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Abstract In this paper, a method using a stereo vision

device and fuzzy control to guide a robot arm to grasp a

target object is proposed. The robot arm has five degrees of

freedom including a gripper and four joints. The stereo

vision device located beside the arm captures images of the

target and the gripper. Image processing techniques such as

color space transformation, morphologic operation, and

3-D position measurement are used to identify the target

object and the gripper from the captured images and esti-

mate their relative positions. Based on the estimated po-

sitions of the gripper and the target, the gripper can

approach and grasp the target using inverse kinematics.

However, since the robot arm’s accuracy of movement may

be affected by gearbox backlash or hardware uncertainty,

the gripper might not approach the desired position with

precision using only inverse kinematics. Therefore, a fuzzy

compensation method is added to correct any position

errors between the gripper and target such that the gripper

can grasp the target. Using the proposed method, the stereo

vision device can not only locate the target object but also

trace the position of the robot arm until the target object is

grasped. Finally, some experiments are conducted to

demonstrate successful implementation of the proposed

method on the robot arm control.

Keywords Robot arm � Fuzzy control � Inverse
kinematics � Image processing

1 Introduction

To control a robot arm, it is necessary that the positions of

this controlled robot arm should be known at all times.

Some external sensors such as the accelerometer and the

resolver are needed in order to estimate the positions of the

robot arm and its gripper. These sensors may be installed

on every actuator to measure the angles of the degrees of

freedom (DOFs) as feedback signals. From the feedback

signals of the robot arm, the pose of the robot arm and the

position of the gripper can be estimated. However, if the

robot arm has many DOFs, the number of sensors should

be equivalent to or even more than the number of DOFs. In

other words, if the robot arm has many DOFs, the cost for

installing those external sensors will increase accordingly.

On the other hand, many studies regarding robot arm

platforms use cameras to identify their targets and to

monitor their workspaces. The paper [1] used a depth im-

age sensor called the Kinect to identify target objects and

control a humanoid robot arm to grasp the target objects.

The paper [2] identified an object using a SIFT algorithm

and a monocular vision device mounted on the gripper. The

paper [3] identified elevator buttons and made a robot arm
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to operate an elevator. Supposing that the monitoring

camera can recognize the position of the gripper and track

it, we will not need to install sensors on the robot arm, thus

reducing the total cost of the robot arm platform. Consid-

ering this cost reduction benefit, this study proposes a

method which uses a stereo vision device to identify and

locate the gripper and the target object, and estimate the

pose of the robot arm.

There have been many studies on the subject of robot

arm control using many different methods, the paper [4]

used interactive teaching to approximate a space of the

knowledge-based grasp. The paper [5] presented an off-line

trajectory generation algorithm to solve the contouring

problem of industrial robot arms. Using the Mitsubishi PA-

10 robot arm platform, the paper [6] proposed a harmonic

drive transmission model to investigate the gravity and

material influence on the robot arm. Then, the robot arm

can be controlled to track a desired trajectory and the

motion error can be further analyzed. The paper [7] applied

a self-configuration fuzzy system to find the inverse kine-

matics solutions for a robot arm. The paper [8] employed

the inverse-kinematics-based two-nested control-loop

scheme to control the tip position using joint position and

tip acceleration feedback. The paper [9] proposed an ana-

lytical methodology of inverse kinematics computation for

a seven-DOF redundant robot arm with joint limits. Using

the inverse kinematics technique, the robot arm in [10] was

designed to push the buttons of an elevator. On the other

hand, the studies relating to position measurement and use

of vision therein are described as follows. The paper [11]

combined a 2-D vision camera and an ultrasonic range

sensor to estimate the position of the target object for the

robot gripper. The paper [12] used two cameras and one

laser to identify the elevator door and to determine its

depth distance. The papers [13–15] proposed photogram-

metric methods to measure the distances of objects using

their features. The paper [16] effectively utilized color

images to achieve 3-D measurement using an RGB color

histogram. The paper [17] proposed an image-based 3-D

measuring system to measure distance and area using a

CCD camera and two laser projectors. The paper [18]

adopted two cameras and a laser projector to measure the

edge of an object regardless of its position.

In this paper, we propose an object-grasping method

using a stereo vision device and fuzzy control so that a

robot arm can accomplish an object-grasping task. The

robot arm has no sensors installed on it, however, the stereo

vision device is set up beside the robot arm. Here, the

stereo vision device plays an important role in perceiving

the position of the robot arm from the feedback signals.

Firstly, the stereo vision device is applied to identify the

position of the target object. Subsequently, the stereo vi-

sion device traces the position of the robot arm and

estimates the angle of each joint on the robot arm using the

inverse kinematic method. However, because the design

and assembly of the robot arm is not that precise, there is

visible backlash in the mechanism. This means that posi-

tion errors caused by backlash or hardware uncertainty

should be considered when the robot arm moves. Herein,

fuzzy compensation method is used to deal with position

errors. The concept of the fuzzy compensation method is to

adjust the amount of robot arm movement using fuzzy

logic. When the robot arm is close to the target, the com-

pensation value is low, on the contrary, when the robot arm

is far from the target, the compensation value is high.

Fusing the position value of the robot arm and compen-

sation values, we can obtain the new angle of each joint of

the robot arm by the inverse kinematic and drive the motors

to the calculated angle. Hence, using the stereo vision to

estimate the configuration of robot arm and the fuzzy

compensation method to reduce the position errors, the

robot arm can accurately take its target object.

This paper is organized as follows. Section 2 introduces

the experimental platform of this study. The principal

stereo vision techniques, robot arm inverse kinematics

analysis, and fuzzy compensation are explained in Sects. 3,

4, and 5, respectively. The results of practical experiment

and discussion are given in Sect. 6. Finally, the conclusion

is given in Sect. 7.

2 Description of Experimental Platform

In this paper, in order to implement an object-grasping task

a platform for a robot arm with a stereo vision device is

designed which contains a PC (laptop computer), a robot

arm, a stereo vision device, and batteries, as shown in

Fig. 1. The utilized devices and their purposes are as de-

scribed below.

2.1 The Robot Arm

The robot arm consists of the main body (four DOFs) and a

gripper (one DOF) as shown in Fig. 2. Its main components

are four SmartMotors, a planetary gearbox, three harmonic

drivers, two AX-12 motors, and some metal components.

The specifications of the SmartMotor and the AX-12 are

shown in Tables 1 and 2, respectively. The SmartMotors

and the AX-12 motors communicate with PC through the

use of the serial ports (RS-232). The biggest torque motor,

SM3416D_PLUS, and a planetary gearbox are installed at

axis 1 to provide larger output torque, thus enabling the

robot arm to lift not only itself but also the target object.

Based on many experiments, the robot arm can lift objects

weighing up to about 2 kg. Since the load of axes 2–4 is

much smaller than that of axis 1, each remaining axis is

194 International Journal of Fuzzy Systems, Vol. 17, No. 2, June 2015

123



composed of a SM2315D motor and a harmonic driver.

The gripper is composed of two AX-12 motors as shown in

Fig. 3. The PC receives the digitized feedback values of the

AX-12 motors which include position, speed, and torque

through the serial ports (RS-232). Therefore, we can use

those status values to ascertain whether the gripper can

successfully grasp an object or not. For instance, when the

robot arm recognizes the target object and the gripper starts

to close, the ML motor’s torque value is positive and the

MR motor’s torque value is negative. If the values are in-

versed, it means the target object has been grasped. To

prevent objects from falling out of the gripper, two pieces

of non-slip materials are pasted inside the grippers. A green

mark is placed on each of the two sides of the gripper in

order to ease the identification of the gripper using the

stereo vision device.

2.2 The Stereo Vision Device

This stereo vision device consists of two Logitech

QuickCam Pro webcams as shown in Fig. 4. It is used to

capture stereo images with a resolution of 320 9 240

pixels at a rate of capture of 30 frames per second. The

captured images are transmitted to the laptop computer

via USB ports. The images are then used to identify, and

calculate the positions of, the object and the gripper in

3-D space.

Fig. 1 The robot arm experimental platform

Axis 1

Axis 2

Axis 3

Axis 4

Fig. 2 Structure of the robot arm

Table 1 Specifications of the SmartMotors

SM3416D_PLUS SM2315D

Input voltage (VDC) 20–48 20–48

Maximum torque (N m) 1.6 0.3

Torque (N m) 1.09 0.19

Speed (RPM) 3100 9000

Communication RS-232 RS-232

Weight (kg) 2.27 0.45

Table 2 Specification of the AX-12 motor

Weight (g) 55

Gear reduction rate 1/254

Input voltage (V) At 7 At 10

Max torque (kgf cm) 12 16.5

Sec/60� 0.269 0.196

Fig. 3 Structure of the gripper
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2.3 The Laptop Computer and Software

In this study, a PC (laptop computer) is used as the control

center. The CPU is an Intel Core 2 Dual P8600 which runs

at 2.4 GHz with 2 GB RAM. Borland C?? Builder is

chosen as the development software and is applied to im-

plement the robot arm control and stereo vision recognition

algorithms. After the stereo vision device captures the

images, the software processes and binarizes the images to

identify the target object. Subsequently, the center point of

target object is designated as the gripper’s desired position.

Then, the green marks on the gripper are identified from

the captured stereo vision images and a motion plan is

calculated to ensure that the robot arm can successfully

move the gripper to the goal position. Finally, the gripper

grasps the target object.

2.4 The Batteries

The batteries consist of a Li-ion battery pack and two lead–

acid batteries. The lead–acid batteries provide the 24 V

power for the SmartMotors by cascading two lead–acid

batteries (a single lead–acid battery can provide 12 V of

output power). The output voltage of the Li-ion battery

pack is 7.4 V, and it provides the power for the AX-12

motors.

3 Stereo Vision Method for Object Position
Measurement

The two webcams, WR and WL, respectively, capture sev-

eral pairs of images (see Fig. 5) as the input images of the

stereo vision. Based on those images, two tasks should be

achieved; one is the target object identification and the

other is the object position measurement. The target object

(or gripper) identification method consists of some image-

processing techniques such as color space transformation,

binarization, morphologic operations, and connected com-

ponents, and is used to find the target object in the captured

images. Next, the image geometry is used to calculate the

position of the target object (or the gripper) in 3-D space.

The identification and positioning of the target object (or

the gripper) are described as follows.

3.1 Target Object Identification

The target object identification is based on the color of

object. In other words, a region is distinguished whether its

color is the same with object’s color. If the region’s color is

same with the object’s color, the region can be identified as

the target object in the image. It is noted that the captured

images use the RGB color model, but the particular color

region is not easily to be distinguished in this color space.

Hence, a color model transformation (1)–(3) is needed in

which the RGB color model is transformed into the HSV

(HSV means hue, saturation, and value) color model [19].

V ¼ maxðR; G; BÞ; ð1Þ

S ¼
½V �minðR; G; BÞ� � 255

V
; if V 6¼ 0;

0; else;

8
<

:
ð2Þ

H ¼

ðG� BÞ � 60

S
; if V ¼ R;

ðB� RÞ � 60

S
þ 180; if V ¼ G;

ðR� GÞ � 60

S
þ 240; if V ¼ B:

8
>>>>><

>>>>>:

ð3Þ

According to the color of the target object, the two

images of the HSV color space are binarized into two bi-

nary images by setting suitable interval values of HSV.

Then, morphologic operators [20] such as erosion, dilation,

and connected component are used to filter the noise as

shown in Fig. 6. To mark the target object, the connected

component is applied to find the center of gravity of the

target object and its coordinate value in those images,

namely, (xL, yL) and (xR, yR). The identification result of a

Fig. 4 Stereo vision device

Fig. 5 Images a and b captured by the webcams WL and WR,

respectively
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target object is shown in Fig. 7, in which the red points

indicate the center of gravity of the target object. Those

two coordinate values for the center of gravity of the target

object will be used to measure the target object’s position

in 3-D space.

3.2 Target Object Position Measurement

In order to measure the target object’s position in 3-D

space, we first need to define the coordinates of the robot

arm upon which the object-grasping system is constructed.

We define the coordinates of this system as shown in

Fig. 8, in which CR and CL are the positions in 3-D space

of the two webcams WR and WL, respectively, and Ow is

the origin point of this system which is the center point

between the two webcams. Ot is the center point of the

object plane. OL and OR are the center pixels of the WL

image and the center pixel of the WR image, respectively. L

indicates the distance between the two webcams. The

hardware parameters are fL and fR which indicate the two

webcam’s focal lengths. T point (xt, yt, zt) is the position of

the target object and its 3-D coordinates. Once this system

is defined, we can use the image geometry [21] to measure

the position of the target object from the WL and WR im-

ages as shown in Eqs. (4)–(6). The obtained position T(xt,

yt, zt) can be considered the goal point of the robot arm.

zt ¼
L

jxLj=fL þ jxRj=fR
; ð4Þ

xt ¼
zt

2

xL

fL
þ xR

fR

� �

; ð5Þ

yt ¼
yL � zt
fL

: ð6Þ

Then, the vision origin Ow is assigned as the world

origin O which means Ow = O, in which the world coor-

dinate is defined in Cartesian coordinate. However, due to

the fact that the vision device is capable of rotation, there

exists a three-phase difference in angle between the vision

and the world coordinates, which can be divided into a

pitch angle wx, a yaw angle wy, and a roll angle wz as

shown in Fig. 9.

Hence, the three-phase rotation matrices are used to

transform the stereo vision coordinate into the world co-

ordinates as in Eq. (7) [22].

x

y

z

2

6
4

3

7
5 ¼

coswx sinwx 0

� sinwx coswx 0

0 0 1

2

6
4

3

7
5

coswy 0 sinwy

0 1 0

� sinwy 0 coswy

2

6
4

3

7
5

�
1 0 0

0 coswz sinwz

0 � sinwz coswz

2

6
4

3

7
5

xt

yt

zt

2

6
4

3

7
5: ð7Þ

After the transformation, the positions (xt, yt, zt) of the

stereo vision coordinate can be transformed into the

Fig. 6 The binarized and filtered images of Fig. 5

Fig. 7 The center of gravity of the target object from the images of

the webcam WL and WR

WL image

WR image
CL

CR

OW

OL

OR

ztxt
yt

(xR,yR)

(xL,yL)

Ot1

Ot2

Ot

Objectplane

L

fL

fR

T

X

Y

Z

S

Fig. 8 The coordinates of this system
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positions (x, y, z) of the world coordinate. In addition, since

there are no sensors such as resolvers or encoders on the

robot arm with which to measure the rotation angles of all

axes and estimate the position of the gripper, a similar

method of object position measurement is applied to find

the position of the gripper.

4 Robot Arm Inverse Kinematics Analysis

To make the robot arm and its gripper move to a desired

position, we must first perform the inverse kinematics

analysis. Figure 10 shows the linking structure of the robot

arm, in which the shoulder joint is Or and is the origin point

of the inverse kinematics coordinate. Q is the elbow joint,

and Gr(xr, yr, zr) is the position of gripper. OrQ and QGr

indicate links 1 and 2 of the robot arm, respectively, the

lengths of which are d1 and d2, respectively. In addition,

there are three rotation angles; h1, h2, and h3, on each of the
Or and Q points. For further geometric derivations, links 1

and 2 are projected on the Yr–Zr plane (see the green line on

Fig. 10), where R and S denote that the projective points of

Gr and Q, respectively. The axis W is a referenced axis

which extends from the projected link 1 on the Yr–Zr plane.

Let us provide three figures to introduce the deviations

of the kinematics of the robot arm. Figure 11a shows a

two-link arm plane, where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ y2r þ z2r

p
is the dis-

tance between the gripper Gr and Or. The elbow joint angle

h3 is obtained as follows.

h3 ¼ p� a; ð8Þ

where

a ¼ cos�1 d21 þ d22 � L2

2d1d2

� �

: ð9Þ

On the Xr–W plane as shown in Fig. 11b, the lifting

movement joint angle h2 on Or point can be derived as

h2 ¼ sin�1 xr

d1 þ d2 cos h3

� �

: ð10Þ

Furthermore, Fig. 11c depicts the projected arm on the Yr–

Zr plane, where L
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2r þ z2r

p
: Consequently, the shoulder

rotation joint angle h1 is obtained.

h1 ¼ bþ c; ð11Þ

where

b ¼ cos�1 L02 þ ððd1 þ d2 cos h3Þ cos h2Þ2 � ðd2 sin h2Þ2

2L0ððd1 þ d2 cos h3Þ cos h2Þ

 !

:

ð12Þ

and

Fig. 9 The different rotary directions between the stereo vision and

world coordinates

Fig. 10 Geometry of the robot arm

(a)

(b)

(c)

Fig. 11 Further geometric analysis for the robot arm. a Links 1 and 2

of the robot arm, b Xr–W plane and c Yr–Zr plane
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c ¼ sin�1 yr

L0

� �
: ð13Þ

The gripper’s grasping angle is controlled by a rotation

angle h4, so that h4 must be adjusted to accord with that the

two pincers are perpendicular to the Xr–Yr plane as shown

in Fig. 12. h4 can be obtained from h2. Since the position of
the gripper Gr is the terminal point of robot arm’s motion,

when axis 2 of the robot arm rotates to angle h2, the gripper
should rotate to an inverse angle to cancel out the depen-

dent rotation. Therefore, we can get the h4 as shown in

Eq. (14). It is noted that the dual pincer gripper will fail to

grasp any object if the two pincers are not perpendicular to

the X–Y plane.

h4 ¼ �h2: ð14Þ

Since the stereo vision and the robot arm are not at the

same coordinate, to successfully grasp a target object, the

coordinates of the stereo vision are transformed into the

coordinate of the robot arm as follows.

Ggrðx; y; zÞ ¼ Or � Oð Þ þ xr; yr; zrð Þ; ð15Þ

where Ggr is the position of the gripper in the world co-

ordinate, (Or - O) is the distance from the world origin to

robot arm origin.

5 Fuzzy Control for Position Error Compensation

Practically, the motor backlash problems and the hardware

uncertainties may affect the 3-D position accuracy of the

inverse kinematics technique, i.e., the gripper can not ac-

curately approach a desired position using only the inverse

kinematics method as shown in Fig. 13. In Fig. 13, the Gact

point indicates the actual position of the gripper which has

had its movement guided by the stereo vision device and

the inverse kinematics method, and the Ggr point indicates

the desired position of the gripper. There is a position error

between Ggr and Gact. Hence, this section presents a fuzzy

control technique to compensate for position errors when

using the stereo vision device. When the gripper is moved

to a predicted position, the stereo vision device measures

the gripper’s actual position as feedback and then calcu-

lates the position error. Subsequently, the fuzzy controller

is used to reduce the position error. The fuzzy controller is

described as follows.

To compensate for errors in the position, the deviation

vector between Gact and Ggr is calculated as shown in

Eq. (16), where D is the deviation and, ex, ey, and ez
indicate deviation on the x-, y-, and z-axis, respectively.

D ¼ Gact � Ggr

¼ ex; ey; ez
� �

:
ð16Þ

Then, let us describe the design of the fuzzy control for

error compensation using the deviation on the x-axis first.

To compensate for the x-axis error, the fuzzy control rule

table is designed as Table 3, in which ex is the deviation

value on the x-axis and denotes the premise part; rx is the
compensation factor and denotes the consequent part. Both

ex and rx are decomposed into five fuzzy sets, including

negative big (NB), negative small (NS), zero (ZO), positive

small (PS), and positive big (PB). Figure 14 shows the

membership functions of the premise part and the conse-

quent part.

In Fig. 14, aix (i = 1, 2,…,5) and uix (i = 1, 2,…,5) are

the parameters of the two membership functions. Consid-

ering the structure of the robot arm in this study, the pa-

rameters of the premise parts and consequent parts are

assigned as Tables 4 and 5, respectively, to deal with the

object-grasping task. Due to the structure defect of the real

robot arm, its backlash is about 5� which cause the position

error of the gripper will be around ±5.5 cm. Furthermore,

it is hard to have exact mathematical equations to express

the model of the robot arm. Therefore, those parameters in

the premise part are set according to the experience of a lot

of experiments. Since the output of the fuzzy control is the

compensation factors, the consequent parts should be very

small. Therefore, after many experiments to adjust those

parameters of the consequent fuzzy sets, we have Table 5.

Fig. 12 Rotation angle h4 of the gripper

Table 3 Fuzzy rule table of error compensation on the x-axis

ex NB NS ZO PS PB

rx NB NS ZO PS PB

Gact

Ggr

Fig. 13 Position error of the gripper
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After the parameters are assigned, the center average

defuzzification method is used to obtain the position

compensation factor rx as follows.

rx ¼
P5

i¼1 u
i
x � BiðexÞ

P5
i¼1 B

iðexÞ
; ð17Þ

where uix is the center value of the consequent part and

Bi(ex) is the membership degree of the premise part. For the

same reason, the compensation factors ry and rz can be

found in a similar manner. Finally, the compensation

factors ri (i = x, y, z) are used to adjust the error as

follows.

ui ¼ ri � ei; ð18Þ

where ui are the compensation values which are used to

compensate for the position error as Eq. (19).

Gcom ¼ Gact þ ux; uy; uz
� �

W
; ð19Þ

where Gcom is the new position of the gripper for ap-

proaching to the desired position.

Overall, the error compensation for the robot arm with

fuzzy controller is shown in Fig. 15. The stereo vision

device captures the actual position of robot arm (Gact) and

calculates the deviation values (D). These deviation values

are as the input into the fuzzy controller to obtain the

compensation values for the robot arm (rx, ry, and rz).
Subsequently, the compensation values are used to get the

new position of the robot arm (Gcom) by inverse kinematics

and then the gripper moves to the new position. The

compensation process will be terminated until |ei| B qi
(i = x, y, z) are satisfied, where qi is an acceptable error

threshold of the gripper position.

(a) (b)

Fig. 14 Membership functions of the a premise part and b consequent part

Table 4 Parameters of the

premise parts
i 1 2 3 4 5

aix -5 -3 0 3 5

aiy -5.5 -1.5 0 1.5 5.5

aiz -5 -2 0 2 5

Table 5 Parameters of the consequent parts

i 1 2 3 4 5

uix -0.6 -0.4 0 0.4 0.6

uiy -0.65 -0.5 0 0.5 0.65

uiz -0.65 -0.5 0 0.5 0.65

Fig. 15 Fuzzy controller for error compensation
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6 Experimental Results and Discussion

This section demonstrates a target object-grasping task

which drives the robot arm to grasp and raise a thermos. To

implement the experiment, some hardware parameters

should be assigned as follows. The lengths of two links are

d1 = 17 cm and d2 = 26 cm (see Fig. 10). The target ob-

ject to be grasped in the experiment is a blue thermos. The

distance between the webcams WL and WR is 3 cm and the

focal lengths correspond to fL = fR = 265 pixels. The ro-

tation between the world coordinate and the stereo vision

coordinate is (wx, wy, wz) = (27�, 0�, 60�). The error

thresholds are assigned as qx = 2.5 cm, qy = 1.5 cm, and

qz = 1.5 cm in this experiment. Since the thermos’s di-

ameter of 7 cm is much smaller than the open range of the

gripper, the error thresholds are acceptable. Figure 16

shows the whole process of the robot arm grasping the

thermos. Table 6 shows the gripper position and its posi-

tion errors. Firstly, the stereo vision system measures the

position of the thermos which is TVD (11.52, -8.5,

41.98 cm) as shown in Fig. 16a. Then, the robot arm po-

sitions its gripper around the thermos as shown in Fig. 16b,

and the iteration count i is 0 as shown in Table 6. Subse-

quently, Figure 16c, d shows that the robot arm compen-

sates for its position errors, and the iteration counts i are 1

and 2 as in Table 6. When the gripper moves to a new

position, the stereo vision device will measure the actual

position of gripper and the fuzzy control is used to com-

pensate for the position errors until the position errors

satisfy the accuracy conditions (see Fig. 16c, d). The it-

eration count i starts from 0 and it can be considered a

count of the instances of position compensation. In other

words, when i = 0, the robot arm moves to the desired

position using only inverse kinematics method without

fuzzy position error compensation. i = 1 indicates that the

robot arm uses fuzzy control to compensate the position

error once. In this experiment, the robot arm compensates

the position errors twice (i = 2). In Table 6, it is seen that

the position error is reduced when using fuzzy control to

compensate the gripper’s position error. As a result of the

compensation, the gripper is then in the proper grasping

location (12.99, -9.13, 40.52 cm). Figure 17 shows that

the position errors ex, ey, and ez are reduced to within the

error thresholds qx, qy, and qz in the iteration i = 2. Fi-

nally, the robot arm successfully grasps the thermos and

raises it as shown in Fig. 16e, f.

In order to examine the robot’s grasping ability, we

placed the thermos in five different locations (A–E) in the

workspace as shown in the first row of Tables 7, 8, 9, 10,

and 11. The following rows of Tables 7, 8, 9, 10, and 11

show the gripper position errors for each iteration count.

Figures 18, 19, 20, 21, and 22 illustrate the position errors

Fig. 16 Experimental result of the robot arm grasping a thermos

Table 6 Position of gripper and position errors

i G
ðiÞ
act (cm) eðiÞx (cm) eðiÞy (cm) eðiÞz (cm)

0 (11.36, -7.43, 37.26) -0.17 1.06 -4.72

1 (14.68, -10.15, 42.82) 3.15 -1.65 0.83

2 (12.99, -9.13, 40.52) 1.46 -0.63 -1.46
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for each iteration count. As can be seen, the experiment

results reveal that the robot arm can successfully approach

the thermos, since all position errors are smaller than the

given threshold values (qx = 2.5 cm, qy = 1.5 cm and

qz = 1.5 cm) in the final iteration. After the robot arm

reaches and grasps the thermos, the robot arm raises the

thermos approximately 10 cm to ensure that the thermos is

assuredly caught and then the grasping task is finished.

However, the error compensation processing may increase

the value of each position error of the gripper. Comparing

the position errors between the first and second iteration,

the first position errors in the first iteration are smaller than

that of second iteration. Because of the recoil from the

gearbox and the inertia produced by the movement of the

robot arm, the adjustment exceeds the compensation val-

ues. Similar situations are shown in Fig. 19 when the it-

eration count is 4 and in Fig. 21 when the iteration is 3.

But, in these instances there is still a decrease in the po-

sition errors on the following iteration when compared to

the previous iteration. In brief, the position errors tend to

decrease regardless of the gearbox recoil or the inertia

produced by the robot arm moving. Hence, the proposed

method can reliably control the robot arm so as to effec-

tively grasp an object.

In Tables 6, 7, 8, 9, and 10, it has to be emphasized that

when i = 0, the position error is achieved only using in-

verse kinematics without fuzzy control, but after i = 1, the

Fig. 17 Position error for each iteration count

Table 7 Thermos at location A

Xd (cm) Yd (cm) Zd (cm)

Position of thermos 10.35 -8.5 42.1

i ex (cm) ey (cm) ez (cm)

Position errors of the gripper

for each iteration and axis

0 1.7 -0.78 -4.73

1 0.23 1.63 -2.36

2 -1.12 2.8 -3.45

3 0.17 -0.08 -0.71

Table 8 Thermos at location B

Xd (cm) Yd (cm) Zd (cm)

Position of thermos 7.11 -8.5 41.24

i ex (cm) ey (cm) ez (cm)

Position errors of the gripper

for each iteration and axis

0 1.85 -0.48 -5.72

1 0.23 0.63 -2.72

2 0.07 1.81 -1.91

3 0.74 1.24 -0.03

4 -0.38 1 -2.11

5 0.5 0.78 -0.15

Table 9 Thermos at location C

Xd (cm) Yd (cm) Zd (cm)

Position of thermos 11.82 -8.5 42.46

i ex (cm) ey (cm) ez (cm)

Position errors of the gripper

for each iteration and axis

0 -0.26 1.37 -6.13

1 1.01 0.48 0.55

Table 10 Thermos at location D

Xd (cm) Yd (cm) Zd (cm)

Position of thermos 6.16 -8.5 40.85

i ex (cm) ey (cm) ez (cm)

Position errors of the

gripper for each iteration

and axis

0 1.43 -6.64 0.33

1 0.26 -2.73 1.21

2 0.62 -1.38 1.62

3 0.33 -1.06 1.87

4 1.02 0.38 0.58

Table 11 Thermos at location E

Xd (cm) Yd (cm) Zd (cm)

Position of thermos 11.83 -8.5 42.46

i ex (cm) ey (cm) ez (cm)

Position errors of the gripper

for each iteration and axis

0 -0.27 1.37 -6.13

1 0.3 0.48 0.55
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position error is reduced continuously because of the aids

of fuzzy control compensation.

Herein, we have some discussion to compare the pro-

posed method with the papers [23–25]. The paper [23]

proposed a PID control algorithm and implemented a ball-

grasping task for robot arm. Since it used the encoder’s

signal as the feedback, the accumulated error may occur

after a sequence of movement. The paper [24] adopted

extended Kalman filtering algorithm to identify the

geometric parameters of the model of the robot arm, and

then used the artificial neural network to compensate the

position errors. In the proposed method, we do not need the

mathematic model of the robot arm and any expensive

sensor to measure the position of the robot. All we need are

the 3-D position measurement by the stereo version and

inverse kinematics with fuzzy control for error compen-

sation. The paper [25] also used stereo cameras to calculate

the correction vector by the difference between the robot

arm’s end-effector from inverse kinematics and vision.

Then, the robot arm compensates its position error ac-

cording to the correction vector. However, their compen-

sation value is obtained by some calculation; it still may

have a little error because of the real mechanism uncer-

tainty such as backlash or friction. In our method, the robot

arm can adjust the compensation values by fuzzy control

method all the way.

Fig. 18 Position errors when the thermos is at location A

Fig. 19 Position errors when the thermos is at location B

Fig. 20 Position errors when the thermos is at location C

Fig. 21 Position errors when the thermos is at location D

Fig. 22 Position errors when the thermos is at location E
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Furthermore, the proposed method has two advantages

which are low cost and high efficiency. Low cost is that

only a stereo vision device is needed as the sensor. High

efficiency is that using fuzzy control to compensate the

error at final step. Therefore, any uncertainty and backslash

problems are easy to be dealt with for the movement of the

robot arm.

7 Conclusion

This study has described a method to achieve an object-

grasping task using only a stereo vision device to trace and

guide the motion of the robot arm. The stereo vision device

identifies the position of the target object and gripper using

color space transformation, morphologic operation, and

3-D position measurement. After obtaining those positions,

there is usually a position error between the gripper and

target, due to recoil from the gearbox and inertia produced

by the movement of the robot arm. In order to compensate

for these errors, the fuzzy compensation method is pro-

posed to generate compensation values for each axis. The

method is designed according to a principle that when the

error in position is small, the movement required to com-

pensate for that error is also relatively small. Then, fuzzy

compensation method integrates the compensation values

and inverse kinematics to estimate and drive the gripper to

a new compensative position.

Several experiments are given to demonstrate the im-

plementation of the proposed object-grasping method. The

fuzzy error compensation regulates the position of the

gripper until the position error satisfies acceptable error

thresholds. Therefore, the robot arm can successfully ap-

proach the target object and raise it under the guidance of

the stereo vision device in all the experiments.

The benefit of using the proposed method is that the

robot arm does not need external sensors such as ac-

celerometers or resolvers to measure the degree of rotation

on each axis. Thus, the cost for building the robot arm

platform can be reduced.
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