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Abstract This paper investigates the polynomial fuzzy

observer design for discrete-time uncertain polynomial sys-

tems. Three classes of discrete-time polynomial fuzzy systems

are studied via a sum of squares (SOS) approach. A polyno-

mial fuzzy system is a more general representation of the well-

known Takagi–Sugeno (T–S) fuzzy system. The conditions in

the proposed approach are derived in terms of SOS, which is

the extension of the LMI method. Hence, the conditions ob-

tained in this paper are more general than the corresponding

LMI approaches for T–S fuzzy systems. All the design con-

ditions in the proposed approach can be symbolically and

numerically solved via the recently developed SOSTOOLS

and a semidefinite-program solver, respectively. Numerical

examples are provided to demonstrate the validity and appli-

cability of the proposed SOS-based design approach.

Keywords Sum of squares (SOS) � Polynomial fuzzy

system � Polynomial fuzzy observer � Stability

1 Introduction

The fuzzy control [1–11] has emerged as one of the most

active and fruitful areas for research in the application of

fuzzy set theory since the idea was proposed by Zadeh in

1965 [12]. Takagi–Sugeno (T–S) models are nonlinear

blending of linear models via membership functions which

hold the convex-sum property [1]. Due to its exact repre-

sentation of a nonlinear model in a compact subset of the

domain of the state variables, T–S models [7–11] have

been intensively studied. The T–S fuzzy control becomes

more natural, simpler, and more effective to complement

other nonlinear control methods [13] that require special

and rather involved knowledge. The direct Lyapunov

method has been usually employed to investigate the sta-

bility and stabilization of T–S models. This method often

leads to conditions formulated in terms of linear matrix

inequalities (LMIs) [9–11], which can be solved nu-

merically and efficiently by LMI solvers. Though LMI

approaches remain the most favorite tool of choice, not all

the problems can be reformed to LMIs. It should be pointed

that some nonlinear systems are not T–S fuzzy controlled

via LMIs, but they can be controlled through polynomial

fuzzy controllers via SOS approaches in this paper. This is

a different approach from the existing LMI approaches.

The polynomial fuzzy control was inspired in 2007 [14].

The paper uses polynomial fuzzy system to model and

control the nonlinear systems via an SOS approach. The

authors also study the SOS-based polynomial fuzzy ob-

server design for three classes of continuous polynomial

fuzzy systems: The polynomial matrices Ai and Bi are
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independent of the states x to be estimated (shortly name it

as Class I) [15], [18], the polynomial matrices Ai are per-

mitted to be dependent of the states x to be estimated

(shortly name it as Class II) [16], [18], the polynomial

matrices Ai and Bi are permitted to be dependent of the

states x to be estimated (shortly name it as Class III) [17,

18]. And some extensive results have been obtained, e.g.

another paper on relaxation for T–S systems’ stability

analysis via SOS method is addressed in [19]. The SOS

approach [14–19] presents that it is an extensive repre-

sentation of LMIs. Obviously, the problems in them cannot

be solved by interior point algorithms, e.g. by LMI solvers,

but they can be solved via the recently developed SOS-

TOOLS [20] and an SDP solver [21].

Not all the states of a system are available in many

practical applications, or the cost to measure some states is

too high sometimes. Observer design methods were pre-

sented to deal with the problem, and observer-based control

was developed following it. For fuzzy system, the authors

[9] presented fuzzy observer designs for both continuous

and discrete systems. Soon afterward, observer-based

adaptive fuzzy sliding mode control method was developed

in [2], observer-based adaptive fuzzy backstepping control

method was obtained in [5] and [22], observer-based fuzzy

adaptive control approach was proposed in [23], observer-

based active fault-tolerant control problem was addressed

in [24], an observer-based model reference adaptive it-

erative learning control strategy was proposed in [25],

observer-based adaptive fuzzy output-feedback control

problem was studied in [26], the observer-based non-

quadratic H? output-feedback stabilization problem was

investigated in [27], and so on. However, for polynomial

fuzzy systems, there are a few results. Polynomial fuzzy

observer designs for continuous polynomial fuzzy systems

were provided in [15–18] via a sum of squares (SOS) ap-

proach. Observer designs for discrete-time polynomial

fuzzy systems have not been addressed in the literature.

This motivates us to do this work. In this paper, we con-

sider the observer design problem of the discrete-time

polynomial fuzzy system with uncertainty under the SOS

framework by exploiting the structure of the system. The

main contribution of our paper lies in (1) The SOS-based

observer designs for three classes of discrete-time poly-

nomial fuzzy systems with uncertainty are provided in this

paper for the first time. (2) The design of the observer is an

extension to the discrete-time T–S fuzzy system. (3) The

stability conditions given in this paper are more relaxed

than the corresponding LMI approaches.

The rest of the paper is organized as follows: some

foundational results for the later developments are recalled

in Sect. 2. The SOS-based polynomial fuzzy controller and

observer designs for Class I are presented in Sect. 3. The

SOS-based polynomial fuzzy controller and observer

designs for Class II are presented in Sect. 4. The SOS-

based polynomial fuzzy controller and observer designs for

Class III are presented in Sect. 5. Finally, a conclusion is

given in Sect. 6.

2 Problem Formulation and Preliminaries

In this section, we recall the T–S fuzzy model, the fuzzy

controller design, the polynomial fuzzy model, and the

SOSTOOLS.

First of all, consider a class of nonlinear plant as follows:

xðk þ 1Þ ¼ f ðk; xðkÞ; uðkÞÞ ð1Þ

where f is a smooth nonlinear function such that

f 0; 0; 0ð Þ ¼ 0: xðkÞ ¼ ½x1ðkÞ; x2ðkÞ; . . .; xnðkÞ�T 2 Rn is the

system state vector, and the system input uðkÞ ¼ ½u1ðkÞ;
u2ðkÞ; . . .; umðkÞ�T 2 Rm.

The main feature of a T–S fuzzy model is the conse-

quent of each IF–THEN rule is a linear system model and

T–S fuzzy model can be regarded as a universal ap-

proximator of most general nonlinear system. Based on the

sector nonlinearity method [9], we can represent the non-

linear system (1) with the following T–S fuzzy form:

Plant Rule i: IF z1ðkÞ is Mi1; . . .; zpðkÞ is Mip,

THEN

xðk þ 1Þ ¼ ~AixðkÞ þ BiuðkÞ ð2Þ

where zjðkÞ is the premise variable, Mij is the fuzzy set

associated with the ith model rule and the jth premise

variable component, ~Ai ¼ Ai � DAi, Ai 2 Rn�n and Bi 2
Rn�m are constant matrices, DAi ¼ EiFiðkÞHi is the

uncertain matrix, where FiðkÞ is a real uncertain matrix

function satisfying FT
i ðkÞFiðkÞ� I, Ei and Hi are known

real constant matrices, i ¼ 1; 2; . . .; r; and r is the number

of IF–THEN rules, j ¼ 1; 2; . . .; p. The defuzzification

process of the model (2) can be represented as below:

xðk þ 1Þ ¼
Pr

i¼1 xiðz ðkÞð~AixðkÞ þ BiuðkÞÞPr
i¼1 xiðzðkÞÞ

ð3Þ

where it is assumed that xiðzðkÞÞ ¼
Qp

j¼1 MijðzjðkÞÞ,
xiðzðkÞÞ� 0;

Pr
i¼1 xiðzðkÞÞ[ 0; i ¼ 1; 2; . . .; r:

The system (3) can be represented as below for brevity:

xðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞf~AixðkÞ þ BiuðkÞg; ð4Þ

where hiðzðkÞÞ ¼ xiðzðkÞÞ
�
Pr

i¼1xiðzðkÞÞ; hiðzðkÞÞ� 0;
Pr

i¼1 hiðzðkÞÞ ¼ 1; i ¼ 1; 2; . . .; r:

The fuzzy controller for the nonlinear plant represented

by (3) is designed to share the same IF parts with the plant

as follows:
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Control Rule i: IF z1ðkÞ is Mi1; . . .; zpðkÞ is Mip, THEN

uðkÞ ¼ �KixðkÞ ð5Þ

where Ki 2 Rm�n is a constant matrix.

The defuzzification process of the model (5) can be

represented as below:

uðkÞ ¼
Xr

i¼1

hiðzðkÞÞf�KixðkÞg: ð6Þ

The polynomial fuzzy system is a fuzzy model with a

polynomial model consequence. Using the sector nonlin-

earity method, system (1) can be exactly represented with

the following polynomial fuzzy model:

Plant Rule i: IF z1ðkÞ is Mi1; . . .; zpðkÞ is Mip,

THEN

xðk þ 1Þ ¼ ~AiðxðkÞÞxðkÞ þ BiðxðkÞÞuðkÞ ð7Þ

where ~AiðxðkÞÞ ¼ AiðxðkÞÞ þ DAi. AiðxðkÞÞ 2 Rn�n and

BiðxðkÞÞ 2 Rn�m are polynomial matrices, i ¼ 1; 2; . . .; r,

and r is the number of IF–THEN rules.

The defuzzification process of the model (7) can be

represented as below:

xðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞf~AiðxðkÞÞxðkÞ þ BiðxðkÞÞuðkÞg:

ð8Þ

For the convenience to the observer design, the fol-

lowing representation is introduced:

xðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞf~AiðmðkÞÞxðkÞ þ BiðnðkÞÞuðkÞg

ð9Þ

where (9) reduces to (8) when mðkÞ ¼ nðkÞ ¼ xðkÞ.
Three types of polynomial observer-based control will

be studied as below:

(i) Class I: mðkÞ ¼ nðkÞ ¼ nðkÞ:
(ii) Class II: mðkÞ ¼ xðkÞ and nðkÞ ¼ nðkÞ:

(iii) Class III: mðkÞ ¼ nðkÞ ¼ xðkÞ:
nðkÞ is a measurable vector that is assumed to be inde-

pendent of the state x(k) to be estimated.

To stabilize the fuzzy system (8), a polynomial fuzzy

controller will be designed as follows:

uðkÞ ¼
Xr

i¼1

hiðzðkÞÞf�KiðxðkÞÞxðkÞg ð10Þ

where KiðxðkÞÞ 2 Rm�n is a polynomial matrix in x(k),

i ¼ 1; 2; . . .; r.

Definition 1 [20] A multivariate polynomial p(x), x 2 Rn,

is a SOS, if there exist polynomials f1ðxÞ; . . .; fmðxÞ such

that

pðxÞ ¼
Xm

i¼1

f 2
i ðxÞ: ð11Þ

Definition 2 [20] The SOS condition (11) is equivalent to

the existence of a positive semidefinite matrix Q, such that

pðxÞ ¼ ZTðxÞQZðxÞ; ð12Þ
where Z(x) is some properly chosen vector of monomials.

Before deriving the main results, one preliminary lemma

is given in the following:

Lemma 1 Given matrices P ¼ PT , E, and H.

P� EFðkÞH � HT FTðkÞET [ 0

for all FðkÞ 2 Rq�p satisfying FTðkÞFðkÞ� I if and only if

there exists a scalar e [ 0 such that

P� eEET � 1

e
HT H [ 0:

Proof Using Lemma 2.4 in [28], the result can be derived

easily.

In consideration of clear expression, we will drop the

notation with respect to time k and variable z(k) in the

following process about proof, e.g., hi, n and x will be used

to instead of hiðzðkÞÞ; nðkÞ; and x(k), respectively.

3 Controller and Observer Design (Class I)

In industry control problems, not all the states of a system

can be measured. The polynomial fuzzy observer design is

proposed based on SOS conditions in this section.

Polynomial fuzzy observers are required to satisfy the

following condition:

lim
t!1

e ¼ 0

where e ¼ x� x̂, x̂ denotes the state vector estimated by a

polynomial fuzzy observer. In this part, we assume that

AiðxðkÞÞ and BiðxðkÞÞ in (8) are measurable matrices. Un-

der the assumption, we replace the polynomial fuzzy model

(8) with

xðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞf~AiðnðkÞÞxðkÞ þ BiðnðkÞÞuðxðkÞÞg

ð13Þ

where nðkÞ is a measurable vector that could be outputs,

time, both of them or others. And the output for the

polynomial fuzzy model is defined as

yðkÞ ¼ CxðkÞ ð14Þ

where C 2 Rq�n is a constant matrix.

Then the polynomial fuzzy observer is proposed:
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x̂ðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞfAiðnðkÞÞx̂ðkÞ

þ BiðnðkÞÞuðkÞ þ LiðnðkÞÞðy� ŷÞg ð15Þ

ŷðkÞ ¼ Cx̂ðkÞ ð16Þ

where LiðnÞ 2 Rn�q is the polynomial observer gain. The

following controller needs to be developed:

uðkÞ ¼
Xr

i¼1

hiðzðkÞÞf�KiðnðkÞÞx̂ðkÞg: ð17Þ

Theorem 1 The equilibrium of the overall control system

consisting of (13)–(17) is asymptotically stable in the large

and the steady error between the real state and the esti-

mated state converges to zero if there exist polynomial

matrices MiðnðkÞÞ 2 Rm�n, NiðnðkÞÞ 2 Rn�n, a constant

matrix Q1 2 Rn�n, and a scalar e [ 0 satisfying the fol-

lowing conditions:

gT
1

X1ii � �
X2ii X1ii � e~Ei

~ET
i �

~HiQ 0 eI

2

4

3

5g1 is SOS ð18Þ

gT
2

2Q � � �
X2ij þ X2ji X3ij � �

~HiQ 0 eI �
~HjQ 0 0 eI

2

6
6
4

3

7
7
5g2 is SOS; i\j ð19Þ

where

X1ii ¼
Q1 � r1iI 0

0 Q1 � r2iI

� �

; Q ¼ Q1 0

0 Q1

� �

X2ii ¼
Nii11 Nii12

0 Nii22

� �

; X2ij ¼
Nij11 Nij12

0 Nij22

� �

Nii12 ¼ BiðnðkÞÞMiðnðkÞÞ; Nij12 ¼ Bi ðnðkÞÞMjðnðkÞÞ

Nii22 ¼ AiðnðkÞÞQ1 � NiðnðkÞÞ
Nij22 ¼ AiðnðkÞÞQ1 � NiðnðkÞÞ

Nii11 ¼ AiðnðkÞÞQ1 � BiðnðkÞÞMiðnðkÞÞ
Nij11 ¼ AiðnðkÞÞQ1 � BiðnðkÞÞMjðnðkÞÞ

X3ij ¼ 2Q� e~Ei
~ET

i � e~Ej
~ET

j

with ~Ei ¼ ½ET
i ET

i �
T
, ~Hi ¼ ½Hi 0�, i; j ¼ 1; 2; � � � ; r. g1 2

R4nþp and g2 2 R4nþ2p are vectors which are independent

of x, r1i and r2i are nonnegative polynomial functions about

nðkÞ such that r1i [ 0 and r2i [ 0 for nðkÞ 6¼ 0. Moreover,

the gains can be obtained:

KiðnðkÞÞ ¼ MiðnðkÞÞQ�1
1 ; LiðnðkÞÞ ¼ NiðnðkÞÞQ�1

1 C�;

C- is the generalized inverse matrix of C.

Proof First, the augmented system (20) consisting of (13–

17) is obtained:

~xðk þ 1Þ ¼
Xr

i;j¼1

hiðzðkÞÞhjðzðkÞÞGijðnðkÞÞ~xðkÞ ð20Þ

where

~xðkÞ ¼ ½xT eT �T ; Gij11 ¼ ~AiðnðkÞÞ � BiðnðkÞÞFjðnðkÞÞ

Gij21 ¼ �DAi; Gij22 ¼ AiðnðkÞÞ � LiðnðkÞÞC

Gij12 ¼ BiðnðkÞÞFjðnðkÞÞ; GijðnðkÞÞ ¼
Gij11 Gij12

Gij21 Gij22

� �

:

Next, a candidate of a Lyapunov function is proposed:

Vð~xðkÞÞ ¼ ~xTðkÞP~xðkÞ ð21Þ

where P ¼ Q�1 [ 0. Then, if the following conditions are

fixed, DVð~xÞ\0 at ~x 6¼ 0.

Xr

i;j¼1

hihjG
T
ijðnÞ

 !

P
Xr

i;j¼1

hihjGijðnÞ
 !

� P\0 ð22Þ

Using Schur complement theorem and performing

congruence transformation, the following inequality is

obtained:

Xr

i;j¼1

hihj
Q �

GijðnÞQ Q

� �

[ 0 ð23Þ

Due to

Xr

i;j¼1

hihj

Q �
GijðnÞQ Q

� �

¼
Xr

i¼1

h2
i

Q �
GiiðnÞQ Q

� �

þ

Xr

i 6¼j

hihj

2Q �
ðGijðnÞ þ GjiðnÞÞQ 2Q

� �

ð24Þ

if the conditions (18) and (19) hold, by Schur complement

theorem and Lemma 1, the Eq. (24) [ 0 could be obtained.

The proof is completed.

Remark If AiðnÞ; BiðnÞ; LiðnÞ and FiðnÞ reduce to

constant matrices in (13), (15), (17), they reduce to the T–S

fuzzy model, the T–S fuzzy controller, and the T–S fuzzy

observer, respectively. The SOS conditions in Theorem 1

reduce to the following LMIs:

Q � �
X2ii Q� e~Ei

~ET
i �

~HiQ 0 eI

2

4

3

5[ 0 ð25Þ

2Q � � �
X2ij þ X2ji X3ij � �

~HiQ 0 eI �
~HjQ 0 0 eI

2

6
6
4

3

7
7
5� 0; i\j; ð26Þ
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where

Q ¼ Q1 0

0 Q1

� �

; X2ij ¼
AiQ1 � BiMj BiMj

0 AiQ1 � Ni

� �

X3ij ¼ 2Q� e~Ei
~ET

i � e~Ej
~ET

j ; i; j ¼ 1; 2; � � � ; r:

Therefore, Theorem 1 presents more general results.

3.1 Simulation Results I

Consider the following system:

x1ðk þ 1Þ ¼ 0:5x1ðkÞ � sinðkÞx1ðkÞ
x2ðk þ 1Þ ¼ �x2

2ðkÞx1ðkÞ þ sinðx2ðkÞÞ

�

ð27Þ

This nonlinear system has a polynomial term �x2
2ðkÞx1ðkÞ

and a nonlinear term sinðx2ðkÞÞ. Assume the range of x2(k),

i.e. x2ðkÞ 2 ½�a; a�, where a is a positive value. We can get

the following fuzzy system using the sector nonlinearity

[9]:

xðk þ 1Þ ¼
Pr

i¼1

hiðzðkÞÞf~AixðkÞ þ BiuðkÞg

yðkÞ ¼ CxðkÞ

8
<

:
ð28Þ

where

A1 ¼
0:5 0

�a2 1

� �

; A2 ¼
0:5 0

�a2 �0:2172

� �

; Bi ¼
0

1

� �

A3 ¼
0:5 0

0 1

� �

; A4 ¼
0:5 0

0 �0:2172

� �

; Ei ¼
0

1

� �

C ¼ 0 1½ �; Hi ¼ 1 0½ �; i ¼ 1; . . .; 4:

h1ðzðkÞÞ ¼
x2

2ðkÞ
a2

sinðx2ðkÞÞ þ 0:2172x2ðkÞ
1:2172x2ðkÞ

h2ðzðkÞÞ ¼
x2

2ðkÞ
a2

x2ðkÞ � sinðx2ðkÞÞ
1:2172x2ðkÞ

h3ðzðkÞÞ ¼
a2 � x2

2ðkÞ
a2

sinðx2ðkÞÞ þ 0:2172x2ðkÞ
1:2172x2ðkÞ

h4ðzðkÞÞ ¼
a2 � x2

2ðkÞ
a2

x2ðkÞ � sinðx2ðkÞÞ
1:2172x2ðkÞ

:

For a larger range a 2 ½10�9; 109�, the LMI conditions

(25), (26) are infeasible. This also means that the obtained

LMI-based T–S fuzzy controller design method for the

nonlinear system is not valid. Conversely, the SOS design

method based on the polynomial fuzzy systems realizes

that the polynomial fuzzy controller stabilizes the system

and the estimated states converge to the real states.

Assume that x2 is measurable and y = x2. The system

(28) can be represented as the system (13) and (14), where

A1ðyðkÞÞ ¼
0:5 0

�y2ðkÞ 1

� �

E1 ¼ E2 ¼ 0 1½ �T

A2ðyðkÞÞ ¼
0:5 0

�y2ðkÞ �0:2172

� �

C ¼ 0 1½ �

B1ðyðkÞÞ ¼ B2ðyðkÞÞ ¼ 0 1½ �T H1 ¼ H2 ¼ 1 0½ �

h1ðzðkÞÞ ¼
sinðyðkÞÞ þ 0:2172yðkÞ

1:2172yðkÞ

h2ðzðkÞÞ ¼
yðkÞ � sinðyðkÞÞ

1:2172yðkÞ :

By solving the SOS conditions in Theorem 1, the feed

back gains are given as below:

K1ðyðkÞÞ ¼ 0:11e�2 � 0:18y2ðkÞ 0:48þ 0:32e�14y2ðkÞ
� �

L1ðyðkÞÞ ¼ 0:41e�15 þ 0:20e�15y2ðkÞ
0:91þ 0:72e�13y2ðkÞ

� �

K2ðyðkÞÞ¼ �0:19e�3�0:89e�1y2ðkÞ �0:10�0:94e�14y2ðkÞ
� �

L2ðyðkÞÞ ¼ 0:46e�15 þ 0:22e�13y2ðkÞ
�0:18þ 0:30e�13y2ðkÞ

� �

where ep means 10p, p is an integer. Figure 1 shows the

controlled system behavior for the initial condition xð0Þ ¼
½0:5 0:5�T and x̂ð0Þ ¼ ½�0:5 0:5�T . Figure 2 shows the

control and estimation results by the polynomial fuzzy

observer. It can be seen that the designed controller sta-

bilizes the nonlinear system. The estimation error via the

designed observer tends to zero.

4 Controller and Observer Design (Class II)

In the above section, an observer design for the polynomial

fuzzy system (13) and (14) with the system matrix Ai and

Fig. 1 System response with the polynomial fuzzy observer
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input matrix Bi are measurable. In this section, a more

complicated class of nonlinear system is considered, i.e. the

system matrix Ai depends on the state x. The following

polynomial fuzzy system is considered:

xðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞf~AiðxðkÞÞxðkÞ þ BiðnðkÞÞuðkÞg

ð29Þ

where nðkÞ is a measurable vector that could be outputs,

time, both of them or others. Then a polynomial fuzzy

observer is proposed to estimate the states of (29):

x̂ðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞfAiðx̂ðkÞÞx̂ðkÞþ

BiðnðkÞÞuðkÞ þ Liðx̂ðkÞÞðy� ŷÞg
ð30Þ

where Liðx̂ðkÞÞ 2 Rn�n is the polynomial observer gain.

The following controller needs to be developed:

uðkÞ ¼
Xr

i¼1

hiðzðkÞÞf�Kiðx̂ðkÞÞx̂ðkÞg ð31Þ

Theorem 2 The equilibrium of the overall control system

consisting of (14), (16), and (29)–(31) is asymptotically

stable in the large and the steady error between the real

state and the estimated state converges to zero if there exist

Q1 2 Rn�n, and polynomial matrices Miðx̂ðkÞÞ 2 Rm�n,

and Niðx̂ðkÞÞ 2 Rn�n satisfying the following conditions:

gT
1

X1ii � �
X2ii X1ii � e~Ei

~ET
i �

~HiQ 0 eI

2

4

3

5g1 is SOS ð32Þ

gT
2

2Q � � �
X2ij þ X2ji X3ij � �

~HiQ 0 eI �
~HjQ 0 0 eI

2

6
6
4

3

7
7
5g2 is SOS; i\j ð33Þ

where

X1ii ¼
Q1 � r1iI 0

0 Q1 � r2iI

� �

; Q ¼ Q1 0

0 Q1

� �

X2ii ¼
Nii11 Nii12

0 Nii22

� �

; X2ij ¼
Nij11 Nij12

0 Nij22

� �

Nii22 ¼ �AiðxðkÞ; x̂ðkÞÞQ1 � Niðx̂ðkÞÞ

Nij22 ¼ �AiðxðkÞ; x̂ðkÞÞQ1 � Niðx̂ðkÞÞ

Nii11 ¼ Aiðx̂ðkÞÞQ1 � BiðnðkÞÞMiðx̂ðkÞÞ
Nij11 ¼ Aiðx̂ðkÞÞQ1 � BiðnðkÞÞMjðx̂ðkÞÞ
�AiðxðkÞ; x̂ðkÞÞe ¼ AiðxðkÞÞxðkÞ � Aiðx̂ðkÞÞx̂ðkÞ
Nii12 ¼ BiðnðkÞÞMiðx̂ðkÞÞ; Nij12 ¼ BiðnðkÞÞMjðx̂ðkÞÞ

X3ij ¼ 2Q� e~Ei
~ET

i � e~Ej
~ET

j

with ~Ei ¼ ½ET
i ET

i �
T ; ~Hi ¼ ½Hi 0�: g1 2 R4nþp and g2 2

R4nþ2p are vectors which are independent of x. r1i and r2i

are nonnegative polynomial functions about nðkÞ such that

r1i [ 0 and r2i [ 0 for nðkÞ 6¼ 0, i; j ¼ 1; 2; . . .; r. More-

over, the gains can be obtained:

Kiðx̂ðkÞÞ ¼ Miðx̂ðkÞÞQ�1
1 ; Liðx̂ðkÞÞ ¼ Niðx̂ðkÞÞQ�1

1 C�

C- is the generalized inverse matrix of C.

Proof First, the augmented system (34) consisting of

(14), (16), and (29)–(31) is obtained:

~xðk þ 1Þ ¼
Xr

i;j¼1

hiðzðkÞÞhjðzðkÞÞGijðnðkÞ; x̂ðkÞ; xðkÞÞ~xðkÞ

ð34Þ

where

~xðkÞ ¼ ½xT eT �T ; Gij12 ¼ BiðnðkÞÞFjðx̂ðkÞÞ

Gij11 ¼ ~AiðxðkÞÞ � BiðnðkÞÞFjðx̂ðkÞÞ

GijðnðkÞ; x̂ðkÞ; xðkÞÞ ¼
Gij11 Gij12

�DAi Gij22

� �

Gij22 ¼ �Aiðx̂ðkÞ; xðkÞÞ � Liðx̂ðkÞÞC:

Next, a candidate of a Lyapunov function is proposed:

Vð~xðkÞÞ ¼ ~xTðkÞP~xðkÞ ð35Þ

where P ¼ Q�1 [ 0. Then, if the following conditions are

fixed, DVð~xÞ\0 at ~x 6¼ 0,

Xr

i;j¼1

hihjG
T
ijðn; x̂; xÞ

 !

P
Xr

i;j¼1

hihjGijðn; x̂; xÞ
 !

� P\0:

ð36Þ

Fig. 2 Control and estimation results
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Following the similar lines of the proof of Theorem 1,

the result can be easily derived.

4.1 Simulation Results II

Consider the following system:

x1ðk þ 1Þ ¼ 0:1x2
2ðkÞx1ðkÞ þ 0:1x2ðkÞ � sinðkÞx1ðkÞ

x2ðk þ 1Þ ¼ 0:9x3
2ðkÞ þ sinðx1ðkÞÞ þ uðkÞ

�

:

ð37Þ

This nonlinear system has polynomial terms 0:9x3
2ðkÞ

and 0:1x2
2ðkÞx1ðkÞ. The premise variable vector z contains

x2 to be estimated if a T–S fuzzy model is to be used in

practical sense. The previous LMI conditions obtained

cannot be applied to the system. Otherwise, x2 appears in the

polynomial system matrix Ai, and it is not contained by the

premise variable vector z in the polynomial fuzzy system.

Assume that x1 is measurable and y = x1. The system

(37) can be represented as the system (29) and (14), where

A1ðx2ðkÞÞ ¼
0:1x2

2ðkÞ 0:1
1 0:900x2

2ðkÞ

� �

; Ei ¼
1

0

� �

A2ðx2ðkÞÞ ¼
0:1x2

2ðkÞ 0:1
�0:2172 0:900x2

2ðkÞ

� �

; BiðyðkÞÞ ¼
0

1

� �

h1ðzðkÞÞ ¼
sinðyðkÞÞ þ 0:2172yðkÞ

1:2172yðkÞ ; C ¼ 1 0½ �

h2ðzðkÞÞ ¼
yðkÞ � sinðyðkÞÞ

1:2172yðkÞ ; Hi ¼ 1 0½ �; i ¼ 1; 2

By solving the SOS conditions in Theorem 2, we have

Q1, polynomial matrices Miðx̂ðkÞÞ and Niðx̂ðkÞÞ. The

polynomial feedback gains Fiðx̂ðkÞÞ and Liðx̂ðkÞÞ could be

obtained Fiðx̂ðkÞÞ ¼ Miðx̂ðkÞÞQ�1
1 ; Liðx̂ðkÞÞ ¼ Niðx̂ðkÞÞQ�1

1

C�; where i ¼ 1; 2. In comparison with Fig. 3, which

represents the system behavior for the initial condition

xð0Þ ¼ ½0:5 1�T and x̂ð0Þ ¼ ½0:5 � 1�T ; Fig. 4 shows the

controlled system behavior, which illustrates the efficiency

of the designed fuzzy regulator and the fuzzy observer via

SOS approach for the same initial condition. Figure 5

shows the control and estimation results by the designed

polynomial fuzzy observer.

5 Controller and Observer Design (Class III)

In this section, a more general class design is considered,

i.e., both the system matrix Ai and the input matrix Bi are

dependent on the state x. Consider the following polyno-

mial fuzzy system:

xðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞf~AiðxðkÞÞxðkÞ þ BiðxðkÞÞuðkÞg

ð38Þ

Then a polynomial fuzzy observer is proposed to esti-

mate the states of (38):

x̂ðk þ 1Þ ¼
Xr

i¼1

hiðzðkÞÞfAiðx̂ðkÞÞx̂ðkÞþ

Biðx̂ðkÞÞuðkÞ þ Liðx̂ðkÞÞðy� ŷÞg
ð39Þ

where Liðx̂ðkÞÞ 2 Rn�q is the polynomial observer gain.

The following controller needs to be developed:

uðkÞ ¼
Xr

i¼1

hiðzðkÞÞf�Kiðx̂ðkÞÞx̂ðkÞg ð40Þ

Theorem 3 The equilibrium of the overall control system

consisting of (14), (16), and (38)–(40) is asymptotically

Fig. 3 System response without the input

Fig. 4 System response with the polynomial fuzzy observer
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stable in the large and the steady error between the real

state and the estimated state converges to zero if there exist

Q1 2 Rn�n, Q2 2 Rn�n; and polynomial matrices

Miðx̂ðkÞÞ 2 Rm�n, and Niðx̂ðkÞÞ 2 Rn�n satisfying the fol-

lowing conditions:

gT
1

X1ii � �
X2ii X1ii � e~Ei

~ET
i �

~HiQ 0 eI

2

4

3

5g1 is SOS ð41Þ

gT
2

2Q � � �
X2ij þ X2ji X3ij � �

~HiQ 0 eI �
~HjQ 0 0 eI

2

6
6
4

3

7
7
5g2 is SOS; i\j ð42Þ

where

X1ii ¼
Q1 � r1iI 0

0 Q2 � r2iI

� �

; Q ¼ Q1 0

0 Q2

� �

X2ii ¼
Nii11 Nii12

Nii21 Nii22

� �

; X2ij ¼
Nij11 Nij12

Nij21 Nij22

� �

Nii22 ¼ AiðxðkÞÞQ2 � Niðx̂ðkÞÞ; Nii12 ¼ Niðx̂ðkÞÞ
Nij22 ¼ AiðxðkÞÞQ2 � Niðx̂ðkÞÞ; Nij12 ¼ Niðx̂ðkÞÞ

Nii11 ¼ Aiðx̂ðkÞÞQ1 � Biðx̂ðkÞÞMiðx̂ðkÞÞ
Nij11 ¼ Aiðx̂ðkÞÞQ1 � Biðx̂ðkÞÞMjðx̂ðkÞÞ

Nij21 ¼ ðAiðxðkÞÞ � Aiðx̂ðkÞÞÞQ1

� ðBiðxðkÞÞ � Biðx̂ðkÞÞÞMjðx̂ðkÞÞ:

X3ij ¼ 2Q� e~Ei
~ET

i � e~Ej
~ET

j

with ~Ei ¼ ½0 ET
i �

T
, ~Hi ¼ ½Hi Hi�. g1 2 R4nþp and g2 2

R4nþ2p are vectors which are independent of x. r1i and r2i

are nonnegative polynomial functions about nðkÞ such that

r1i [ 0 and r2i [ 0 for nðkÞ 6¼ 0, i; j ¼ 1; 2; . . .; r. More-

over, the gains can be obtained:

Kiðx̂ðkÞÞ ¼ Miðx̂ðkÞÞQ�1
1 ; Liðx̂ðkÞÞ ¼ Niðx̂ðkÞÞQ�1

1 C�

C- is the generalized inverse matrix of C.

Proof First, the augmented system (43) consisting of

(14), (16), and (38)–(40) is obtained:

~xðk þ 1Þ ¼
Xr

i;j¼1

hiðzðkÞÞhjðzðkÞÞGijðx̂ðkÞ; xðkÞÞ~xðkÞ ð43Þ

where

~xðkÞ ¼ ½x̂T eT �T ; Gijðx̂ðkÞ; xðkÞÞ ¼
Gij11 Gij12

Gij21 Gij22

� �

Gij11 ¼ Aiðx̂ðkÞÞ � Biðx̂ðkÞÞFjðx̂ðkÞÞ

Gij12 ¼ Liðx̂ðkÞÞC; Gij22 ¼ ~AiðxðkÞÞ � Liðx̂ðkÞÞC

Gij21 ¼ ~AiðxðkÞÞ � Aiðx̂ðkÞÞ�
ðBiðxðkÞÞ � Biðx̂ðkÞÞÞFjðx̂ðkÞÞ:

Next, a candidate of a Lyapunov function is proposed:

Vð~xðkÞÞ ¼ ~xTðkÞP~xðkÞ ð44Þ

where P ¼ Q�1 [ 0. Then, if the following conditions are

fixed, DVð~xÞ\0 at ~x 6¼ 0,

Xr

i;j¼1

hihjG
T
ijðx̂; xÞ

 !

P
Xr

i;j¼1

hihjGijðx̂; xÞ
 !

� P\0 ð45Þ

Following the similar lines of the proof of Theorem 1,

the result can be easily derived.

5.1 Simulation Results III

Consider the following system:

x1ðk þ 1Þ ¼ f1ðkÞ
x2ðk þ 1Þ ¼ f2ðkÞ

�

ð46Þ

where

f1 ¼ 0:3x2
2ðkÞx1ðkÞ þ 0:1x2ðkÞ � 0:1 sinðkÞðx1ðkÞ þ x2ðkÞÞ

f2 ¼ 0:5x3
2ðkÞ þ sinðx1ðkÞÞ þ ð1þ x2

2ðkÞÞuðkÞ:

Fig. 6 System response without the input

Fig. 5 Control and estimation results
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This nonlinear system has polynomial terms 0:5x3
2ðkÞ,

0:3x2
2ðkÞx1ðkÞ, and ð1þ x2

2ðkÞÞuðkÞ. The SOS design

method based on the polynomial fuzzy systems realizes

that the polynomial fuzzy controller can stabilize the sys-

tem and the estimated states converge to the real states.

Assume that x1 is measurable and y = x1. The nonlinear

system (46) can be represented as the system (14) and (38),

where

A1ðxðkÞÞ ¼ 0:3x2
2ðkÞ 0:1

1 x2ðkÞ

� �

; Ei ¼
1

0

� �

A2ðxðkÞÞ ¼ 0:3x2
2ðkÞ 0:1

�0:2172 x2ðkÞ

� �

;BiðyðkÞÞ ¼
0

1þ x2
2ðkÞ

� �

h1ðzðkÞÞ ¼
sinðyðkÞÞ þ 0:2172yðkÞ

1:2172yðkÞ ; Hi ¼ 0:1 0:1½ �

h2ðzðkÞÞ ¼
yðkÞ � sinðyðkÞÞ

1:2172yðkÞ ; C ¼ 1 0½ �; i ¼ 1; 2:

By solving the SOS conditions in Theorem 3, we could

obtain Q1, Q2, polynomial matrices Miðx̂ðkÞÞ and Niðx̂ðkÞÞ, the

polynomial feedback gains Kiðx̂ðkÞÞ and Liðx̂ðkÞÞ. In

comparison with Fig. 6, which represents the system behavior

for the initial condition xð0Þ ¼ ½0:5 1�T and x̂ð0Þ ¼
½�0:5 0:5�T , Fig. 7 shows the controlled system behavior,

which illustrates the efficiency of the designed fuzzy regulator

and the fuzzy observer via SOS approach for the same initial

condition. Figure 8 shows the control and estimation results

by the designed polynomial fuzzy observer.

6 Conclusions

In this paper, a SOS approach has been presented to design

the polynomial fuzzy observer for the discrete polynomial

fuzzy system. Three classes of discrete-time polynomial

fuzzy systems have been studied: (1) the system matrices

Ai and input matrices Bi are independent of the states x to

be estimated; (2) the system matrices Ai are permitted to be

dependent of the states x to be estimated; (3) the system

matrices Ai and input matrices Bi are permitted to be de-

pendent of the states x to be estimated. The parallel dis-

tributed compensation (PDC) has been employed to design

polynomial fuzzy regulators and polynomial fuzzy ob-

servers. Numerical examples have been designed to

demonstrate the utility of the proposed approach. Follow-

ing these proposed approach, we can study the nonlinear

control problems such as backstepping control, sliding

mode control, and so on based on polynomial fuzzy ob-

server further.
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