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Abstract A self-learning fuzzy sliding-mode controller

(SLFSMC) is proposed to control the temperature of a

water bath. The SLFSMC system automatically tunes the

rule bases using a rule modifier and the updating value of

each rule is based on the fuzzy firing weight. In addition,

this controller can be used for on-line learning in real-time

control systems. In order to illustrate the performance of

the proposed control method, it is compared with a pro-

portional derivative-type fuzzy control (PDFC) and a gain-

tuning fuzzy control (GTFC). These three algorithms are

applied to a water bath temperature control and are

simulated under the same conditions. The effect of load

disturbance, the response to control, the tracking perfor-

mance, and suitable sampling time are determined for each

system. The simulation results show that the SLFSMC has

superior characteristics, is more simple to use and has a fast

response, so the SLFSMC performs better than the PDFC

and GTFC.

Keywords Fuzzy control � Sliding-mode control � Self-

learning algorithm � Water bath temperature control

1 Introduction

Industrial processes are usually controlled by a conven-

tional PID controller since it is easy to use. However, a PID

controller cannot precisely control nonlinear systems. It is

better to use modern control techniques for nonlinear sys-

tems, but these require a lot of computational time for a

real-time system [1, 2]. This also increases the cost of

manufacturing in an industrial process. Temperature con-

trol problems often involve a time delay and the control

method must be easily implemented.

Previously, a robust self-tuning PD-type fuzzy controller

(PDFC) has been presented, wherein the fuzzy logic con-

trol (FLC) is tuned on-line by modifying the output scaling

factor of an existing FLC [3]. This scheme was used to

control a wide range of different linear and nonlinear

processes. The PD-type FLC is used for the purpose of

comparison with the proposed method. For temperature

control, Khalid and Omatu compared the performance of a

multilayered neural network controller (NNC) to three

other different kinds of controllers, in identical conditions

[4]. In this control, the weights of the NNC are not kept

constant, but are improved on-line by backpropagation of

the traveling error. It was demonstrated that NNC can be

used for real-time control. In [5], Li and Lee presented a

combination of fuzzy logic and a neural network. They

used the advantages of fuzzy data representation, fuzzy

inference, parallel processing, and learning ability.

Recently, some optimization algorithms have been

combined with an FLC to control the termperature of a

water bath [6, 7]. A recurrent fuzzy controller (RFC) that

uses direct inverse control was proposed in [6]. For the

learning algorithm, a particle swarm optimization was

used. Because of this effective learning algorithm, three

rules are used for the RFC. An ant colony optimization has

been proposed for an FLC [7]. Since it takes long time for

the particle swarm and ant colony optimization search, this

control method is not suitable for a real-time control sys-

tem. In [8], a self-tuning fuzzy logic control was proposed

to control the temperature of the water bath . The input and
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output scaling factors are tuned using a fuzzy gain

scheduling algorithm. The gain-tuning fuzzy logic control

(GTFC) partly eliminates the huge design steps required by

a conventional FLC, such as manual tuning. Since the

water bath temperature control system is a time-delay

system, a more easily implemented and more effective

control algorithm is worthy of development.

Design of a sliding-mode controller incorporating fuzzy

control to achieve reduced chatter and robustness has been

discussed for various applications such as a coupled tank

system [9], an electroheat system [10], an ecological sys-

tem [11], electro-hydraulic servo system [12], missile

guidance [13], and nonlinear uncertain chaotic system [14].

However, in the fuzzy control system, IF–THEN rules are

constructed, based on the qualitative aspects of human

knowledge. Creating appropriate fuzzy rules requires time-

consuming trial-and-error procedures. To handle this

problem, Lian [15, 16] used an adaptive self-organizing

fuzzy sliding-mode controller for active suspension and

robotic systems where two parameters were considered as

input variables of an FLC, instead of only using sliding

surface. However, it increases the number of fuzzy rules

that leads to computational complexity.

To avoid this problem and enhance the effectiveness,

robustness, and simplicity, a self-learning fuzzy sliding-

mode controller (SLFSMC) is proposed in this paper to

control the temperature of the water bath.

The SLFSMC learns through a rule modifier in which a

fuzzy learning algorithm is used to modify the control

rules. The modification value of each rule is based on the

fuzzy firing weight, so the fuzzy learning algorithm is

reasonable and quick. A comparison between the PDFC

[3], the GTFC [8] and the proposed SLFSMC for con-

trolling the temperature of the water bath is presented. All

of the control inputs and outputs of these three controllers

have the same interval and an equal number of linguistic

variables, for this comparison.

This paper is organized as follows. Section 2 describes

the water bath temperature control system. Section 3 ex-

plains the formal structure of the controller design for

PDFC, GTFC, and SLFSMC. Section 4 presents the

simulation results and the comparison among different

control methods. Finally, conclusions are drawn in Sect. 5.

2 Model of the Water Bath Temperature Control
System

The schematic diagram of the water bath temperature

control system is shown in Fig. 1. The water bath is heated

by a heater, which is connected to a thyristor circuit. To

ensure a uniform distribution of temperature, a stirrer is

used. A sensor module is used to sense the temperature and

provides a corresponding voltage to an A/D converter. A

microprocessor reads the temperature and produces a

control signal. The control signal is limited between 0 and

5 V and is used to control the thyristor circuit. The

thyristor is then used to switch the heater on and off, de-

pending on the control signal.

The discrete-time water bath temperature control system

is described by [5]

y k þ 1ð Þ ¼ a Tsð Þy kð Þ þ b Tsð Þ
1þ e0:5y kð Þ�c

u kð Þ
þ 1� a Tsð Þ½ �y0 ð1Þ

a Tsð Þ ¼ e�a Tsð Þ ð2Þ

b Tsð Þ ¼
b
a

� �
1� e�a Tsð Þ
� �

; ð3Þ

where k is the discrete-time index, Ts the sampling period,

and y0 is the initial temperature of water bath. The system

input and output are represented by u(k) and y(k), respec-

tively. The parameters for the plant are a = 1.00151e-4,

b = 8.67973e-3, c = 40 and y0 = 25 �C [5, 7]. The sam-

pling period is limited to Ts [ 10 s. The system contains a

saturating nonlinearity, such that the system exhibits a

linear characteristic until about 70 �C and becomes non-

linear and then saturates at about 80 �C [8].

3 Design of the Temperature Control System

3.1 Self-learning Fuzzy Sliding-Mode Control

System

The proposed SLFSMC consists of two sets of fuzzy in-

ference logic: one for control and the other for rule

modification. The temperature tracking error is defined as

e kð Þ ¼ yr kð Þ � y kð Þ; ð4Þ

where yr(k) is the reference temperature and y(k) is the

measured temperature. The change of error is defined as

Fig. 1 Water bath temperature control system
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De kð Þ ¼ e kð Þ � e k � 1ð Þ: ð5Þ

The sliding surface is chosen as the input variable for

the fuzzy inference rules, so that the number of the fuzzy

control rules can be reduced. The sliding surface is defined

by the following scale function:

s kð Þ ¼ De kð Þ þ ke kð Þ; ð6Þ

where k[ 0 is a given positive constant value. The

SLFSMC water bath temperature control system is shown

in Fig. 2a. The fuzzy control rules are as follows:

Rule i : IF s is Fi
s

THEN usl f smc is ri; i ¼ 1; 2; . . .; n
ð7Þ

where Fi
s represents the fuzzy set of s and ri is the singleton

control action. The defuzzification of the controller output

is accomplished using the center-of-gravity method.

uslfsmc s; rið Þ ¼

Pn
i¼1

wi � ri

Pn
i¼1

wi

; ð8Þ

where wi is the firing weight of the ith rule. The defuzzified

value uslfsmc, in (8) represents the control effort.

3.1.1 Fuzzy Learning Algorithm

The central part of the iterative learning algorithm for the

SLFSMC system changes the control effort in the direction

of the negative gradient of a performance index, I, which is

defined as a function of e and De as [17]

I ¼
Xm

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 kð Þ þ q De kð Þ½ �2

q
; ð9Þ

where m is the total number of time intervals and q [ 0 is

the weight factor. The partial derivatives of I with respect

to e and De are obtained as follows:

oI

oe kð Þ ¼
e kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 kð Þ þ q De kð Þ½ �2
q ð10Þ

oI

oDe kð Þ ¼
qDe kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 kð Þ þ q De kð Þ½ �2
q : ð11Þ

The negative gradient for the optimal performance is

expressed as

� rIj j ¼ � e kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 kð Þ þ q De kð Þ½ �2

q
�������

�������

8><
>:

þ q
De kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 kð Þ þ q De kð Þ½ �2
q
�������

�������

9>=
>;:

ð12Þ

Depending on the optimal control, the adjust control

signal, uslfsmc, is chosen as

duslfsmc kð Þ ¼ g � rIj jð Þ s kð Þ½ �; ð13Þ

where g is a positive learning rate. The fuzzy rules

modification algorithm is

Dri ¼ duslfsmc

wiPn
i¼1

wi

ð14Þ

ri ¼ ri þ Dri; ð15Þ

where Dri is the modified value that is added to the ith

control rule in (7). Equation (14) shows that the modified

value of each control rule is proportional to its firing weight

of fuzzy inference.

For comparison, a proportional derivative-type fuzzy

logic control (PDFC) system [3] and a GTFC system [8]

are also used for the water bath temperature control. These

are described in the following.

3.2 Proportional Derivative-Type Fuzzy Logic

Control System

The PDFC water bath temperature control system is shown

in Fig. 2b. The gains of the inputs and the output are ad-

justed manually. Because the characteristic of the PDFC

depends on Ge, Gce, and Gu gains, the inputs for this

controller are the error (e) and the change of error (De). All

Fig. 2 The structure of the three control schemes developed for the

water bath temperature control system: a SLFSMC, b PDFC, and

c GTFC
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of the membership functions (MF) in the controller are a

Gaussion MF, which is defined over a common interval

[-1, 1], and the linguistic variables are quantized into

seven fuzzy subsets, from negative big (NB) to positive big

(PB), as shown in Fig. 3.

The parameters of the Gaussian membership functions

are used with the mean value l ¼ �1 � 0:666 �½
0:3334 0 0:3334 0:6666 1� and the variance value

r = 0.1416.

The fuzzy rules for the PDFC are defined as

Rule i : IF e is Ai and De is Bi

THEN uPDFC is Ci

; ð16Þ

where Ai, Bi, and Ci, i = 1, 2, …, n are the linguistic

values of the linguistic variables.

The fuzzy rules are shown in Table 1. Instead of 49

rules, only 25 rules are picked up and formulated [4]. The

centroid defuzzification method is used, which allows a

lower mean square error.

3.3 Gain-Tuning Fuzzy Control System

The GTFC water bath temperature control system is shown

in Fig. 2c. The GTFC is tuned by a gain scheduling, which

uses fuzzy rule bases to produce tuning parameters.

The inputs and output gains of the controller are

regulated and modified on-line. The modified value de-

pends on the trend in the controlled process output. In this

design, four sets of fuzzy rule bases are constructed. One is

for fuzzy control, similar to the PDFC system, but different

membership functions and rules are used for the other

three. Triangular membership functions are used to tune the

inputs and output gains, as shown in Figs. 4a, b, respec-

tively [4]. In both cases, all of the triangular membership

functions have the same width and isosceles, with 50 %

overlapped, except for the two extreme ends. The extreme

ends are rectangular trapezoids.

The fuzzy rules for the gain scheduling are defined as

Rule i : IF e is Ai and De is Bi THEN

Ge is Ci and Gce is Di and Gu is Ei

; ð17Þ

where Ai, Bi, Ci, Di and Ei, i = 1, 2, …, n are the linguistic

values of the linguistic variables. The centroid defuzzifi-

cation method is used for the gain scheduling.

The inference rules used to tune the input gains, Ge and

Gce, are given in Tables 2 and 3, respectively. The infer-

ence rules for the input gains, Ge and Gce, are opposing, so

if PB is replaced by NB, then PS is replaced by NS and so

on. The MFs for the output gain, Gu, are shown in Table 4.

By trial-and-error method, a total of 100 rules are con-

structed and used for the GTFC, instead of the 196 rules in

Tables 1, 2, 3, and 4.

4 Simulation Results

All three algorithms were simulated using the same con-

ditions for the water bath temperature control system. Each

simulation was 180 min in duration. The sampling period

Ts was 25 s. The reference signal was as seen in Table 5.

For each control system, the output variable, u(k), is a

voltage between 0 and 5 V, which is quantized into six

fuzzy singletons: 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 V [6].

Fig. 3 The Gaussian membership function for the fuzzy controller

Fig. 4 The triangular membership function for tuning. a input gain

and b output gain

Table 1 The inference rules for the PDFC

Dene NB NM NS ZE PS PM PB

NB NM

NM NS

NS ZE NS NS

ZE PM PS PS ZE NS NS NM

PS PS PS ZE NS NS

PM PS PS ZE NS

PB PM PS PS ZE
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A summation of the absolute error (SAE) was calculated

and tabulated. The SAE is defined as follows:

SAE ¼
X180

k¼1

yr kð Þ � y kð Þj j: ð18Þ

In the first set of simulations, the tracking performance

of the three control systems was compared. A satisfactory

performance for the PDFC was obtained when the input

and output gains were Ge = 0.1, Gce = 0.01, and

Gu = 450. These three gains were determined by experi-

ence and after much trial and error. It was time consuming

to tune these parameters manually.

For the GTFC, all of the parameters and design proce-

dures were the same as those in [8]. The initial values of Ge

and Gce were randomized and Gu was set as 450. After

tuning, it was observed that Ge = 0.0419, Gce = -0.0419,

and Gu = 1.0454.

For the third method, which is the proposed SLFSMC

system, the parameters were q = 15, k = 4, and g = 0.01.

The initial values of the rules were set to zero, and the rules

obtained after training are as shown in Table 6.

The simulation results for these three control systems

are shown in Fig. 5a–c. It is seen that the SLFSMC system

performs better than the other two algorithms. The

SLFSMC system also has a considerably lower SAE than

the other two methods, with fewer fuzzy rules. A com-

parison of the SAE values is shown in Table 7.

The robustness of SLFSMC was also analyzed by ap-

plying disturbances of -5 and ?10 �C at 45 and 80 min,

respectively.

The proposed SLFSMC quickly counters any distur-

bance during the process, as shown in Fig. 6. This result

also confirms the robustness of the proposed SLFSMC

method.

The proper sampling time was also verified by setting

Ts = 15, 25, and 35 s, as shown in Fig. 7. The best results

are for a sampling time of Ts = 25 s. When the sampling

time is decreased to 15 s, the system response is slower and

when the sampling time is increased to 35 s, the response is

faster. However, there is an overshoot, so a sampling time

Ts = 25 s is preferable.

Compared to the other methods shown in [8], the pro-

posed SLFSMC also has the smallest SAE, as shown in

Table 8.

A simulation to determine the tracking performance of

the SLFSMC used the following reference profile:

Table 3 The inference rules used to tune the input gain, Gce

Dene NB NM NS ZE PS PM PB

NB NB

NM NB

NS NM NS ZE

ZE NM NM NS ZE PS PM PM

PS ZE PS PM PM PM

PM PB PB PB PB

PB PB PB PB PB

Table 4 The inference rules used to tune output gain, Gu

Dene NB NM NS ZE PS PM PB

NB B

NM B

NS B VB VS

ZE S SB MB ZE MB SB S

PS VS VB B MB VB

PM B B VB VB

PB B VB VB VB

Table 5 The reference signal for the water bath control system

Period of time (min) Temperature in (�C)

0 B t B 30 35

30 \ t B 60 45

60 \ t B 90 55

90 \ t B 120 65

120 \ t B 150 75

150 \ t B 180 80

Table 6 The trained rules for

the SLFSMC system for the

water bath plant

s NB NM NS ZE PS PM PB

ri 8.0283 0.2625 0.135 0.0045 -0.0289 -0.0041 -40.0236

Table 2 The inference rules used to tune the input gain, Ge

Dene NB NM NS ZE PS PM PB

NB PB

NM PB

NS PM PS ZE

ZE PM PM PS ZE NS NM NM

PS ZE NS NM NM NM

PM NB NB NB NB

PB NB NB NB NB
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Table 7 A comparison of the SAE values for the simulated control

systems

Methods PDFC GTFC SLFSMC

Rule number 25 100 7

SAE 305.3375 302.8735 297.6791

Fig. 5 The performance of the simulated systems (Ts ¼ 25 s):

a PDFC, b GTFC, and c SLFSMC

Fig. 6 The performance of the proposed SLFSMC system with

disturbance

Fig. 7 Sampling time analysis for the proposed SLFSMC
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Initial condition: Y0 ¼ 25 �C

Reference curve:

Temperature ¼

40 �C, 0 � t � 30 min

30þ t=3; 30\ t� 90 min

45þ t=6; 90\ t � 150 min

70 �C, 150\ t� 180 min

8>>>>><
>>>>>:

8>>>>>>>>>><
>>>>>>>>>>:

The result is shown in Fig. 8. It is seen that the proposed

SLFSMC system can also track different trajectories.

Initially, the water bath temperature has a large negative

error, compared to its reference value, but within 15 s it

recovers the trajectory without overshoot. After that, the

controller is forced toward the constant reference and then

remains at that value. The slope of the reference signal is

steep, and the control signal has frequent spikes between

the 30th second and the 90th second. Compared with this

period for the reference signal, the next period, between the

90th second and the 150th second has a more gradual slope.

In this period, the control signal is smooth and has few

spikes.

A comparison of computational complexity is given in

Table 9. The computation time for the GTFC is longer than

that for the other two methods, as it involves many cal-

culations. The computation time for the proposed SLFSMC

is very fast, as it involves comparatively fewer logic op-

erations and calculations. This is a desirable characteristic

for ease of implementation and cost-effectiveness.

5 Conclusions

This study proposes an SLFSMC system to control the

temperature of a water bath, which is compared with two

other control methods. All of these three control schemes

use fuzzy logic control. With fuzzy logic control, it is

possible to tune rules, membership functions, and gains.

The rules for the proposed method do not have permanent

values, so the learning algorithm approaches the reference

value more rapidly. The proposed method has a better re-

sponse, in terms of fitness with the sum of the absolute error.

The proposed rule tuning fuzzy control also uses sliding-

mode control, which uses a sliding surface to reduce the

number of fuzzy rules and reduce the computation loading.

Therefore, the SLFSMC can be used for real-time control.
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