

ð6:1Þ

That

oJ

oc
¼ 0 ð6:2Þ

leads to

j2c 	 2j3 	 2aj4 þ 2bc4 ¼ 0 ð6:3Þ

or

j2c þ 2bc4 ¼ 2 j3 þ aj4ð Þ: ð6:4Þ

Equation (6.4) is a quartic equation.

Theorem 6 Suppose D d½ � 6¼ 0. For given j1; j2; j3; j4;

the solution c[ 0 to (6.4) always exists and is unique,

which globally minimizes the performance index (5.21).

Proof Let h cð Þ :¼ j2cþ 2bc4: Then h 0ð Þ ¼ 0 and h �ð Þ
is continuous in c. In addition, since j2 � 0 and b[ 0; hð�Þ
is strictly increasing in c. Since D d½ � 6¼ 0, we have

D d½ �[ 0; D d2
� 	

[ 0; j3; j4[ 0; and therefore 2 j3þð
aj4Þ[ 0 (notice that a, j[ 0). As a result, the solution

c[ 0 to (6.4) always exists and is unique. For the unique

solution c[ 0 that solves (6.4),
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o2J

oc2
¼ 	 1

c4
j2c	 2j3 	 2aj4 þ 2bc4
� �

þ 1

c3
j2 þ 8bc3
� �

¼ 1

c3
j2 þ 8bc3
� �

[ 0: ð6:5Þ

Therefore, the positive solution c[ 0 of the quartic

Eq. (6.4) solves the constrained minimization problem

(5.22). h

Remark In the special case that the fuzzy sets are crisp,

D[d] = d, D[d2] = d2. The current setting still applies. The

optimal design can be found by solving (6.4).The solutions

of the quartic Eq. (6.4) depend on the cubic resolvent [3]

z3 þ 	4r1ð Þz	 r2
2 ¼ 0; ð6:6Þ

where

r1 ¼ 	 1

b
j3 þ aj4ð Þ; ð6:7Þ

r2 ¼ j2

2b
: ð6:8Þ

Let p1 :¼ 	4r1; p2 :¼ 	r2
2. The discriminant H of the cubic

resolvent is given by

H ¼ p1

3

� �3

þ p2

2

� �3

: ð6:9Þ

Since r\ 0, H[ 0. The solutions of the cubic resolvent

are given by

z1 ¼ uþ w; ð6:10Þ

z2 ¼ 	ðuþ wÞ
2

þ ðu	 wÞi
ffiffiffi
3

2

r
; ð6:11Þ

z3 ¼ 	ðuþ wÞ
2

	 ðu	 wÞi
ffiffiffi
3

2

r
; ð6:12Þ

where

u ¼ 	 p2

2
þ

ffiffiffiffi
H

p� �1
3

; ð6:13Þ

w ¼ 	 p2

2
	

ffiffiffiffi
H

p� �1
3

: ð6:14Þ

The cubic resolvent possesses one real solution and two

complex conjugate solutions. This in turn implies that the

quartic equation has two real solutions and one pair of

complex conjugate solutions. The maximum real solution,

which is positive and is therefore the optimal solution to

the constrained optimization problem, of the quartic

equation is given by

copt ¼
1

2
ð ffiffiffiffiffi

z1

p þ ffiffiffiffiffi
z2

p þ ffiffiffiffiffi
z3

p Þ: ð6:15Þ

By using (6.4), the cost J in (5.21) can be rewritten as

J ¼ j1 	
j2

c
þ j3

c2
þ a

j4

c2
þþ bc2

¼ j1 	
1

c2
j2cþ 2bc4
� �

þ j3

c2
þ a

j4

c2
þ 3bc2

¼ j1 	
1

c2
2 j3 þ aj4ð Þ½ � þ j3

c2
þ a

j4

c2
c2 þ 3bc2

¼ j1 	
1

c2
j3 þ aj4 	 3bc4
� �

: ð6:16Þ

With (6.15), the minimum cost is given by

Jmin ¼ j1 	
4ffiffiffiffi

z1
p þ ffiffiffiffi

z2
p þ ffiffiffiffi

z3
p� �

j3 þ aj4 	
3

16
b

ffiffiffiffi
z1

p þ ffiffiffiffi
z2

p þ ffiffiffiffi
z3

pð Þ4

� �
: ð6:17Þ

Remark Combining the results of Sects. 4, 5, 6, and 7, the

robust control scheme (3.9) using the optimal design of

c[ 0 renders the tracking error e of the closed-loop me-

chanical system uniformly ultimately bounded (with the

initial state eðtsÞ). In addition, the performance index J in

(5.21) is globally minimized.

The optimal design procedure is summarized as follows:

Step 1 For a given inertia matrix M, obtain c and c.

Step 2 According to Uk k in (3.4), obtain f and q in (3.6).

Step 3 Based on the V eð Þe tsð ÞÞ: V (e) in (4.1), solve for

the k in (4.8). For given S, P’s, and D’s, solve for the k in

(4.15). Thus, j is given in (5.1).

Step 4 Using the f obtained in Step 2 and the Vs in

(5.11), calculate j1; j2; j3; j4 in (5.21) based on the D-

operation.

Step 5 For given a and b, solve for the copt in (6.15) and

the minimum cost given in (6.17).

Step 6 The optimal robust control scheme is given in

(3.9).

7 Some limiting performance

As was shown earlier, the tracking error e of the con-

trolled system enters the uniform ultimate boundedness

region after a finite time and stays within the region

thereafter. Thus, it is interesting to consider, in the lim-

iting case, only the cost associated with this portion of

performance.
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In the limiting case, the transient performance cost

J1 c; tsð Þ is not considered. The cost is then dictated by that

of the steady-state performance and the control gain:

J cð Þ ¼ aJ2 cð Þ þ bJ3 cð Þ ¼ a
j4

c2
þ bc2: ð7:1Þ

The quartic Eq. (6.4) is reduced to

bc4 ¼ aj4: ð7:2Þ

Its positive solution is given by

copt ¼
a
b
j4

� �1
4

: ð7:3Þ

With (7.2) into (7.1),

J ¼ 1

c2
aj4 þ bc4
� �

¼ 2aj4

c2
: ð7:4Þ

Using (7.3), the minimum cost is then

Jmin ¼ 2
ffiffiffiffiffiffiffiffiffiffi
abj4

p
: ð7:5Þ

If the weighting a ! 1; then in the quartic equation,

the positive solution c ! 1: This simply means that the

relative cost of the ultimate boundedness region (as is

given by aJ2 cð ÞÞ is high and the control gain, which is

relatively cheap, is turned high.

If b ! 1; then in the quartic equation, the positive

solution c ! 0; this shows the other extreme case when the

control is very expensive.

8 Application

Consider the two-link planar manipulator on a vertical

plane as shown in Fig. 1. This manipulator is used to

convey the load to a designated place. The load may be

parts in the factory, solid waste after an earthquake, or

packages in the storehouse. Considering the cost, humans

first sort out the light, medium, and heavy things based on

their own fuzzy judge. Therefore, the load is uncertain and

should be described in a fuzzy way.

Friction is not considered. The masses of links one and

two are m1 and m2, respectively. The lengths are l1 and l2.

The load mg is uncertain. External torques s ¼ ½l1l2�T (the

control) are imposed on the joints.

We choose two generalized coordinates q :¼ ½q1; q2�T ¼
½h1; h2�T to describe the system. The two coordinates are

independent of each other. The equation of motion can be

written in matrix form using Lagrange’s equation as

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ þ Tðq; _qÞ ¼ s; ð8:1Þ

where

q¼
h1

h2

" #
; _q¼

_h1

_h2

2
4

3
5; €q¼

€h1

€h2

2
4

3
5; s¼

u1

u2

" #

MðqÞ

¼

1

3
ðm1l

2
1 þm2l

2
2Þþm2l

2
1 þm2l1l2 cosh2

1

3
m2l

2
2 þ

1

2
m2l1l2 cosh2

1

3
m2l

2
2 þ

1

2
m2l1l2 cosh2

1

3
m2l

2
2

0
B@

1
CA

Cðq; _qÞ

¼
	m2l1l2 sinh2

_h2 	1

2
m2l1l2 sinh2

_h2

1

2
m2l1l2 sinh2

_h1 0

0
B@

1
CA

GðqÞ

¼

1

2
m1gl1 cosh1 þm2gl1 cosh1 þ

1

2
m2gl2 cosðh1 þh2Þ

1

2
m2gl2 cosðh1 þh2Þ

0
B@

1
CA

Tðq; _qÞ¼
mgðl1 cosh1 þ l2 cosðh1 þh2ÞÞ
mgl2 cosðh1 þh2Þ

� �
:

ð8:2Þ

The desired trajectory qdðtÞ, the desired velocity and

acceleration _qdðtÞ, €qdðtÞ are given by

qdðtÞ ¼
hd1

hd2

" #
¼

cos t

sin t

" #
; _qdðtÞ ¼

_hd1
_hd2

" #
¼

	 sin t

cos t

" #
;

€qdðtÞ ¼
€hd1
€hd2

" #
¼

	 cos t

	 sin t

" #
:

ð8:3Þ

By using q ¼ eþ qd; _q ¼ _eþ _qd; €q ¼ €eþ €qd, Eq. (8.1)

can be rewritten as

Hðeþ qdÞ€eþ Hðeþ qdÞ€qd þ Cðeþ qd; _eþ _qdÞð _eþ _qdÞ
þ Gðeþ qdÞ ¼ u; ð8:4Þ

where

MðeþqdÞ

¼

1

3
ðm1l

2
1 þm2l

2
2Þþm2l

2
1 þm2l1l2 cosðe2 þ sin tÞ 1

3
m2l

2
2 þ

1

2
m2l1l2 cosðe2 þ sin tÞ

1

3
m2l

2
2 þ

1

2
m2l1l2 cosðe2 þ sin tÞ 1

3
m2l

2
2

0
B@

1
CA

Cðeþqd; _eþ _qdÞ

¼
	m2l1l2 sinðe2 þ sin tÞð _e2 þ cos tÞ 	1

2
m2l1l2 sinðe2 þ sin tÞð _e2 þ cos tÞ

1

2
m2l1l2 sinðe2 þ sin tÞð _e2 	 sin tÞ 0

0
B@

1
CA

GðeþqdÞ

¼

1

2
m1gl1 cosðe1 þ cos tÞþm2gl1 cosðe1 þ cos tÞþ1

2
m2gl2 cosðe1 þ cos tþ e2 þ sin tÞ

1

2
m2gl2 cosðe1 þ cos tþ e2 þ sin tÞ

0
B@

1
CA

Tðeþqd; _eþ _qdÞ

¼
mgðl1 cosðe1 þ cos tÞþ l2 cosðe1 þ cos tþ e2 þ sin tÞÞ
mgl2 cosðe1 þ cos tþ e2 þ sin tÞ

� �
:

ð8:5Þ
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The masses m1,m2 are known. Therefore, M ¼
M;C ¼ C;G ¼ G and DM ¼ DC ¼ DG ¼ 0. The mass m

is uncertain with m ¼ mþ DmðtÞ, where m is the con-

stant nominal value and Dm is the uncertainty. The

nominal matrix T and the uncertainty matrix DT are

given by

T ¼
mgðl1 cosðe1 þ cos tÞ þ l2 cosðe1 þ cos t þ e2 sin tÞÞ
mgl2 cosðe1 þ cos t þ e2 sin tÞ

� �

DT ¼
Dmgðl1 cosðe1 þ cos tÞ þ l2 cosðe1 þ cos t þ e2 sin tÞÞ
Dmgl2 cosðe1 þ cos t þ e2 sin tÞ

� � :

ð8:6Þ

We choose S to be a 2 9 2 identity matrix. Therefore, we

can get

U :¼ 	DMð€qd 	 S _eÞ 	 DCð _qd 	 S _eÞ 	 DG	 DT ð8:7Þ

Uk k� f̂
Tðe; _e;r; tÞq̂ðe; _e; tÞ� f̂

��� ��� q̂k k ¼ fq; ð8:8Þ

where

f ¼ Dmk k ð8:9Þ

and

q ¼ gl1 cosðe1 þ cos tÞk k
þ 2gl2 cosðe1 þ cos t þ e2 þ sin tÞk k: ð8:10Þ

For the system, we choose m1 ¼ m2 ¼ 10; m ¼ 1; l1 ¼
l2 ¼ 1; g ¼ 10 and assume the uncertainty Dm is ‘‘close to

0.5,’’ or ‘‘close to 0.3’’ or ‘‘close to 0.1’’ corresponding to

‘‘heavy,’’ or ‘‘medium’’ or ‘‘light’’ and governed by three

corresponding membership functions

heavy : lDm ¼ 2m; 0� m� 0:5
2 	 2m; 0:5� m� 1

�
ð8:11Þ

medium : lDm ¼
10

3
m; 0� m� 0:3

2 	 10

3
m; 0:3� m� 0:6

8><
>: ð8:12Þ

light : lDm ¼ 10m; 0� m� 0:1
2 	 10m; 0:1� m� 0:2

�
ð8:13Þ

Set the design parameters P, and D to be the identity

matrix I2�2. Follow the design procedure, we have

k ¼ 60:68, k ¼ 1 , and j ¼ 60:68. If the load is ‘‘heavy’’,

by using the fuzzy arithmetic and decomposition theorem,

we obtain j1 ¼ 1:7386 � 105, j2 ¼ 3:4842 � 104,

j3 ¼ 893:71, j4 ¼ 29:46. By selecting five sets of

weighting a and b, the optimal gain copt and the corre-

sponding minimum cost Jmin are summarized in Table 1. If

the load is ‘‘medium,’’ we obtain j1 ¼ 1:7386 � 105,

j2 ¼ 2:0914 � 104, j3 ¼ 145:23, j4 ¼ 4:79. By selecting

five sets of weighting a and b, the optimal gain, copt and the

corresponding minimum cost Jmin are summarized in

Table 2. If the load is ‘‘light,’’ we obtain

j1 ¼ 1:7386 � 105, j2 ¼ 6:700 � 103, j3 ¼ 1:4348,

j4 ¼ 0:0474. By selecting five sets of weighting a and b,

the optimal gain copt and the corresponding minimum cost

Jmin are summarized in Table 3.

For numerical simulation, we choose ts ¼ 0 and the

initial condition eð0Þ ¼ ½1111�T . We choose the uncertainty

as Dm ¼ 0:5 þ cosð10tÞ for the heavy load, Dm ¼ 0:3 þ
cosð10tÞ for the medium and Dm ¼ 0:1 þ cosð10tÞ for the

light.

Figure 2 shows comparison of the tracking error norm

ek k trajectory with the proposed control (for the heavy

load, copt ¼ 29:6119 when a ¼ b ¼ 1) and with the nom-

inal PD control (without the part of control that governs the

uncertainty i.e., c ¼ 0). The trajectory ek k with the pro-

posed control enters a much smaller region around 0 after

some time (hence ultimately bounded) than the trajectory

only with the nominal PD control. For the medium and

light load, the figures are similar and also show that the

trajectory ek k with the proposed control is ultimately

bounded, so we do not include the figures here.

9 Conclusions

Fuzzy description of uncertainties in mechanical systems is

employed and we incorporate fuzzy uncertainty and fuzzy

performance into the control design. A new robust control

scheme is proposed to guarantee the deterministic perfor-

mance (including uniform boundedness and uniform ulti-

mately boundedness). The control is deterministic and is

Fig. 1 Planar manipulator with fuzzy uncertain load

190 International Journal of Fuzzy Systems, Vol. 17, No. 2, June 2015

123



not if–then rules-based. The resulting controlled system is

stable proved via the Lyapunov minimax approach. A

performance index is proposed and by minimizing the

performance index, the optimal design problem associated

with the control can be solved. The solution of the optimal

gain is unique and closed-form. The resulting control de-

sign is systematic and is able to guarantee the deterministic

performance as well as minimizing the cost.
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Appendix: fuzzy mathematics

We briefly review some preliminaries regarding fuzzy

numbers and their operations [14]:

Fuzzy number

Let G be a fuzzy set in R, the real number. G is called a

fuzzy number if (i) G is normal, (ii) G is convex, (iii) the

support of G is bounded, and (iv) all a-cuts are closed

intervals in R.

Throughout, we shall always assume the universe of

discourse of a fuzzy set number to be its 0-cut.

Fuzzy arithmetic

Let G and H be two fuzzy numbers and Ga ¼ ½g	a ; gþa �,
Ha ¼ ½h	a ; hþa � be their a-cuts, a 2 ½0; 1�. The addition,

subtraction, multiplication, and division of G and H are

given by, respectively,

ðGþ HÞa ¼ ½g	a þ h	a ; g
þ
a þ hþa � ð9:1Þ

ðG	 HÞa ¼ ½minðg	a 	 h	a ; g
þ
a 	 hþa Þ;maxðg	a þ h	a ; g

þ
a

þ hþa Þ�
ð9:2Þ

ðG:HÞa ¼ ½minðg	a h	a ; g	a hþa ; gþa h	a ; gþa hþa Þ;
maxðg	a h	a ; g	a hþa ; gþa h	a ; gþa hþa Þ�

ð9:3Þ

ðG=HÞa ¼ ½minðg	a =h	a ; g	a =hþa ; gþa =h	a ; gþa =hþa Þ;
maxðg	a =h	a ; g	a =hþa ; gþa =h	a ; gþa =hþa Þ�:

ð9:4Þ

Decomposition theorem

Define a fuzzy set ~Va in U with the membership function

l ~Va
¼ I ~Va

ðxÞ; where I ~Va
ðxÞ ¼ 1 if x 2 ~Va and I ~Va

ðxÞ ¼ 0 if

x 2 U 	 ~Va. Then the fuzzy set V is obtained as

V ¼
[

a2½0;1�

~Va; ð9:5Þ

where [ is the union of the fuzzy sets (that is, sup over

a2½0; 1�).
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Fig. 2 Comparison of fuzzy mechanical system performances

Table 1 Weighting/optimal gain/minimum cost for heavy load

(a, b) a/b copt Jmin

(1, 1) 1 29.6119 1.7648 9 105

(1, 10) 0.1 13.7564 1.7953 9 105

(1, 100) 0.01 13.7564 1.8611 9 105

(10, 1) 10 29.6182 1.7649 9 105

(100, 1) 100 29.6812 1.7650 9 105

Table 2 Weighting/optimal gain/minimum cost for medium load

(a, b) a/b copt Jmin

(1, 1) 1 24.9665 1.7573 9 105

(1, 10) 0.1 11.5916 1.7789 9 105

(1, 100) 0.01 5.3836 1.8255 9 105

(10, 1) 10 24.9682 1.7574 9 105

(100, 1) 100 24.9854 1.7575 9 105

Table 3 Weighting/optimal gain/minimum cost for light load

(a, b) a/b copt Jmin

(1, 1) 1 27.3057 1.7476 9 105

(1, 10) 0.1 8.0327 1.7580 9 105

(1, 100) 0.01 3.7285 1.7803 9 105

(10, 1) 10 17.3058 1.7477 9 105

(100, 1) 100 17.3063 1.7478 9 105
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Based on these, after the operation of two fuzzy num-

bers via their a-cuts, one may apply the decomposition

theorem to build the membership function of the resulting

fuzzy number.
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