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Abstract
Flooding, exacerbated by the challenges of climate change, poses a growing threat to communities in the Upper West Region 
(UWR) of Ghana. This persistent issue, particularly during the rainy seasons has subjected the region to several losses of 
properties and lives over the years. This has spurred the need for a comprehensive delineation of flood risk terrains (FRTs) and 
analysis of the rainfall patterns in the region. This study, therefore, started by analysing a digital elevation model (SRTM—
DEM) using Jenks Natural Breaks Classification (JNBC) algorithm to delineate potential FRTs map within the region. Further, 
analysis was performed using Analytical Hierarchy Process Multi-Criteria Decision (AHP-MCD) with the incorporation of six 
spatial factors (Lineament Density, Elevation, Topographic Wetness Index, Drainage Density, Slope, and Aspect) to generate a 
comprehensive FRTs map. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) from 1992 to 2022 were 
also visualized in a Jupyter Notebook to assess rainfall patterns in the UWR. Historical flood events data were also analysed 
to understand the trends of flood events impacts. From the findings, both the JNBC and AHP-MCD algorithms categorized 
the UWR’s total area into five classes, namely; very high, high, moderate, low, and very low FRTs. The JNBC map had area 
coverages of 4% (856.278 km2), 7% (1466.685 km2), 12% (2418.642 km2), 35% (7014.96 km2), and 42% (8351.496 km2) from 
very high risk to very low FRTs, respectively. Notably, the very high risk terrains and high risk terrains were predominantly 
located along the southeastern and eastern regions, particularly along the Kulpawn River and Sisili River in the UWR. The five 
classes AHP-MCD map also recorded areas as 0.004% (0.707 km2), 21% (3830.02 km2), 69% (12807.31 km2), 10% (1827.011 
km2), and 0.062% (11.535 km2) very high risk to very low FRTs, respectively. These findings further revealed a prevalence 
of high FRTs along stream and river networks. Interestingly, the validation of the AHP-MCD map over the ground truthing 
points indicated that the UWR is dominated by moderate FRTs (71.76%), underscoring the region's vulnerability to flooding. 
The visualization of the spatial rainfall distribution from 1992 to 2022, also highlighted the significance of heavy rainfall years, 
particularly in 2018, 2019, and 2021, and the month of August as consistent predictors of flood occurrences. A correlation 
matrix reinforces the strong connection between rainfall and flood-related impacts, such as affected populations, economic 
costs, and agricultural losses from 2016 to 2021. In light of these findings, UWR residents must prioritize flood-resilient crop 
cultivation and adhere to flood disaster safety protocols, especially during the critical month of August. These insights hold 
valuable implications for municipal, district, and community planning policies, offering a foundation for proactive sustainable 
flood risk mitigation and community resilience efforts in the region.

Keywords  Flood · Analytical hierarchy process · Jenks natural breaks classification · Upper West Region · Rainfall · Spatial 
distribution

Introduction

Flood occurrences in the context of climate change have 
swept through several facets of the world (Armah et al. 
2010; Aznar-crespo et al. 2021). Notably, the generation 

of floods through riverine systems overflows, and overland 
flows under extreme rains has posed an ever increasing threat 
to natural resources and humanity (CRED 2018; Sofia and 
Nikolopoulos 2020). Significantly, the challenge becomes 
evident and rampant when the general land surfaces and 
drainage network systems are unable to discharge or con-
vey excess rainwater after heavy downpours, as population 
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growth with rapid urban land uses changes (United Nations 
2009; Le Polain De Waroux 2011; Sofia and Nikolopou-
los 2020; Liu et al. 2023; Nearing et al. 2024; Rączkowska 
et al. 2024). In recent times, driving climate change and its 
increasing global warming have been ranked as the worst 
acceleration of environmental and hydrological extremities; 
floods and droughts (Garg et al. 2023; Bullen and Miles 
2024; UNESCO 2023a, b; Nearing et al. 2024). Heavy rain-
falls and land surface changes also play major roles in flood 
frequency and magnitude generation (Tarasova et al. 2023; 
Fischer and Schumann 2024). Though some studies have 
ascribed flood occurrences to hydro-meteorology (Tabari 
2020; Alifu et al. 2022), perennial flood impacts, severity, 
and risks are also driven by three (3) core phenomena; vul-
nerability, hazards, and exposure (Hudson and Berghäuser 
2023; Srivastava and Roy 2023). Globally, there have been 
enormous reports on the losses of properties worthy of mil-
lions of dollars and lives to flooding disasters (Islam and 
Wang 2024). On average, the global community recorded 
annual economic losses of 40 billion euros to flooding events 
in 2009 (Gaume et al. 2009). Additionally, in 2022, 176 
flood disasters were recorded while between 2002 and 2021, 
168 flood disasters were recorded at an estimated economic 
loss of $ 44.6 billion and 41.6 billion, respectively (CRED 
2023). The higher record of floods in 2022 as compared to 
the two (2) decades (2002 to 2021), confirmed the world-
wide ever increasing rate of flood occurrence.

Further evidence showed that flood disasters have been rated 
as one of the leading natural disasters in African countries, 
with severe rainfalls as the major cause (CRED 2019; Ahadzie 
et al. 2021; Alimi et al. 2022; Danso et al. 2024). Within the 
period of 19 years (1994—2013), Africa economically lost $ 
912 billion to floods (UNISDR 2015). Approximately, 12 per 
cent of Africans experienced food insecurity caused by flood 
events between 2009 and 2020 (Reed et al. 2022). Flood events 
between 2010 and 2019, also accounted for 64 per cent of natu-
ral disasters in the continent (CRED 2019). Subsequently, parts 
of Africa experienced food insecurity, after crops were washed 
off by floods in 2022 (WMO 2022). As of December 2022, 
the United Nations Office for the Coordination of Humanitar-
ian Affairs report for the year (2022) indicated; a death toll of 
1418, while 4398 citizens suffered various degrees of injuries, 
and 2.9 million were also displacedin West and Central Africa 
(OCHA 2022). Flooding was ranked 56% of natural disasters 
in Africa with 43% of fatalities and 92% of economic losses 
(WMO 2022). Additionally, Tramblay et al. (2022) analysis of 
13,815 historical flood records (1981–2018, 37 years) across 
Africa showed that 75% of them occurred as a result of inten-
sive rainfalls. These further confirmed the perennial increasing 
rate of floods in Africa as a result of heavy rainfalls (Alimi et al. 
2022) and it is therefore paramount for more studies to under-
stand the mechanism of flood occurrences.

In Ghana, perennial flood disasters have been a national 
challenge, especially in the major cities, rural areas, com-
munities, and cities within low-lying areas and or along river 
channels of the country (Dekongmen et al. 2021; Yin et al. 
2021). Rapid rural–urban and urbanization have been accel-
erating these challenges through, unapproved settlements on 
waterways, paved surface areas, and poor waste management 
in Ghana, at the expense of potential flooding areas, thereby 
exposing many citizens to perennial flood disasters (Danso 
et al. 2024). However, in the rural areas, it is mostly the 
farmers who suffer the consequence of floods due to their 
predominant farming of rice and some water-like crop in 
low-lying areas, wetlands, and valleys (Smits et al. 2024). 
This confirmed that the frequency and severity of floods and 
other natural disasters increase as economic development 
and population densities encroach on these highly disaster 
risky zones (UNISDR 2015). In Ghana, flood disasters have 
been ranked as the highest natural disasters with a statistical 
representation of 32% from 2010 – 2019 (Kelly and Addo 
2023). According to the Emergency Events Database (EM-
DAT) from 1968 – 2023, floods accounted for 534 deaths 
and affected over 5,062,732 citizens within various parts of 
the country. The lower part of the Volta Basin of Ghana is 
yet to recover from 2023 floods that rendered many citizens 
along the basin homeless (IFRC 2023a). However, heavy 
rains are expected to worsen extreme floods in Ghana at 
a yearly projected cost of $ 160 million (The World Bank 
Group 2021).

The perennial flood cases in the major cities in Ghana 
have led to severally flood studies (Amoako and Boamah 
2014; Frimpong 2014; Asumadu-Sarkodie et  al. 2015; 
Twum and Abubakari 2019; Kordie et al. 2020; Osei et al. 
2021a, b; Yin et al. 2021; Yin et al. 2022; Twum and Abuba-
kari 2019; Osei et al. 2021a, b; Danso et al. 2024). However, 
none of such studies have been conducted in the Upper West 
Region (UWR) of Ghana. Worryingly, within the past dec-
ades, several episodes of these flood events have occurred in 
the UWR; a report from the EM-DAT indicated 52 losses of 
lives, with 29 injuries, 291,573 affected people, and home 
damages recorded at 33,000 in September 1999. National 
Disaster Management Organization (NADMO) records 
from 2016 to 2020 in the UWR, reported 553.5 acres of 
crop losses, and an affected population of 9,385, with an 
estimated cost of damage of Ghc 1,458,872.5. The most 
unbearable floods in 2021 (Fig. 1), led to massive unex-
pected destruction of homes, farms, roads, and even loss of 
lives. Shockingly, perennial spillages of excess water from 
the Bagre Dam in Burkina Faso coupled with extreme rain-
falls are causing humanitarian challenges in the UWR and 
other Upper Regions of the country (Armah et al. 2010; 
Smits et al. 2024). These perennial floods have the potential 
to heighten food insecurity and disease outbreaks (Andrade 
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et al. 2018; Iqbal et al. 2022; Rehan et al. 2023; Ayenew and 
Kebede 2023).

Improving the situation in the region requires the pro-
vision of flood risk terrains information, which is crucial 
to support stakeholders in developmental planning, policy 
and decision-making, that will prevent urban dwellers 
from building on waterways. However, in recent years 
advanced datasets and methods; modelling approaches 
and techniques have evolved around the globe for con-
ducting flood studies. These methods include but are not 
limited to analytical hierarchy process (AHP) and Geo-
graphic Information System (GIS) (Danumah et al. 2016; 
Cabrera and Lee 2019; Swain et al. 2020a, b; Ozturk and 
Safety 2021; Ramkar and Yadav 2021; Wicaksono et al. 
2021), Artificial Neural Network (ANN) and Machine 
Learning (ML) (Adel et  al. 2014; Sayers et  al. 2014; 
Dazzi et al. 2021; Tamiru and Wagari 2022), Artificial 
Intelligence (AI) (Riazi et al. 2023), soil and water assess-
ment tool (SWAT) and HEC-RAS (Ogras and Onen 2020; 
Taraky et al. 2021), GIS and Remote Sensing (RS) (Osei 
et al. 2021a, b), Frequency Ratio model, Fuzzy Logic (FL) 
Model, regional flood frequency analysis (RFFA) (Komi 
et  al. 2016; Forson et  al. 2023; Debnath et  al. 2024), 
Watershed Modelling System (Soussa et al. 2012), and 
hydrological model (HEC-HMS) and Hydraulic model 
(HEC-RAS) (Tripathi et al. 2014; Shaikh et al. 2023; Al-
Areeq et al. 2023; Baci et al. 2024). However, most of 

these methods are often data and situational dependent 
and are mostly expensive to implement in developing 
countries (Samela et al. 2020).

Evaluating the complete possibility of stopping floods 
from occurring perennially may be artificially or naturally 
unachievable and elusive. However, the delineation of flood 
risk terrains is critical for flood adaptation, mitigation man-
agement, and sustainable development in the Upper West 
Region due to the perennial flooding. Therefore, this study, 
employed techniques such as; Jenks natural breaks classifi-
cation (JNBC), and an integrated Geographic Information 
System (GIS)-based Analytical Hierarchy Process Multi-
Criteria Decision (AHP-MCD) to delineate flood risk ter-
rains, buffer zoning of communities along rivers/streams, 
evaluate historical flood records and population trends. 
Spatial distribution of rainfalls from 1992 to 2022 using 
Climate Hazards Group InfraRed Precipitation with Station 
data (CHIRPS) (Funk et al. 2015) was also visualized in a 
Jupyter notebook. Historical flood events data were also ana-
lysed to ascertain the trends of flood disasters in the region. 
The findings would set the ground for the development of a 
paradigm shift in policy that supports sustainable flood risk 
adaptations and mitigation measures, and water resources 
management in the region. This study is aligned with several 
studies conducted around the globe (Danumah et al. 2016; 
Swain et al. 2020a, b; Gupta and Dixit 2022; Nsangou et al. 
2022; Shekar and Mathew 2023a, b; Ziwei et al. 2023).

Fig. 1   Examples of flood dis-
asters in 2021 in the region (a) 
Road washed off; b Daffiama-
Sanwie Road; c Nadwoli –Wa 
Road; d Truck en route to 
Burkina Faso  (Source: Ministry 
of Roads and Highways Ghana)
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Materials and method

Study area

This study focuses on the Upper West Region (UWR), 
Ghana, which is within longitude 1 25’’ W and 2 45’’ W and 
latitudes 9 30’’ N and 11 N, and it shares a boundary with 
the Savanna Region to the south, with Upper East Region 
and North East Region to the east, with Burkina Faso to 
the north and the west with Cote d’Ivoire (GSS 2013; Bad-
dianaah et al. 2022). The region has total land coverage of 
18,779.71 square kilometres (Fig. 2) and it comprises about 
12.7% of the total landmass of the country. The agroecologi-
cal zone of the region is within the Guinea Savannah and 
Sudan Savannah belt (Diabene et al. 2014) with common 
trees such as; dawadawa, manula, shea, baobab and neem. 
These trees provide economic value to the people as well as 
firewood for domestic use. Generally, the most cultivated 
crops in the Upper West include; nuts, tubers, vegetables 
and cereals (Diabene et al. 2014). Currently, the region has 
a population of 904, 695, which constitutes 2.9% of the total 

population of Ghana (GSS 2021). The region experiences 
continental tropical air masses (dry and hot) (Brulard 2011). 
It experiences a single rainy season, lasting for a period of 
4 to 5 months (April to September), with an annual average 
rainfall ranging from 840 to 1400 mm. The rainfall tends 
to be heavy between August and September. The north-
east trade winds which bring the dry season known as the 
‘harmattan’ start at the recedes of the rainy period, and are 
characterized by cold and hazy weather conditions from 
November to March, hot weather conditions, which only 
seize at the onset of the rainy season. Temperatures in the 
region are generally high; with monthly mean temperatures 
ranging from 21 to 32 °C, which rise to about 40 °C some-
where in March—April and fall to 20 °C in December (GSS 
2013;Saana et al. 2016; Abu et al. 2024). The topography of 
the region is almost gently flat with Lawra and the western 
part of Wa mostly referred to as the Wa-Lawra plains, with 
a height of land range between 250 and 300 m. The western 
part of the region is drained by the Black Volta River Basin 
(BVRB), while the central and eastern parts of the region 
are drained by the Red and White River Basins (Kulpawn 

Fig. 2   Study area (UWR) map
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River and Sisili River), with their various tributaries from 
the sub-catchments are discharging southwards into the 
White Volta River Basin in the southern. Soil structure, tex-
ture, porosity, coarse nature, clay composition, and organic 
matter control the permeability and water holding capacity 
(Ball 2011; Kerr et al. 2016; Irvin IV et al. 2023). However, 
the soil types found in the region were Acrisols, Arenosols, 
Fluvisols, Leptosols, Lixisols, Planosols, Plinthosols, and 
Vertisols. These soils are largely generated over granite with 
some fewer areas developed over lower Birimian phyllite. 
The geology features Basal Sandstone, Birimian Sediments, 
Birimian Volcanics, Dahomeyan, Obosum and Oti Beds, and 
Upper Voltaian (Abdul-Ganiyu and Kpiebaya 2020).

Methods

To spatially delineate flood risk terrains over a watershed, 
topographical and or hydrological surfaces to support policy 
and decision-making requires datasets and tools. Succinctly, 
the details of each data and method of analysis employed 
in this study have been explicitly described in the sub-sec-
tions of the study. Figure 3 summarises the insightful steps 
employed in conducting this study. However, the flood risk 

terrain maps were developed using two techniques; Jenks 
natural breaks classification (JNBC) and GIS-based AHP-
MCD. Jenks' natural breaks classification (JNBC) (Jenks 
1967; Guoyi et al. 2023) technique was employed to first 
optimize the delineation of the five (5) classes of the study 
area, to initially demarcate flood-susceptible areas within 
the study area, which provided an insight into the flood risk 
terrain to be expecting. JNBC techniques algorithm has 
been employed in conducting flood hazard studies and other 
studies (Anchang et al. 2016; Toosi et al. 2019; Amirruddin 
et al. 2020; Mishra and Sinha 2020; Deroliya et al. 2022). 
This algorithm ensures the optimal arrangement of classes’ 
values within a group and between classes. JNBC optimiza-
tion determines to reduce the intra-class means deviation 
while ensuring that the inter-class means are maximized 
(Jenks 1967). Each of the classes indicates an area within 
the study area that would likely suffer perennial floods dur-
ing heavy rainy days or periods, as a result of a high volume 
of surface runoff inundation due to the heavy rainfalls (Toosi 
et al. 2019). There have been enough shreds of evidence of 
heavy rainfalls as the cause of severe flood disasters in the 
Upper West Region (UWR) (IFRC 2023b), as a result, Jupy-
ter notebook was employed to visualize Climate Hazards 
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Group InfraRed Precipitation with Station data (CHIRPS) 
(Funk et al. 2015) for 30 years (1992 to 2022). The average 
monthly and August rainfall events were visualized. In addi-
tion, the study analysed population growth and historical 
flood events in the study area to understand their trends. 
Most especially, a correlation matrix of rainfalls and flood 
events records was also carried out.

Data acquisition

Historical flood records give a preliminary knowledge of 
present and future floods in a catchment. Therefore, in this 
study, both primary and secondary datasets from various 
sources including local departments and organizations were 
collected and used. Secondary data on historical flood disas-
ter records from 2016 to 2021 were sourced from the Upper 
West Regional National Disaster Management Organization 
(NADMO). Population growth rate is a key factor in expo-
sure to flood vulnerability (Nguyen et al. 2021). As a result, 
population data between 2010 and 2021 was also obtained 
from the regional Ghana Statistical Service (GSS) depart-
ment, Wa, Ghana. These datasets were sourced to explore 
the trend of floods and population growth within the UWR. 
However, there are no generally accepted methods and tech-
niques for classifying flood potential areas, delineation fo 
flood risk terrains, flood zoning etc. (Jodhani et al. 2021), 
as there are several methods and factors that influence flood 
occurrences (Bello and Ogedegbe 2015). Al-Areeq et al. 
(2023) noted a better performance of the 30 m Shuttle Radar 
Topographic Mission (SRTM) DEM in flood extend assess-
ment as compared with 12.5 m ALOSPALSAR, 10 m Sen-
tinel 1, 30 m Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) and 90 m MERIT prod-
ucts. Therefore, to develop a spatial flood risk terrain (FRT) 
map of the UWR, the SRTM DEM from USGS was used to 
generate the various thematic maps. Woeful, the paucity of 
data in the region to model the hydrological and hydraulic 
dynamics in the region has prevented innovative model-
ling of early warning systems and designs. After carefully 
reviewing the literature (Okyere et al. 2013; Arabameri et al. 
2018; Al-Areeq et al. 2023; Shekar and Mathew 2023a, b; 
Shekar and Mathew 2023a, b; Ahmed et al. 2024; Danso 
et al. 2024; Jemai et al. 2024), six (6) spatial topographi-
cal, hydrological, and geological flood conditioning sub-
thematic factors comprising topographic wetness index 
(TWI), Drainage Density (DD), Elevation, Slope, Linea-
ment Density (LD), and Aspect, were selected based on the 
data availability, and the nature of the UWR topography to 
explore areas susceptible to flood disasters. These spatial 
thematic factors selected, significantly control landscape 
forms and characteristics, and hydrological processes, that 
drive surface runoff (Danumah et al. 2016; Ahmad 2018; 
Toosi et al. 2019; Mishra and Sinha 2020; Karymbalis et al. 

2021; Leandro and Shucksmith 2021; Addis 2022; Amen 
et al. 2023). As a result, several, studies conducted around 
the globe selectively combined different thematic factors to 
either model, delineate, and assess; flood risk areas (Liuzzo 
et al. 2019; Mishra and Sinha 2020; Swain et al. 2020a, b; 
Roy et al. 2021; Gacu et al. 2022; Al-Taani et al. 2023), 
and groundwater recharge potential zones (Andualem and 
Demeke 2019; Gómez-Escalonilla et al. 2022; El Ayady 
et al. 2023; Ishola et al. 2023; Kumar et al. 2023; Moharir 
et al. 2023; Shekar and Mathew 2023a, b; Tariq et al. 2023; 
Feujio et al. 2024), soil erosion (Ahmad 2018) and land-
slides (Poddar and Roy 2024), indicating that flood model-
ling or assessment is not static to one set of datasets. Ground 
truthing points (GTPs) of some historical and frequent flood-
ing points were collected from the field with a GPS device. 
The CHIRPS from Digital Earth Africa sandbox (https://​
sandb​ox.​digit​alear​th.​africa/) were also analysed to highlight 
the trend of the spatial distribution of the rainfall behaviour 
during the flood seasons over the UWR. However, buffer 
zoning was also employed to capture communities likely to 
be inundated when the streams and rivers flow their banks 
during peak rainy seasons.

Preparing and comparing flood‑causing 
Sub‑thematic factors

After establishing the sub-thematic factors preparation, the 
Saaty method (Saaty 1977) of Analytical Hierarchy Process 
(AHP)-Multi-Criteria Decision (MCD) (AHP-MCD) which 
has been applied in several flood studies (Danumah et al. 
2016; Cabrera and Lee 2019; Swain et al. 2020a, b; Gacu 
et al. 2022; Gupta and Dixit 2022; Al-Taani et al. 2023; 
Shekar and Mathew 2023a, b) was used to rank these factors 
through assigned weighted values based on their strong rela-
tive relevance and contributing to runoff inundation, over-
land flows, and flood risk within the territory (Amen et al. 
2023). AHP-MCD was done through a pair-wise compari-
son matrix of the sub-thematic factors, based on an expert 
judgement and knowledge of the research terrain, on how 
the factors are influencing flood within the area (Gacu et al. 
2022). The consistency of each sub-thematical factor was 
assessed to ensure they were consistent with each other or 
not, using Eqs. 1 and 2.

CR, CI, RI (Table 1), and λmax represent the consistency 
ratio, consistency index, random index, and matrix prin-
cipal eigenvalue respectively. However, n (Table 1) also 

(1)CI =
λmax−n

n − 1

(2)CR =
CI

RI

https://sandbox.digitalearth.africa/
https://sandbox.digitalearth.africa/
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presents the number of sub-thematic factors being compared 
(Abdrabo et al. 2023; Ahmed et al. 2024).

The consistency ratio (CR) for a 3 × 3 matrix and a 4 × 4 
matrix are 0.05 and 0.09, respectively. CR of 10% (0.01) in 
general, is for large matrices. The computed CI from the 
process was found as 6.254, which yielded a computed CR 
value of 0.04 for the six factors (n = 6, RI = 1.25), which 
is less than 0.01. The CR value calculated was within the 
acceptable range and it, therefore, indicated that the pairwise 
matrices were consistent with each other (Gupta and Dixit 
2022). Table 2 presents the environment’s natural hydrologi-
cal, geological, and topographical sub-thematic conditioning 
factors of floods. The rating of each sub-thematic factor’s 
class weight was determined by the Saaty, (1977, 2004) 
scale of 1 to 9. The scale values range from equally impor-
tance through to extremely important (see Saaty 1977). 
Therefore, classes that were adjudged as equally important 

and extremely important were assigned values as 1 and 9 
respectively. For Saaty’s scale from 1 to 9 of the intensity of 
importance see (Saaty 1977, 2002, 2004). The AHP-MCD 
weightage values for all the sub-thematic factors; Drain-
age density, elevation, slope, lineament density, TWI, and 
aspect, were 0.27, 0.17, 0.09. 0.21 and 0.05, respectively 
(Table 2). The sub-thematic factors were integrated and 
overlaid to generate the final AHP-MCD map.

Lineament density

Lineaments are geological features such as faults, fractures, 
joints, streams and valley networks (Das 2017; Das and 
Pardeshi 2017; Slimani et al. 2023; Tegegne et al. 2024). 
The sum of the length of all lineaments (Li) over an area 
is known as the lineament density (LD). LD regulates the 
flow of both surface runoff and groundwater by serving as 

Table 1   Standard values of 
random index (RI) (Donegan 
and Dodd 1991; Saaty 2002, 
2004)

N 0 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.51

Table 2   Weightage assignment of each factor

Flood Causative Criterion Unit Class Susceptibility Class 
Ranges and Ratings

Susceptibility Class 
Ratings

Weight (%)

Drainage Density (DD) km/km2 0–11.75
11.75–23.50
23.50–35.26
35.26–47.01
47.01–58.76

Very Low
Low
Medium
High
Very High

1
2
3
4
5

27

Elevation m 150–200
200–250
250–300
300–350
350–400

Very High
High
Medium
Low
Very Low

5
4
3
2
1

21

Slope % 0–1.73
1.73–3.213
3.214–6.919
6.9216.56
16.57–63.02

Very High
High
Medium
Low
Very Low

5
4
3
2
1

17

Lineament Density (LD) km/km2 0–12.71
12.71–20.25
20.25–27.15
27.15–34.47
34.47–54.94

Very Low
Low
Medium
High
Very High

1
2
3
4
5

9

Topographic Wetness Index (TWI) Level -6.58-, -2.57
-2.56-, -0.999
-0.999-, -1.2
1.2–4.51
4.51–13.5

Very Low
Low
Medium
High
Very High

1
2
3
4
5

21

Aspect Direction -1–71.13
71.13–143.26
143.26–215.38
215.38–287.51
287.51–359.64

Very High
High
Medium
Low
Very Low

5
4
3
2
1

5
100
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conduits (Slimani et al. 2023; Tegegne et al. 2024). There-
fore, the lineament networks were first extracted from the 
DEM in a Geomatic PCI environment. The lineament den-
sity was further generated using the Line Density based on 
Eq. 3 and reclassified into five classes ranging from 0–54.94 
(Fig. 4a) in the GIS tool environment.

where Li is the sum of the length of lineaments in m or km 
and A is equal to the area (m2 or km2).

Elevation

Elevation influences the speed and flow direction of sur-
face runoff rate, which encourages terrain susceptibility 
to flood risk. Terrains with low elevations, low-lying and 
flat slopes have a high risk of perennial flood occurrences. 
The elevation is, therefore, vital in determining flood risk 
terrains (Association of State Floodplain Managers 2020). 
Surface runoff moves from high lands to low lands; flat and 

(3)L
D
(Lineament Density) = Σ Li∕

A

lower terrains are more than susceptible to flood hazards 
(Shekar and Mathew 2023a, b) due to the rapid inundation of 
water. The elevation of the study area was extracted from the 
national elevation shapefile and reclassified into five classes 
ranging from 150 to 400 m (Fig. 4b).

Topographic wetness index

The Topographic Wetness Index (TWI) is an important flood 
conditioning characteristic factor in flood risk terrain map-
ping. TWI regulates surface runoff accumulation tendency 
within a point in a watershed, and the soil wetness or dry-
ness, saturation, moisture, and water depth (Costache 2019; 
Chowdhuri et al. 2020). A terrain with lower TWI values 
indicates that it is less prone to perennial flood risk (Shekar 
and Mathew 2023a, b), while high TWI values are con-
sidered high-risk flood vulnerability (Rahman et al. 2023) 
because saturated soil influences overland flows leading to 
inundation (Shekar and Mathew 2023a, b). DEM was used 
to generate the TWI map using Eq. 4;

Fig. 4   Spatial thematic factors influencing flood risk terrains in the UWR: a Lineament Density(km/km2), b Elevation (m), c TWI, d Drainage 
Density (km/km2), e Slope (%), and f Aspect (degree)
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As and β are the upstream area (area/length_m2/m) and 
slope gradient (degrees) of the watershed respectively (Das 
2019) Paul et al. 2019; Rahman et al. 2023). The generated 
TWI map was reclassified into five classes ranging from 
-0.99 – 13.5 (Fig. 4c).

Drainage density

The drainage density (DD) forms the runoff connectivity 
patterns of the study area. It is the summation of the streams 
and rivers' length within a watershed/catchment divided by 
the total area of the basin (Rahman et al. 2023). Terrains 
with high DD values are highly susceptible to floods as well 
and terrains with lower DD are less prevalent (Getahun and 
Gebre 2015; Rahman et al. 2023; Shekar and Mathew 2023a, 
b; Kannapiran and Bhaskar 2024). To generate the DD, riv-
ers/stream networks were first generated from the DEM and 
were used via the Line Density tool in the GIS tool under the 
Spatial Analyst tool. The generated DD was further reclas-
sified into five (5) classes (Fig. 4d) ranging from low (less 
DD) to high (denser DD) (0 – 58.76 km/m2) using Eq. 5 
below.

Lr is the total length of rivers and streams, while A is the 
total area of the watershed or catchment of the study area.

Slope

The slope is a major conditioning factor in spatial flood 
risk terrain identification (Karymbalis et al. 2021; Osei 
et al. 2021a, b; Ayenew and Kebede 2023). And how slope 
characteristics define the nature of an area’s extreme rains 
is critical. As a result, slope angles are important features 
in hydrological process modelling. It is a driving force of 
surface runoff and flow accumulation (Costache et al. 2021) 
that influences infiltration and soil erosion (Rahman et al. 
2023) and high speedy runoff in high-land and waterlogging/
flood inundation within low-lying terrains (Sachdeva and 
Kumar 2022). Generally, slope angles are important features 
in hydrological process modelling. Terrains within flat and 
low slope gradients are highly susceptible to the risk of flood 
while areas with higher sloppy terrain are less susceptible to 
flood (Liuzzo et al. 2019). To extract the slope of the study 
area, raster data of the digital elevation model (DEM) was 
used as an input. The region of interest (ROI) shape file was 
used as the boundary to digitize the DEM for the study. The 
spatial analyst tool in the GIS tool toolbox generated the 
slope from the DEM by calculating the maximum rate of 

(4)TWI =
In(As)

Tanβ

(5)Drainage Density(DD) = Σ Lr∕
A

changes in angle between each cell and its neighbour’s cell. 
The slope was calculated in per cent of the slope based on 
Eq. 6.

The produced slope map was reclassified into five classes 
ranging from 0–63.02% (Fig. 4e). Different colour codes 
were selected to designate areas liable to high and low flood 
occurrences. Red colour codes were assigned to areas with 
a high degree of susceptibility to flood occurrences. Green 
colour codes designated areas with moderate vulnerability 
of flooding and lower flood susceptibility were also assigned 
with yellow colour codes.

Aspect

Aspect shows the directions at which a slope is facing (Yu 
et al. 2023a, b). Aspect is measured in a clockwise direction 
in positive degrees ranging from 0 – 360, however, areas 
with zero or flat slopes are assigned negative ones (-1). The 
zero or flat aspects of terrains are the driving force of rapid 
surface runoff direction and accumulation, likely to result 
in floods (Sachdeva and Kumar 2022). DEM was used to 
generate the Aspect for the UWR, using the Surface tool in 
the GIS tool. The Aspect map was then reclassified into five 
classes ranging from -1 – 359.64 (Fig. 4f).

Population data

Equation 7 was applied in computing the population growth 
rate of the study;

where: R = population growth rate, Nt = the final population 
size at time t, N0 = the initial population size at time 0.

Climate hazards group infrared precipitation with station 
data (CHIRPS)

The CHIRPS are satellite derived areal data average data-
sets, especially for rural, complex terrain and, semi-arid 
regions that are data-scared due to fewer rain gauge stations 
(Funk et al. 2015; Dinku et al. 2018). This was initiated 
through collaborative efforts with the United States Geo-
logical Survey Earth Resources Observation and Science 
(USGS-EROS) Centre to produce an up-to-date and com-
plete reliable rainfall dataset for analyzing the trends and 
seasonal variations of the rainfall for monitoring and evalu-
ation of hydrological occurrences, to support effective early 
warning systems development. The datasets have a record 

(6)

Degree of slope = θ, percent of slope =
Rise(Height)

Run(Length)
× 100

(7)R =
[Nt − NO]

N0
∗ 100
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of over 30 + years spanning from 1981–01 up to date, with 
a spatial resolution of 0.050 with an approximation of 5.55 
kms (López-Bermeo et al. 2022). CHIRPS was chosen due 
to its better performance as compared to other satellite prod-
ucts in Ghana (Atiah et al. 2020). Atiah et al. (2020) vali-
dated satellite products with 113 observation stations data 
over Ghana where findings showed a strong agreement with 
observed rainfall data and CHIRPS data as compared to the 
other products. A strong correlation of over 0.9 between 
CHIRPS and observational station data was also observed 
in the Upper Savannah agroecological zone as compared 
with the other agroecological zones in Ghana (Atiah et al. 
2020). Ayehu et al. (2018) and Dinku et al. (2018), also 
reported better performance of CHIRPS products in East 
Africa as compared to other satellite products, this further 
strengthened the use of CHIRPS data in areas with observed 
data scarcity.

This necessitates the use of 30 years (1992–2022) of 
CHIPRS data to spatially visualise rainfall in the study area, 
at various spatial distribution scales; annual averages, five 
(5) year annual averages, monthly averages, and the month 
of August for each year.

Evaluation of FRT maps

The findings from this study will not be scientifically valid 
for policy and decision-making, if not evaluated using his-
torical flood events (Cabrera and Lee 2019; Nsangou et al. 
2022; Santosa et al. 2022; Upadhyay et al. 2022). Therefore, 
to ensure the reliability of the flood maps (both JNBC and 
AHP maps), ground truthing points (GTPs) of 85 historical 
flood points were collected within the study (Upper West 
Region (UWR)) after the 2021 direful flood events. The 
GTPs were overlaid on the maps and clipped to each class 
of the maps, to identify the number of points that were cap-
tured within each class. The captured points within each 
class were then calculated as per cent of the total points. 
Though there are several accuracy techniques such as; the 
area under receiver operation characteristic (ROC) curve 
known as AUC (Wang et al.2019; Arabameri et al. 2020; 
Pham et al. 2021; Rahman et al. 2021; Roy et al. 2021; 
Wubalem et al. 2021; Ghosh et al. 2022; Kumar et al. 2023; 
Shekar and Mathew 2023a, b; Tariq et al. 2023) for evaluat-
ing flood risk terrains, flooding areas, and potential zones 
delineation, however, application of this validation method 
was based on scientific studies and practices (Molinari et al. 
2019; Amen et al. 2023). This is also imperative because, the 
methods presented have the potential to delineate FRTs and 
illustrate sensitive flood information to support flood mitiga-
tion strategies within the catchment, and therefore the find-
ings have to be evaluated to ensure reliability and validity 
to boost the confidence of decision-makers (Molinari et al. 

2019; Leandro and Shucksmith 2021; Addis 2022; Al-Taani 
et al. 2023).

Results and discussion

Flood risk terrains analysis

The JNBC algorithm optimized the study area into five (5) 
classes of flood risk terrains (FRTs) as illustrated in Figs. 5a 
and 6. The five classes were calculated as 4% (856.278 km2), 
7% (1466.685 km2), 12% (2418.642 km2), 35% (7014.96 
km2), and 42% (8351.496 km2) representing; very high, 
high, moderate, low, and very low FRTs, respectively. The 
very high and high flood risk terrain classes were observed 
along the southeastern and eastern parts of the study area, that 
is within the Sissala East Municipality (SEM) and Wa East 
(WE) district of the region, which agreed with the low eleva-
tion and low slope nature of the terrains. These findings were 
consistent with other studies that asserted the high chances 
of extreme flood occurrences in low-lying areas (Das 2019; 
Ullah and Zhang 2020; Al-Taani et al. 2023). The moderate 
and low risk terrains were also observed along the patterns of 
the very high and high flood risk terrains and the western bor-
der of the Black Volta River Basin (BVRB). More illustrations 
showed that the low and moderate risk terrains dominated 
within five districts; Jirapa, Lawra, Nadowli-Kaleo, Nandom, 
and Wa West, which share borders with the BVRB. Further 
observation showed that the very high and high flood risk 
terrains within the southeastern and eastern part of the study 
area are along the major rivers; Kulpawn and Sisili banks, 
this affirms that floods are ever occurring along river convey-
ances (Sofia and Nikolopoulos 2020). The areas along the 
river banks also have gentle to flat slope terrains, that is low 
elevations and low slopes which are attributed to high suscep-
tibility to flood risks and similarly were observed by Ullah 
and Zhang (2020) along the Panjkora’s river banks. This also 
underpins the fact that the gentle to flat nature of the study 
area is generally influenced by overland flows during peak 
rainy seasons, leading to the high records of perennial floods. 
This further bears out the frequent flood occurrences within 
low-lying areas in the study area. Therefore, the knowledge 
of the terrain behaviour is paramount to the rice farmers and 
stakeholders' economic activities (Nguyen et al. 2021) of their 
proximity to these vulnerable areas. Assertively, other stud-
ies attest the closeness of communities and citizens to and 
within these vulnerable areas facilitates frequent flood hazards 
(Nazeer and Bork 2021; Mwalwimba et al. 2024).

The GIS-based AHP-MCD approach was also employed 
in weighing and comparing the sub-thematic flood condi-
tioning factors, and integrating and overlaying the factors 
over each other generated the final FRTs map (Das 2019; 
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Liuzzo et al. 2019; Toosi et al. 2019; Wang et al. 2019; 
Ullah and Zhang 2020; Addis 2022; Al-Taani et al. 2023; 
Shekar and Mathew 2023a, b; Suwanno et al. 2023). The 
final output map was classified into five (5) categories of 
flood risk terrains, ranging from very high to very low. This 
was done based on the susceptibility of each class to flood 
occurrences. Figure 5b illustrates the spatial distribution of 
the FRTs over the study area, while Fig. 6 presents the FRTs 
in percentages. The five categorised classes were namely; 
very high, high, moderate, low, and very low with areas cov-
erage of 0.707 km2 (0.004%), 3830.02 km2 (21%), 12,807.31 
km2 (69%), 1827.011 km2 (10%), and 11.535 km2 (0.062%) 

respectively. Figure 5b shows that the majority of very high 
and high flood risk terrains are spatially distributed along 
the southeastern, eastern and north, while some are sparsely 
scattered within the whole region. This could result in scat-
tering of extreme flood disasters over the region (UWR) 
since they are not confined to a specific location. Further 
observations clearly showed that the very high and high 
FRTs are heavily found along the stream/river networks, con-
firming that low-lying areas are susceptible to flood disasters 
(Pham et al. 2021; Amen et al. 2023; Shekar and Mathew 
2023a, b; Danso et al. 2024). These findings were also con-
sistent with a study by Rana et al. (2023). Additionally, the 

Fig. 5   Flood risk terrains: a 
Natural Breaks (Jenks) method 
and b AHP-MCD method

Fig. 6   Flood risk terrains; Natu-
ral Breaks (Jenks) method and 
AHP method
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very high and high FRTs also coincided with the flat to low 
slope, low elevation (150–300 m), high drainage density 
(47.01–58.76 km2/km), and high TWI (4.52–13.5), which 
influence the high accumulation of runoff during rains. This 
also confirms that the topography plays a major role in con-
ditioning flood susceptibility in low-lying terrains. The very 
low and low FRTs are found in areas with higher slopes, 
higher elevations, and low drainage density, especially, 
within the highland areas in the region. The moderate FRTs 
were discovered as the dominant class, spatially distributed 
all over the study area, and accounted for 69 per cent of 
the total study area. Furthermore, critical observations also 
noted that the majority of the very high and high FRTs are 
sandwiched within the major river catchments (Kulpawn 
River and its tributaries) and alongside the Sisili River in 
the region. This indicates that the communities, districts, and 
farms are in perennial flood danger during the rainy periods. 
This has also been verified by the historical perennial flood 
events in some communities and districts in the region. That 
is, those communities, districts, and municipalities which are 
heavily drained by the Kulpawn River and Sisili River and 
their minor tributaries during rainy seasons; most especially 
Wa East, Sissala East, Sissala West, Daffiama Bussie Issa 
and the eastern part of Jirapa. This revealed that low-lying 
areas, most especially those along the rivers/streams are 
risky zones, due to overflows of their banks. However, due 
to the nature of agricultural activities in the region, farmers 
mostly plant crops such as rice within low-lying; waterlogs, 
waterways, valleys, rivers/streams banks, and near dugouts’ 
areas, and this increases the perennial exposure of the farms 
to flooding, inundate and washing away of crops. The results 
from this study, significantly affirm that the very high and 
high FRTs in the study area are not homogeneous, and are 
distributed all over the region. This is also sign that the mod-
erate FRTs are likely to experience unprecedented extreme 
floods, due to spillover and overflows from the very high 
and high flood risky areas (Amen et al.2023). These obser-
vations, further confirmed Ghana’s flood prone areas are 
always along rivers/streams, near rivers, waterways, poor 
drainage networks, encroachment of waterways, and river 
basin sites, which are often serving as high runoff retention 
areas (Okyere et al. 2013; Yin et al. 2021, 2022; Gaisie and 
Cobbinah 2023; IFRC 2023a).

The knowledge and information of flood vulnerability 
areas, risky terrains, flood drivers, and their impacts are key 
factors for strategic flood disaster management, policy, and 
decision-making (Nazeer and Bork 2019; Li et al. 2022). 
Delineation of flood risk terrains and flood studies are rare 
in this part of the country, despite the perennial flood dis-
asters. However, apart from drought, flooding has been the 
most disastrous problem, affecting thousands of lives and 
properties. Hence, the study aims to scientifical delineate 
these flood risk terrains in the region in support of farmers, 

stakeholders, and NGOs, and to boost sustainable develop-
ments in the region.

Validation of flood risk terrain maps

The ground truthing points (GTPs) of historical flood events 
were overlayed and clipped to each of the FRTs maps. The 
JNBC map classes recorded; 31.76% (very low), 16.47%, 
(low), 15.29% (moderate), 24.71% (high), and 11.76% (very 
high) flood risk terrains, respectively. Quantitatively, 31.76% 
of the flood historical points were recorded in the very low 
flood risk areas, while the very high-risk regions recorded 
the lowest points with 11.76%. The generation of the JNBC 
map did not take into consideration other flood influencing 
factors which limited its ability to delineate a truthful rep-
resentation of flood occurring areas within the study area. 
During the field data collection, it was also observed that 
several communities, and suburbs within the Wa Munici-
pality are encroaching on, and sandwiching stream/river 
networks within the city, which probably led to the 31.76% 
of GTPs within the very low class. During the evaluation of 
the AHP-MCD map reliability, it was observed that none 
of the GTPs was found within the very low and very high 
flood risk terrains classes. However, the low, moderate, and 
high classes recorded; 20%, 71.76%, and 8.24% of the GTPs, 
respectively. It is also arguable that the very low (11.54 km2) 
and very high (0.71 km2) risk terrains in terms of area were 
insignificant which could probably be the reason why no 
GTPs were found in their classes. The higher number of 
GTPs found within a class shows the susceptibility of that 
class to flood events (Toosi et al. 2019). Therefore, 71.76% 
of the historical flood events recorded within the moderate 
class, revealed that the study area (UWR) is largely domi-
nated by moderate flood risk terrains. The validation also 
further showed that flood disasters are not homogeneous 
within the study area. This confirmed the reliability of the 
findings to assist and support stakeholders in flood planning, 
decision-making, and policy (Amen et al. 2023).

Buffer zoning of stream network

Buffer zoning (bz) plays a key role in regulating flood risks 
along streams and rivers (Osei et al. 2021a, b; Kurugama 
et al. 2023). During the heavy rainy seasons, most streams 
and rivers overflow their banks to some extent which pro-
vokes inundation and flooding communities and farms 
within their catchment. It is well noted that in most com-
munities in the UWR, farms sandwich wetlands, along 
streams and valleys, and near dugouts (commonly called 
dams in the region). At the end of the 2021 flood disasters, 
NADMO reported 121 communities in some municipali-
ties and districts (Sissala East Municipality (SEM), Sissala 
West Municipality (SWM), Wa East (WE), Wa West (WW), 
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Nadowli-Kaleo, Lawra, Lambussie/Karni, and Wa Munici-
pality (WM)) in the region as flood risk communities. There-
fore, to further identify the number of communities likely 
to experience fluvial floods in the UWR, a buffer zoning of 
the stream/river networks in the study area was, therefore, 
important to further observe the pregnant communities that 
would be inundated whenever these streams/rivers overflow 
their banks into their flood plains and their nearby subbasins. 
A buffer of 0.5 and 1 km was selected to observe communi-
ties likely to be inundated within the flood risk zones when 
rivers/streams overflow their banks. With about 1952 com-
munity points in the UWR, it was observed that 395 (Fig. 7a) 
and 927 (Fig. 7b) communities were found as sandwiched 
between 0. 5 km and 1 km respectively. It further revealed 
that these communities within the buffered ranges are sited 
within the moderate, high, and very high flood risky terrains 
(both JNBC and AHP-MCD maps). It is paramount to under-
stand that these communities are more susceptible to high 
flood hazards than those outside the buffer zones. Notwith-
standing the several flood conditioning factors; settlement 
encroachment on wetlands, heavy rains, waterways, low-
lying areas, runoff retention areas/runoff converging points, 
rapid population growth etc. (Yang et al. 2022) and climate 
change impacts (IPCC 2023b). These findings were also 
consistent with Toosi et al. (2019) and Osei et al. (2021a, b) 
studies, which revealed that communities within the buffer 
zones are more prone to flood disasters than those outside 
the border. This further highlights a sign of future flood dis-
aster severities in the informal urban settings and commu-
nities in many developing countries (Juma et al. 2023). As 

it has already been reported, flood disasters in developing 
countries are expected to increase due to rapid infrastructure 
encroachment on waterways and climate change that owes 
its impact to severe rainfalls (Anwana and Owojori 2023; 
IPCC 2023a, b). Therefore, buffer zoning is a key component 
towards delineating retention zones for sustainable develop-
ment and planning of cities and communities (Cabrera and 
Lee 2019; IPCC 2023a, b). However, there is an arguable 
assumption that cities' and communities' exposure to flood-
ing disasters is constant as the population keeps increas-
ing and settling around and near risky and vulnerable areas 
(Aerts et al. 2018; Tesselaar et al. 2023). These findings 
highlight the importance of integrating buffer zoning into the 
policy in the communities, towns and municipal planning.

Historical flood disasters in Upper West Region 
(UWR)

Figure 8 presents historical flood event records over six 
(6) consecutive years (2016–2021) from the National Dis-
aster Management Organization (NADMO) in the UWR. 
The report indicated significant flood disaster experiences, 
which affected over 1,344, 6,806 and 6,190 people in 2016, 
2018, and 2021, respectively. Floods in August 2021, were 
recorded as the worst disaster, that has ever happened in 
the region, with an estimated cost of 1,183,660.00 Ghana 
Cedis. It was also further observed that the affected popula-
tion rose with the economic losses, especially in the years; 
2016, 2018, and 2021, which were hard hit years. The sta-
tistics (Fig. 8) revealed that the population affected in 2018 

Fig. 7   Buffer zoning (bz) com-
munities: a communities within 
0.5 km bz and b communities 
within 1 km bz
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was higher than that in 2021, however, the economic losses 
cost in 2021 were also higher than in 2018, due to the mas-
sive destruction of many infrastructure; such as roads and 
culverts, crops, and houses/homes. The poorer settlers in 
vulnerable areas are largely affected due to their inability to 
afford safer places and arable lands for agricultural activities 
within the rural communities (Singer 2018).

This therefore showed, that population growth rate is also 
a key influencer of flood occurrences as human activities; 
agriculture, infrastructure, businesses, roads and settlements 
encroach on natural waterways, low-lying areas, wetlands, 
valleys, runoff retention/detection areas and increased 
impervious areas, and reduce the natural drainage systems 
(Singer 2018; Kaiser et al. 2021; Pham et al. 2021; Gaisie 
and Cobbinah 2023). The number of crop acres destroyed 
in 2021 (Fig. 8) is the confirmation of agricultural activities 
sandwiching wetlands, waterways, low elevations, valleys, 
and rivers/streams. Most especially, rice farming is the most 
predominant in those areas. The population of the UWR 
has steadily increased from 702,110 in 2010 to 901,502 in 
2021, indicating a growth rate of 28.40% per year (Fig. 9b). 
This growth is likely to continue in the future, as the region 
is experiencing a significant influx of people due to factors 
such as rural–urban migration, high birth rates, establish-
ment of new educational faculties and improved healthcare, 
as well as economic activities. Therefore, analysing the 
population trends in the region is an indispensable aspect 
of future flood hazards/risks assessment and sustainable 
management. Figure 9a, b, and c), shows that the popula-
tion in the region and the districts has been increasing over 
the 10 years (2010–2021). Nevertheless, the population data 
was estimated between 2012 and 2020 except for 2021 data, 

where population data was recorded through the National 
Population and Housing Census (PHC) project (GSS 2021).

Statistically, there has been about a 28.40 per cent popula-
tion increase between 2010 and 2021.

Observations from Fig. 9c, also revealed that districts; 
Jirapa, Lawra, Lambussie Karni, and Nandom saw a drop 
in population growth, along with Daffiama Bussie Issa 
(DBI), which also experienced a little drop in its popula-
tions, according to the figures recorded in 2021. However, 
other districts maintain a constant increase. Significantly, 
Wa Municipality, which serves as the regional capital, main-
tains a consistent increase in population. Population growth 
is a major contributing factor to flood occurrences of hydro-
logical events (Rahman et al. 2021), particularly in regions 
and terrains with poor infrastructure and inadequate flood 
control measures, as well as in this era of climate change 
(Saksena et al. 2020). Population increases translate into 
urban sprawl and an increase in human activities encroach-
ment on waterways, low-lying areas, and wetlands (Rah-
man et al. 2021). In the case of the Upper West Region of 
Ghana, the following factors may have increased the region's 
vulnerability to floods, though climate change could play 
a mastermind too. Figure 8, highlighted a steady increase 
in population and flood events. These observations further 
showed that the increase in population decreases the sur-
face runoff retention areas and the natural drainage capacity 
due to the conversion of natural drainage areas for develop-
ment projects and encroachment on wetlands as a result of 

Rate of Change =
901502 − 702110

702110
× 100

= 28.39896882% ∼ 28.40%.

Fig. 8   Cost (Ghs), affected 
population, and farmlands 
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rapid urbanization, these observations were consistent with 
a study conducted by Seemuangngam and Lin (2024) on the 
influences of urbanization on urban floods.

Spatial rainfall distributions and floods

Monthly average rainfalls (1992–2022)

Figure  10 presents the spatial distributions of monthly 
average rainfalls over the 30 years (1992–2022), while 
Fig. 11 shows the average rainfall for the months of August 
in each year. The rainfall plot scale ranges approximately 
around 350 mm/month to below 50 mm/month (Fig. 10). 
The results (Fig. 10) clearly, revealed that the study area 
experienced seven (7) months of no or little rainfall. This 
indicates that October to April serves as the long dry period 
in the study area as reported by Abu et al. (2024). Argu-
ably, due to the persistent high temperatures that can hit 
from 40 to 41 degrees Celsius coupled with heatwaves dur-
ing March and April, rainfalls in April amount to little to 
nothing before the commences of the rainy season in May 
(Dery et al. 2023; Abu et al. 2024). The spatial distribution 
clearly showed an indication that the dry season intensely 
lasts between November and March as the rains completely 
recede in October. The observations further illustrated that 
the rainy seasons in the UWR are between May and Sep-
tember. Additionally, the results highlighted that the rain-
fall peaks from June to September (JJAS) with exhibitions 

of non-homogeneity (Fig. 10), these observations were 
consistent with the study area's climatic conditions (Dery 
et al. 2023; Abu et al. 2024). However, the month of August 
exhibited a strong heterogeneity of rain distribution across 
the northern part of the region (UWR), largely with the 
northeastern part of the Sissala West Municipality (SWM) 
and the northwestern of the Sissala East Municipality 
(SEM), recording high nucleus of rains magnitude. Con-
sistently, these two municipalities have recorded perennial 
flood disasters during the rainy season in August. These 
observations are also in line with the 2007 floods, which 
were reported to have massively affected populations in both 
Wa East, Wa West, Sissala East Municipality, and Sissala 
West Municipality (SWM) (United Nations 2007; Centre 
Emergency Response Fund 2008). To extensively rule out 
the fact that the month of August experiences the most 
perennial floods in the region. Figure 11 also presents the 
average rainfall results for each August within the 30 years 
(1992–2022). The total number of months (Augusts) from 
1992–2022 analysed was 30 (Fig. 11). The overall mean of 
the 30 months was computed to be 239.35 mm. The results 
highlighted some Augusts with higher rainfall depths than 
others, which is either above or below the overall mean 
(239.35 mm). The graph showed that, only six (6) Augusts 
with average rains below 200 mm per month. Illustratively, 
Augusts in some years; 1996, 2007, 2010, and 2021 also 
recorded average rainfall peaks over 300 mm. It can be 
seen from the graph that, the August of 2007 recorded an 

Fig. 9   UWR Population 2010–2021: a population map, b regional trend, and c Districts' population growth trend
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Fig. 10   Spatial distribution of climatology average rainfall (over 30 years) for each month

Fig. 11   Average monthly rain-
fall for each August: 1992–2022
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average rainfall value above 300 mm, where the massive 
flood disaster occurred in the same August in 2007 (Centre 
Emergency Response Fund 2008). Significantly, the aver-
age rainfall peak amount in August 2021 is approximately 
350 mm the highest observed value within the analysis 
period, this, therefore, confirms why the floods in 2021 were 
worst of all, after the 2007 flood disaster. All these rain-
fall findings are consistent with the historical flood disaster 
records (from 2016–2021) reported in the study area by the 
NADMO. Additionally, Asumadu-Sarkodie et al. (2015), 
United Nations (2007), and Centre Emergency Response 
Fund (2008) reported that the terrible 2007 flood occurred 
as a result of three (3) weeks of extremely intensive rainfall 
between August and September 2007. This led to the loss 
of lives, livestock, properties (homes and schools), food-
stuff, water supply systems and roads were also destroyed. 
The government in 2007 pronounced the study area and 
other regions (Northern and Upper East regions) as a state 
of emergency due to the terrible nature of the situations of 
flood destruction that had occurred. All observations point 
out August as the most flooding disaster risky month in the 
study area and generally, the northern parts of the country 
(IFRC 2023b). This also strengthens the fact that climate 
change influences droughts and floods through the hydro-
logical cycles (UNESCO 2023a). Further indications from 
the neighbouring regions (Upper East and Northern) of the 
country also reported August rains as disastrous. Especially, 
heavy rainfalls in August of 2018 and 2019 coupled with the 
perennial spillages of Bagre Dam also caused an unforgetta-
ble flood woes in the Upper East region (UER) where Sissala 
East Municipality and Wa East district share borders (IFRC 
2018, 2019). These analyses are consistent with the high 
nucleus of rainfall magnitude in the Sissala East Municipal-
ity and the Sissala West Municipality (SWM) (Fig. 10) and 
the Augusts average rainfall (Fig. 11). Subsequently, rain-
falls forecast on May 5, 2023, by the Ghana Meteorological 
Agency (GMet) reported, heavy rainfall peaks above normal 
depths in the UER, while observations in the Upper West, 
Savannah, North and North East regions ranged from normal 
to above normal depths till early weeks of September (IFRC 
2023b). The current findings affirm the manifestation of 
flooding during period of heavy rainfalls in the study (Cen-
tre Emergency Response Fund 2008; Owusu et al. 2017; 
IFRC 2018, 2019, 2023b; IPCC 2022). It is also noted at the 
recede of the 2022 rainy season (GMet 2022), FAO (2022) 
reported over 80 k hectares of crops had been washed off by 
floods under influence of heavy rainfalls between August 
and October 2022 in the northern parts of the country with 
the study area inclusive.

The findings further reflect the shreds of evidence of 
heavy and intensive rainfall contributions to flood disas-
ters, which has been widely reported around the globe (Das 
2019; Anwana and Owojori 2023; Ncube et al. 2023; Pandey 

et al. 2023; Plataridis and Mallios 2023). West Africa sub-
region alone has over the past decades recorded several flood 
occurrences during the rainy seasons (Ntajal et al. 2017; 
Miller et al. 2022). Flooding has been projected to worsen 
as climate changes through its propelling conditions of 
extreme rainfalls (IPCC 2022). To buttress the synergy of 
rainfalls and flooding, the IPCC (2023a, b) further reported 
an increasing correlation between rains and floods. The find-
ings demonstrated a trend of the relation of how rains in the 
study area keep nurturing floods in the vulnerable villages, 
communities, districts and municipalities in the region.

Spatial patterns of average rainfall distributions

Figure 12, also presents the variations of the spatial dis-
tribution of annual average rainfall patterns over 30 years 
(1992–2022); ranging on a scale from 60 mm/yr to 110 mm/
yr. From Fig. 12, the presentation highlights the low and 
high magnitude rainy areas distributed over the study area. 
The least rainy years were observed to be 1992, 2005, 2013, 
and 2017 in the study area (Fig. 12). The northwestern and 
middle parts of the region experienced the least amount of 
rain in 1992 and 2005 respectively. The southern part of 
the region also experienced the least distribution of rainfall 
in 2013 and 2017. The findings further revealed that the 
northeastern parts; both the Sissala East Municipality (SEM) 
and Sissala West Municipality (SWM) experienced a high 
depth of rainfall in 1994. Significant rainfalls were observed 
to have partly distributed over the region in 2003, 2006, 
2010, and 2012. Additionally, a high magnitude of rains 
was also noted over the region in 1999, with much being 
felt in both the Sissala East Municipality (SEM) and Sis-
sala West Municipality (SWM). The results revealed strong 
spatiotemporal observations throughout the region in 2018 
and 2019, though more observations were seen along the 
SEM and SWM, and the Wa East. Significantly, the high 
rainy trends were observed in 1999, 2018, 2019, and 2021 
within the scale of 90 – 100 mm/yr. This further showed 
that the seasonal rain trends during the 30 years have been 
not homogeneously distributed over the study area (UWR). 
These presentations highlighted the rainfall dynamics infor-
mation over the region, providing a spatiotemporal pattern of 
the rainfall behaviour in the municipalities and districts. Fur-
thermore, these presentations aligned with the understanding 
that rainfall trends are influenced by climate change dynam-
ics, that affect the presence of water, and the strengthening 
of floods and droughts (Wani et al. 2017). The heavy rainy 
seasons are the key factors inciting floods, and due to the 
inability of rivers, streams, channels, and low-lying areas to 
discharge a high volume of surface runoff flows, results in 
inundations of their catchments and or riparian communi-
ties (Nahin et al. 2023). The findings were observed to be 
consistent with the historical flood events reported by the 
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NADMO in the study area. Additionally, the high spatial 
distribution of rainfalls, largely in the 2016, 2018, 2020, and 
2021 affirms flood disasters reported.

Figure 13 represents 5  years categorization of spatial 
annual average rainfall distribution (1993–2022). From the 
analysis, both Figs. 12 and 13 visualizations show distinctive 
similarities of heightened rainfalls along the eastern SWM and 
northwestern SEM. The NADMO has so far identified several 
communities as flood prone communities, with 9 and 15 com-
munities in the SWM and SEM, respectively. Notably, from 
the 1990s to 2022, parts of the study area experienced a series 
of perennial flood events that were largely attributed to the 
severity and the intensive nature of rainfalls during the rainy 
seasons. Perennial flood manifestation between 2016 and 2022, 
in the study area has been under an upward rise in flooding 
events, particularly linked to the spatial distribution of the rains 
in the region. As illustrated in Fig. 13, the highlights revealed 
that a less substantial amount of rain (75–85 mm/5yrs) was 
observed within the middle and southern parts of the region 
in 2017–2022. On the contrary, the historical flood events 

documented show destructions of flood episodes all over the 
middle belt and the southern parts. This is a confirmation of 
fewer rains resulting in flood perennial floods mostly during 
seasons. As global climatic patterns have disrupted the eco-
logical system of the study area, extreme rainfalls in the rainy 
seasons become intensive, manifesting severe natural disas-
ters; floods and longer droughts in the dry seasons. This has 
underscored the need for sustainable mitigation measures to 
address flooding and drought impacts in vulnerable commu-
nities within intensive rainy zones. Unforgettable, in August 
2021, the study area experienced unusual rainfall between the 
12th and 13th of August, which resulted in devasting flood-
ing, that swept away farms and homes, and disrupted roads, 
with almost all the districts and municipalities being blocked 
from the regional capital. The national road linking Ghana and 
Burkina Faso through the region was also massively cut off, as 
several culverts were swept away. This signified the severity 
and intensity of the rainfall within two days that led to the ter-
rible flood disaster. The spatial highlights of the visual rainfall 
distributions (Fig. 13), provide critical insightful information 

Fig. 12   Spatial distribution of annual average rainfall (mm/yr)
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on the amount and patterns of rainfalls experienced over the 
study area during the period of the analysis.

As delineated in Fig. 13, the communities that felt within 
the heavy rainy areas (80 to 95 > mm/5yrs) were exposed to 
the consequences of multiple flood episodes. This therefore 
affirms that when the rivers and streams become incapaci-
tated of channelling out a high volume of rainwater results in 
floods in the communities (Nahin et al. 2023). This further 
strengthens the fact that rainfall is one of the key causes of 
flood disasters in the Upper West region. Though the inten-
sity of rainfalls alone cannot qualify it as the main cause of 
flood disasters (Garba and Abdourahamane 2023), however, 
several flood disasters over the years within the region and 
country, and around the globe have been linked to heavy 
rainfalls (Paeth et al. 2011; Okyere et al. 2013; Asumadu-
Sarkodie et al. 2015; Kwang and Osei Jnr 2017; Cabrera 
and Lee 2019; Sacré Regis et al. 2020; Osei et al. 2021a, b; 
Alifu et al. 2022; Danso et al. 2024; Nagamani et al. 2024; 
Rączkowska et al. 2024). It has also been noted that heavy 
rains as an extreme weather event often result in natural 
hazards with floods alike (World Economic Forum 2024).

Correlation matrix of historical rainfalls and flood 
disasters

The correlation matrix (Fig. 14) was also used to meas-
ure the magnitude of August’s heavy rainfalls and their 

association with historical flood events. Therefore, the 
average Augusts rainfalls (2016–2022), and the six years 
of historical flood records available data (affected pop-
ulation, farmlands, and cost of disasters) were used as 
the elements of proportionality to compute the correla-
tion matrix to confirm the Augusts rainfalls relationship 
with floods, that have a strong association on elements 
within the study area. The correlation matrix is based 
on a scale range of -1 ≤ r ≤  + 1, where r could represent 
-1, 0, and + 1, as a negative proportionality of each two 
elements, no correlation/non-association, and proportion-
ality of each two elements respectively (Castleman and 
Wu 2023). Schober and Schwarte, (2018) indicated that 
a strong correlation is from 0.7 to 0.89, a very strong 
correlation ranges from 0.99 to 1.0, while a moredate 
correlation also ranges from 0.40 to 0.69. The results 
(Fig. 14) showed a strong correlation of the rainfalls with 
the affected population, farmlands (acres), and cost (Ghc) 
with r values of 0.82, 0.78 and 0.87, respectively. The 
economic losses (Cost (Ghc)) and the affected popula-
tion exhibited a very strong correlation of 0.99, while 
farmlands (acres) and the affected population recorded a 
moderate correlation of 0.6. However, the cost (Ghc) and 
farmlands (acres) also reported a moderate correlation 
with an r ≤ 0.67. These analyses further strengthen the 
relationship between rainfalls and flood events' effects 
on citizens and the general ecosystem.

Fig. 13   Spatial patterns of rainfall distribution (1993–2022): Five (5) year annual average(mm/5yrs)
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Conclusion and recommendations

The main goals of this study are to delineate flood risk ter-
rains, buffer zoning of communities along rivers/streams, 
evaluate historical flood records and population trends, 
and visualization of rainfall behaviour, which are proac-
tive measures for the management and mitigation of peren-
nial floods in the Upper West Region. The study primarily 
proceeded with Jenks natural breaks classification (JNBC) 
(Jenks 1967) technique and GIS-based Analytical Hierarchy 
Process (AHP) multi-criteria decision (AHP-MCD). JNBC 
technique employed only SRTM DEM to first optimize the 
areas likely to be susceptible to flood. The GIS-based AHP 
multi-criteria decision algorithm also incorporated six geo-
spatial flood conditioning factors comprising Lineament 
Density, Elevation, Topographic Wetness Index, Drainage 
Density, Slope, and Aspect. This was done based on litera-
ture and the availability of datasets. Buffer zones of 0.5 km 
and 1 km were also created around the streams/river net-
works to determine the number of communities that will 
be inundated during fluvial floods. The outcomes of JNBC 
algorithm reclassification indicate that the UWR can be cat-
egorized into five classes; very high risk to very low risk ter-
rains covering 4% (856.278 km2), 7% (1466.685 km2), 12% 
(2418.642 km2), 35% (7014.96 km2), and 42% (8351.496 
km2), respectively. The performance of the JNBC flood risk 
terrains map generated was evaluated with ground truthing 
points (GTPs) of 85 historical flood points, this was done by 

overlaying the GTPs on the map, while computing the num-
ber of GTPs on each class of the map as a percentage. The 
very low flood risk terrains recorded 31.76% of the GTPs 
while the very high flood risk terrains recorded the lowest 
GTPs with 11.76%.

The AHP-MCD integration of the six sub-thematic flood 
conditioning factors also characterized the total study area 
into five classes; very high, high, medium, low, and very low 
with coverages as 0.707 km2 (0.004%), 3830.02 km2 (21%), 
12,807.31 km2 (69%), 1827.011 km2 (10%), and 11.535 km2 
(0.062%), respectively. During the validation, the moderate 
flood risk terrains class attained 71.76% of the GTPs as com-
pared with the other classes, thus signifying that the classes 
generated were accurate for decision-making in the study 
area, and largely indicated the study falls within moderate 
flood risk terrains.

The spatial outlines of the very high flood risk terrains 
and high flood risk terrains classes of both the JNBC and 
AHP-MCD maps are situated along the southeastern and 
eastern fringes of the study area, that is, Sissala East Munici-
pality (SEM) and Wa East district (WED), and primarily 
sited along the major river networks, agreeing that low-lying 
areas are more susceptible to flood disasters in the study 
area.

The agreement of the GTPs (historical flood points) 
and the flood risk terrains generated by the AHP-MCD 
method, improved the acceptance of the results for flood 
policy formulation and communication, sustainable flood 

Fig. 14   Paired correlation of 
rainfall and flood effects
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mitigation strategies and management, and as well as the 
public perception of flood disasters (Houston et al. 2019).

From the selected buffer ranges; 0.5 km and 1 km, com-
munities sandwiched between the buffered ranges were 
classified as vulnerable to flooding as compared to those 
outside the ranges, during an overflow of the rivers and 
streams.

The spatial visualization of the rainfall patterns dis-
tribution highlights the important role rainfalls play in 
flood assessment. The CHIRPS data analysed revealed 
the distribution of the heightened rainfall over flood risk 
terrain communities. The historical flooding records over 
the years, months and communities were consistent with 
the spatial rainfall distributions especially the month of 
August.

This study contributes valuable insights into spatial 
flood and extreme rainfall patterns distribution in the study 
area.

It emphasizes that the town and country planning, munic-
ipalities and district assemblies ensure that buffer zoning 
rules are strictly enshrined in community, town, and city 
planning, and the allocation of areas for broad farming.

Farmers need to plant short maturity period seeds and 
crops that can be harvested before floods commence or that 
stay in flood waters for a period. Most especially rice and 
maize cropping in the region, though rice is a hydrophobic 
crop, however, the flood water resistant variety should be 
encouraged in the region, mostly for those farming along 
the risky areas.

The findings underscore, further studies using machine 
learning algorithms to analyse satellite imagery data for 
inundation through the integration of advanced scientific 
hydroclimatic modelling and simulations and stakeholder 
engagement around the communities to prepare resilient 
proactive measures to tackle future flood events.
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