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Abstract
In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport param-
eters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. 
The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/
contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/
concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get 
the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed 
for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer 
parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS 
error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of 
the SO models for parameter estimation.

Keywords Simulation–optimization · Parameter estimation · Confined aquifer · LRPIM · Teaching Learning-Based 
Optimization (TLBO) · Particle Swarm Optimization (PSO)

Introduction

Groundwater modelling plays a major role in proper man-
agement and conservation of groundwater resources. The 
accuracy of the model prediction depends upon the input 
parameters such as transmissivity, dispersivity and boundary 

conditions. Hence, an accurate determination or estima-
tion of these parameters is crucial. The field measurement 
of most of these parameters are cumbersome, costly and 
have large uncertainties. Therefore, these parameters to 
be indirectly determined and groundwater models need to 
be calibrated with respect to the parameters, using inverse 
modelling.

A groundwater flow model is technically a forward 
problem that predicts the state variables by solving the 
appropriate governing equations when the system param-
eters, boundary conditions and control variables are known 
(Sun 1999). An inverse or backward modelling technique 
on the other hand is used to estimate the unknown system 
parameters (e.g., transmissivity, dispersivity, storage coef-
ficient etc.), control variables (e.g., discharge, recharge etc.), 
boundary conditions of a system when the state variables 
(e.g., head, concentration) are known or given. The system 
parameters used in the model are iteratively adjusted in an 
inverse model so that the model reproduces actual measure-
ments of the state variables as closely as possible. Exist-
ing methods for performing inverse modelling are the hit 
and trial method, direct method and indirect method (Sun 
1999). Among the methods mentioned above, the indirect 
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method is advantageous as it can optimally determine aqui-
fer parameters independently of the governing equation 
and the initial and boundary conditions (De Filippis et al. 
2016). Simulation–optimization (SO) approach is an indirect 
inverse modelling method that employs a forward simulation 
model (namely flow or transport model) and estimates the 
model parameters using an optimization technique. The SO-
based model is least affected by intermediary processes and 
is scalable to actual field conditions with complex domain. 
It also avoids the complicated mathematical formulations 
associated with direct inversion.

The simulation model component of the SO approach 
evaluate the groundwater heads and contaminant concentra-
tions in the aquifer. It can be achieved with the help of for-
ward groundwater modeling. Groundwater modeling can be 
carried out with conventional numerical techniques namely, 
the finite difference method and the finite element method 
(Desai et al 2011). These conventional techniques require 
mesh construction, which can be computationally expen-
sive. Remeshing is required in the case of adaptive analysis, 
which is further adds to the computational efforts. In order 
to address the above-mentioned issues, the meshless method 
has been proposed. In the meshless method, the problem 
area and its bounds are described using a collection of nodes. 
The solution is obtained by solving the governing equation 
without requiring how the nodes are related and connected 
(Liu and Gu 2005).

Several types of meshless methods were described by 
Liu and Gu (2005). Meshless methods are grouped into two 
categories: strong form and weak form, depending on the 
formulation. Some of the meshless methods commonly used 
to solve the groundwater flow and contaminant transport 
problems include point collocation method (PCM), element-
free Galerkin method (EFG), meshless local Petrov Galerkin 
method (MLPG), etc. In strong form methods, point colloca-
tion method (PCM) (Meenal and Eldho 2011) or radial point 
collocation method (RPCM) (Singh et al. 2016) has been 
used in groundwater studies. Whereas in weak form meth-
ods, element-free Galerkin (EFG) (Kumar and Dodagoudar 
2008a, b; Pathania et al. 2018), meshless local Petrov–Galer-
kin (MLPG) (Swathi and Eldho 2013; Mohtashami et al. 
2017a, b; Das and Eldho 2022; Khalilabad et al. 2022; Sah-
ranavard et al. 2023) and local radial point interpolation 
method (LRPIM) (Wang et al. 2005; Saeedpanah and Jab-
bari 2009; Saeedpanah et al. 2011; Swetha et al. 2022a, b) 
have been used in solving groundwater problems. Moreover, 
the shape function consistency needed by weak form mesh-
less methods is lesser than strong form. The discretization 
in weak form reduces the order of the governing equation, 
which makes it simpler to apply Neumann boundary condi-
tions (Liu and Gu 2005).

The optimization algorithms used in the indirect meth-
ods may be grouped into three categories namely, a search 

method which uses the values of objective functions, a gra-
dient method which utilizes the gradient of the objective 
functions and a second-order method which makes use of the 
second derivative of objective function (Sun 1999).

SO models optimize/minimize the difference between the 
predicted and the observed data. SO approaches were first 
proposed by Gorelick et al. (1983) using linear programming 
and regression for optimization. Other optimization meth-
ods used in SO model are the non-linear optimization model 
(Mahar and Datta 2000; Datta et al. 2009), artificial neural 
network (ANN) (Zio 1997; Singh and Datta 2004; Singh et al. 
2004; Garcia and Shigidi 2006; Das et al. 2023), genetic algo-
rithm (GA) (El Harrouni et al. 1996; Singh and Datta 2006) 
etc. Swarm intelligence-based optimization techniques such 
as particle swarm optimization (Sudheer and Shashi 2012; 
Anshuman and Eldho 2019), cat swarm optimization (Thomas 
et al. 2018) were linked with the meshless simulation models 
like RPCM and MLPG to estimate the aquifer parameters.

In this study, the TLBO technique is coupled with the 
meshless LRPIM to develop the SO model (an indirect inverse 
method) for parameter estimation. The PSO based SO model 
is also developed to compare the solutions obtained from the 
SO model based on TLBO. The application of the developed 
SO model is demonstrated using a hypothetical and real field 
problems for estimating the aquifer parameters.

Methods

Governing equations and boundary conditions

Groundwater flow

The governing equation of groundwater flow in a two-
dimensional heterogeneous confined aquifer is given as 
(Bear 1979):

The initial condition used for unsteady state (transient) 
analysis is,

There are two types of boundary conditions namely, Dir-
ichlet boundary and Neumann boundary. These boundary 
conditions can be written as:
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where, h(x, y, t) is the piezometric head (m); h0(x, y) is the 
initial head in the flow domain (m); S is the storage coef-
ficient;  T  is the transmissivity (m2/d); Tx , Ty are the trans-
missivities (m2/d) in x and y directions; Qw is the source 
or sink term (m3/d/m2); q(x, y, t) is the known inflow rate 
(m3/d/m); f  is a recharge rate (m/d); The flow domain is 
represented by Ω while the boundary is denoted by ∂Ω;  �

�n
 

represent the normal derivative to the boundary; h1(x, y, t) is 
the known head value at the boundary (m); 

(

r − r
w

)

 is equal 
to 
(

x − xw
)(

y − yw
)

; δ is the Dirac-delta function.

Contaminant transport

The governing equation for contaminant transport in ground-
water is given as (Freeze and Cherry 1979; Wang and 
Anderson 1995; Desai et al. 2011):

where R = 1 + 
[

�bKd

n

]

 . Here, �b is the media bulk density; Kd 
is the sorption coefficient; qw is the volumetric rate of pump-
ing from source; Dxx , Dyy are the dispersion coefficients 
along the x and y directions, [m2/d]; Vx , Vy are the seepage 
velocity along the x and y directions, [m/d]; C is the concen-
tration of the dissolved species [mg/l]; w is the elemental 
recharge rate with solute concentration c′ ; b is the aquifer 
thickness [m]; R is the retardation factor; n is the porosity; � 
is the reaction rate constant [per day];

The boundary conditions considered are as follows:

where CO is known concentration at the boundary and g is 
gradient of concentration.

Simulation model

In this study, the meshless LRPIM is utilized to model the 
groundwater flow and contaminant transport. It employs 
the point interpolation method using the multi-quadrics 
radial basis functions (MQ-RBF) as the basis function 
for shape function ( � ) interpolation and the local weak 
form discretization for the governing equations (Liu and 
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Gu 2005). The MQ-RBF with optimized shape parameter 
values is used for the interpolation of shape functions. The 
MQ-RBF expression is as follows:

where q and Cs are the shape parameters of the MQ-RBF 
and i is the node considered. In this study, the parameter q 
has been kept at 1.03, as in Liu and Gu (2005). Cs is usu-
ally defined in terms of a characteristic length ( dc ) (Liu 
and Gu 2005). The optimized value of Cs is kept at 4 ×dc 
(Swetha et al. 2022a). The derivatives of the state variables 
h(x, y)andC(x, y) at any point (x, y) are estimated using the 
procedure given in Swetha et al. (2022a) as below:

Here N is the number of nodes in the support domain.
LRPIM formulation for groundwater flow equation using 

the weighted residual method (Liu and Gu 2005) is given 
below:

where, v is the Heaviside step function (weight function). 
The matrix form of Eq. (12) is obtained by simplifying it as 
detailed in Swetha et al. (2022a).

where,

Similar formulation is followed for the contaminant trans-
port equation in an aquifer (Swetha et al. 2022b).
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For contaminant transport, the K and F matrix are given as

where,

where  i is the number of nodes within the support domain 
and  j is the index of the node considered.

The unknown state variables namely, head and concentra-
tion values in the aquifer domain were computed using the 
forward simulation model. The values of head/concentration 
values obtained at the observation wells were noted down. 
These values obtained were treated as the predetermined/
observed values in the simulation–optimization model.

Optimization technique

Optimization of parameters is carried out by minimizing the 
error between the observed and simulated values which is 
defined using an objective function. Two variants of swarm 
optimization techniques namely, TLBO and PSO are used 
to minimize the objective function and thereby estimate the 
aquifer parameters.

Teaching learning‑based optimization (TLBO)

TLBO is based on the effect of a teacher's influence on the 
achievement of students in a class (Rao et al. 2011). The two 
most important components of the algorithm are teachers 
and students. Implementation of TLBO is divided into two 
phases: the teacher and learner phase. The teacher phase 
simulates the student’s (i.e., learner’s) learning through the 
teacher. During this phase, a teacher shares knowledge with 
students and works to improve the average performance of 
the class. The learner phase simulates student’s learning 
by allowing them to communicate with one another. Stu-
dents can also obtain information through conversing and 
connecting with their peers. If another learner has greater 
knowledge, the learner will learn the new information from 
him or her.

(16)[K]
{

Ct+Δt
}

= [F]

(17)

[K] =
((

Dj

(

∫
�Ωs

(

�Φi(r)

�x
nx +

�Φi(r)

�y
ny

)

dΩ

)

− V

(

∫ Ωs

(

�Φi(r)

�x
+

�Φi(r)

�y

)

dΩ

)

)

θ − ∫ Ωs

R

Δt
dΩ

)

(18)

[F] =

(((

−Dj

)(

∫
�Ωs

(

�Φi(r)

�x
nx +

�Φi(r)

�y
ny

)

dΩ

)

+ V

(

∫ Ωs

(

�Φi(r)

�x
+

�Φi(r)

�y

)

dΩ

))

(1 − �) − ∫ Ωs

R

Δt
dΩ

+ ∫ Ωs

R�dΩ − ∫ Ωs

qw

�
dΩ

)

Ct
i
+ ∫ Ωs

c�w

�b
dΩ

Particle swarm optimization (PSO)

The PSO algorithm has been inspired by the flocking behav-
ior of birds in nature (Kennedy and Eberhart 1995). In this 
approach, each particle is assumed as a solution to an opti-
mization problem. It is composed of two vectors: position 
and velocity. Position vectors are used to represent the var-
iables in problems. For example, if the problem has two 
parameters, the particles will have two-dimensional posi-
tion vectors. The magnitude and direction of each particle 
are defined by the velocity vector. The next iteration of the 
velocity ( Vt+1 ) and position ( Positiont+1 ) of each particle is 
given in Eq. (19) and Eq. (20), respectively.

where, w is the inertia weight, c1 and c2 are acceleration 
factor, pbest is the personal/individual best solution of each 
particle and gbest is the global best solution.

TLBO and PSO comparison

The optimization model developed using the two optimi-
zation techniques is verified using standard or benchmark 
functions as given in Table 1. Convergence graphs obtained 
from the optimization model are shown in Fig. 1. The com-
putational time taken by two different optimization models 
for 100 iterations is found to be less than 1 s. The model is 
able to predict the global minimum accurately.

In case of Rastrigin function both PSO and TLBO tech-
niques take more iteration for convergence whereas, in Gold-
stein-price function convergence occurs faster.

Simulation–optimization model

The process of simulation–optimization typically involves 
defining the problem and objective function, developing a 
simulation model and applying optimization algorithms to 
find the optimal solution. The state variables (namely head 
and concentration) in an aquifer were determined with the 
forward simulation model. The solutions obtained from the 
forward model were compared with the observed/measured 
data. The optimization model uses an objective function to 
select a set of parameter values such that the differences 
between the observed and the simulated values of state vari-
ables in the observation wells are minimal. The mathemati-
cal formulation of an optimization model for parameter esti-
mation can be given as

(19)
Vt+1 =

(

w × Vt

)

+
[

c1 × rand(0, 1) ×
(

pbest − position
)]

+
[

c2 × rand(0, 1) ×
(

gbest − position
)]

(20)Positiont+1 = Positiont + Vt+1
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which is subject to a constraint,

where Wi is some weighing function. hpredicted
i

 , Cpredicted

i
 are 

the head and concentration values obtained from the simula-
tion model at ith observation well. The hobserved

i
 , Cobserved

i
 are 

the observed head and concentration data at ith observation 

(21)Minimize
(

∑

i
WiF(C

predicted

i
− Cobserved

i
)
)

(22)Minimize
(

∑

i
WiF(h

predicted

i
− hobserved

i
)
)

(23)KL ≤ K ≤ KU

well. KL is the lower boundary limit for the unknown aqui-
fer parameter and KU is the upper boundary limit for the 
unknown aquifer parameter. The objective function F(x) 
is usually defined as the sum of the squared differences 
between the observed and the simulated values of state vari-
ables in the observation wells considered for the study ( n is 
the total number of observation wells).

The set of parameter values at which the objective func-
tion is found to be the minimum is taken as the solution or the 
best estimates of the parameters. The detailed procedure of the 
simulation–optimization model developed with LRPIM-TLBO 
and LRPIM-PSO model are given in the following sections.

LRPIM‑TLBO model

Steps involved in LRPIM-TLBO SO model are:

Step 1: Input values such as number of parameters ( NP) 
to be estimated, lower and upper limit for each parameter, 
number of particles/students ( NS ) to be used and maxi-
mum number of iterations.
Step 2: Defining the objective function as given in 
Eq. (21) to Eq. (25).
Step 3: The initial population is generated using Eq. (26)

Step 4: Select the teacher ( Xbest ), which is the solution 
corresponding to the best fitness value f(x), mean, teach-
ing factor ( Tf ).

where Tf  is rounded to take the value as 1 or 2.

(24)F(h) =
∑n

i=1
(h

predicted

i
− hobserved

i
)
2

(25)F(C) =
∑n

i=1
(C

predicted

i
− Cobserved

i
)
2

(26)X = KL +
(

KU − KL
)

× rand(NS,NP)

(27)Tf = round(1 + rand)

Table 1  Expression of test function for optimization models

Function name Expression Best value/ Solution 
obtained

Rastrigin F(x) = A.n +
∑n

i=1
x2
i
− Acos(2�xi)

A = 10;xi ∈ [−5.12, 5.12]

where n is the dimension of the problem
The optimal solution of the problem is the vector v = (0, 0,… .., 0, 0) with F(v) = 0

(0, 0, 0)
Time taken:
PSO – 0.83 s
TLBO – 0.9 s

Goldstein-price f (x, y) =
[

1 + (x + y + 1)2 ×
(

19 − 14x + 3x2 − 14y + 6xy + 3y2
)]

× [30 + (2x − 3y)2

×
(

18 − 32x + 12x2 + 48y − 36xy + 27y2
)

]

The optimal solution of the problem is f (0,−1) = 3

−2 ≤ x, y ≤ 2

(0, -1)
Time taken:
PSO – 0.86 s
TLBO – 0.94 s

0

5

10

15

20

25

0 20 40 60 80 100

eulavssentiF

Iteration number

PSO TLBO

(a)

0

4

8

12

16

0 20 40 60 80 100

eulavssentiF

Iteration number

PSO TLBO

(b)

Fig. 1  Convergence graph for test function at the end of 100 itera-
tions (a) Rastrigin (b) Goldstein-price
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Step 5: Teacher Phase: Generate a new solution with the 
above parameters using the equation given below.where 
 Xmean is the mean/average of the positions of the popula-
tion.

Check whether the new solution is bound within the 
prescribed limits (if not regenerate the population). Obtain 
the fitness value for the new solution generated and accept 
the solution if the selection criteria are met (if fnew < fold).

Learner Phase: Select the partner p randomly and gener-
ate a new solution with ( Xp).

For minimization

where Xp is the position of the partner, fp is the fitness of 
the partner.

Check whether the new solution is bound within the pre-
scribed limits. The new solution is updated if fnew < fold , 
otherwise not.

(28)Xnew = X +
{

rand(0, 1) ×
[

Xbest −
(

Tf × Xmean

)]}

(29)Xnew = X +
[

rand(0, 1) ×
(

X − Xp

)]

if f < fp

(30)Xnew = X −
[

rand(0, 1) ×
(

X − Xp

)]

if f > fp

Step 6: Memorize the best solution and repeat the proce-
dure (step 4 to 5) until the stopping criteria are met or till 
the maximum number of iterations.

In the present study, the parameter setting for TLBO are: 
population size = 30, teaching factor ( Tf ) = 1 or 2 is chosen 
randomly(Rao et al. 2011). The steps involved in LRPIM-
TLBO model development is described in Fig. 2.

LRPIM‑PSO SO model

Steps involved in LRPIM-PSO SO model are:

Step 1: Define the objective function as given in Eq. (21) 
to Eq. (25).
Step 2: PSO parameters such as population size, the num-
ber of variables to be estimated, an upper and lower bound 
of the parameter, inertia weight, acceleration factor and a 
maximum number of iterations are fixed.
Step 3: Initialization of position and velocity using the fol-
lowing equations:

(31)
Positions = lower limit + [random

(

NS,Np

)

× (upper limit − lower limit)]

Fig. 2  Flowchart for LRPIM-
TLBO model
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Setp 4: With the position generated the objective function 
is evaluated.
Step 5: The position of a particle at which the objective 
function is minimum is the personal/individual best solu-
tion. The minimum value among the particle/individual best 
solution is taken as the global best solution and the position 
corresponding to the global best solution is taken as the 
global best position. Compute the particle/individual best 
( pbest ) for every particle and the global best ( gbest ) value.
Step 6: Update the position of the particle using Eq. (33) 
and Eq. (34). Check whether the values are within the 
boundary limits (if not regenerate the population).

Step 7: Retain the best value and repeat the procedure till 
the convergence or maximum number of iterations.

In the present study, the parameters settings for PSO are: 
population size = 30, c1 = 1.2, c2 = 1.1, and w = 0.9 to 0.4 
varies linearly (decreasing with respect to the iteration num-
ber) (Thomas et al. 2018; Anshuman and Eldho 2019).

Here the developed LRPIM-TLBO and LRPIM-PSO SO 
models are used for estimating the parameters for hypotheti-
cal and real field problems.

Parameter estimation – Case studies

Case study 1– Flow parameter estimation

Here a hypothetical confined aquifer of size 6000 m × 6000 m 
with 9 zones of transmissivity is considered (Swathi and 
Eldho 2013) as shown in Fig. 3(a). A constant head boundary 
of 100 m is applied at the bottom side of the aquifer domain. 
The no flow boundary is applied on the top and right sides 
of the aquifer domain. The Neumann flux boundary with 
an inflow rate of 0.25  m2/day is applied on the left side of 
the aquifer domain. The value of transmissivity ranges from 
5 to 150  m2/day (as shown in Fig. 3). Two recharge zones 
recharging at a rate of 0.00015 m/day and 0.00025 m/day 
are present as shown in Fig. 3(a). There are two wells; one is 
injecting water at a rate of 500  m3/day whereas the other well 
is withdrawing water at a rate of 1200  m3/day. The storage 
coefficient of the aquifer is assumed to be 0.001.

Nodes were uniformly distributed at a nodal spacing of 
500 m in both x and y directions. The nodal distribution in the 

(32)
Velocity = + [random

(

NS, NP

)

× (upper limit − lower limit)]

(33)

Vt+1 =
(

w × Vt

)

+
[

c1 × random(NS,NP) ×
(

pbest − position
)]

+
[

c2 × random(NS,NP) ×
(

gbest − position
)]

(34)Positiont+1 = Positiont + Vt+1

aquifer domain is as shown in Fig. 3(b). Observation wells are 
considered at nodes 7, 33, 59, 85, 111, 137 and 163.

The shape parameters of the MQ-RBF and the size of 
the local support domain were optimally chosen, and the 
groundwater flow model (forward model) was constructed 
with given boundary conditions. The model is run for a total 
simulation period of 1000 days with a time step size of 1 day 
to determine the groundwater head contours. The groundwa-
ter head values obtained in the observation wells of all the 
zones are given in Table 2. The head values obtained were 
compared with the results obtained from the FEM model 
(Swathi and Eldho 2013) and found to be satisfactory.

The groundwater head values evaluated by the model are 
used as the observed values for inverse modeling (taken as 
an input into the optimization model). The aquifer param-
eter (transmissivity) was estimated by linking the simulation 
model with the optimization model to construct the SO model. 
The maximum number of iterations, the number of popula-
tions and other SO model parameters are set. The particles 
were generated randomly within the upper and lower bound 
of each parameter. Using the random population generated, 
the SO model is run iteratively. The model is run till the maxi-
mum number of iterations is reached to minimize the value of 
the fitness function. The value of transmissivities at which the 
fitness value is minimum is taken as the best estimate of trans-
missivities. The values of transmissivity obtained from the 
LRPIM-TLBO and LRPIM-PSO models are given in Table 3. 
Computational times taken by these models are also given in 
Table 3. It was found that PSO executes faster than TLBO. 
The root means square error (RMSE) calculated between the 
true values and the predicted values show that both methods 
give good results with an RMS error of less than 7. Zone 2 
value has a higher percentage deviation of 12.9. The conver-
gence graph obtained between the fitness value and number 
of iterations for LRPIM-TLBO and LRPIM-PSO is given in 
Fig. 4. As can be seen, the convergence of LRPIM-TLBO 
happens in a few iterations than LPIM-PSO model, though 
more computational time is required.

Case study 2 – Flow and transport parameter 
estimation

In this case study, the groundwater flow (transmissivity) and 
transport (dispersivity) parameter estimation of a confined 
aquifer is studied. The groundwater flow and contaminant 
transport model is constructed with the LRPIM technique for 
an aquifer with an area of 45  km2 as given in Fig. 5(a) (Singh 
et al. 2016). For the initial forward modeling, aquifer parame-
ters and flow model simulations were taken from Swetha et al. 
(2022a). The flow model is executed to obtain the head values 
in the problem domain. In the case of contaminant transport, 
the longitudinal dispersivity ( ∝L ) for this problem is 20 m 
and the transverse dispersivity ( ∝T ) is taken as 10% of the 
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longitudinal dispersivity. An area pollutant source is assumed 
to be a leaking contaminant of concentration 1000 mg/l as 
shown in Fig. 5(a). The nodes were established at an interval 
of 49.6 m along the length and 42.8 m along the width of 

the aquifer. The total number of nodes distributed through-
out the problem domain is 1008. The optimized MQ-RBF 
shape parameter αc and the support domain size are 4 and 
4 ×  dc, respectively (Swetha et al. 2022a). For time-stepping, 
the Crank–Nicholson method ( θ = 0.5 ) was implemented. 
The time step size (Δt) used is 5 days and it is assumed that 
the whole area was pristine when the simulation started i.e., 
zero pollutant concentration as the initial condition. The con-
taminant transport model was constructed and run to track the 
contaminant plume movement in the aquifer. The transport 
model is run till the end of 5th year and the results (Table 4) 
were compared with a FEM model developed by Singh et al. 
(2016) and found to be satisfactory. Table 4 gives the contami-
nant concentration values ( Cobs

i
 ) obtained from the models in 

various observation wells with percentage deviations.
The SO model is constructed using the optimization 

algorithms of TLBO and PSO to estimate the groundwater 
flow and transport parameters. The values obtained from 

Fig. 3  (a) Aquifer configuration for the hypothetical case (b) Nodal representation for the hypothetical case (c) Groundwater head contours

Table 2  Comparison of head values obtained from observation wells 
at the end of 100 days

Node no Head values ( hobs
i

 ) 
in m
(LRPIM)

Head values 
in m
(FEM)

Percentage 
deviation

7 103.3 105.1 1.7
33 101.5 102.0 0.5
59 99.9 92.3 8.3
85 95.9 98.7 2.9
111 93.1 99.3 6.3
137 92.9 99.7 6.8
163 93.1 99.9 6.8
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LRPIM- TLBO are compared with the LRPIM- PSO. Here, 
the groundwater flow parameters (transmissivity) are esti-
mated as unknown parameters in the study area using the 
SO model (in Case A) and the transport parameters (dis-
persivity) are estimated along with the flow parameters as 
unknown in the study area (in Case B). The concentration 
values obtained at the observation wells were treated as the 
observed values and is used as input to the inverse model. 
The total simulation period was 500 days corresponding 
to 100-time steps. The concentration plume or spreading 
obtained after 500 days is shown in Fig. 5(b). The model is 
run for 100 iterations (the number of iterations were final-
ized based on the computational efficiency) for both cases. 
The population has the best fitness value at the end of the 
100th iterations and the result obtained is taken as the best-
predicted solution.

The simulated concentration values at the observation 
wells obtained using the transport model is used as an input 
to the optimization model. Maximum number of iterations 

and the number of populations are present for the developed 
SO model. The populations are generated randomly with the 
upper and lower bound of each parameter. The simulated val-
ues are compared with the observed values in the SO model 
to minimize the fitness value. The value of the aquifer param-
eters at the end of the 100th iteration is taken as the best 
value. The values of parameters obtained from LRPIM-TLBO 
and LRPIM-PSO are given in Table 5 and Table 6. The com-
putational time taken by these models is also given in the 
same tables. The convergence graph for LRPIM-TLBO and 
LRPIM-PSO are given in Fig. 6(a) and Fig. 6(b), respectively. 
The model run was increased from 100 to 300 iterations to 
check for further improvement in predicted values. The result 
shows that there is a slight improvement in the predicted val-
ues. The root means square error (RMSE) calculated between 
the true values and the predicted values show that both mod-
els gave good results with an RMS error of less than 10.

As shown in Figures and Tables, the LRPIM-TLBO 
model converges in a few iterations than the LRPIM-PSO 
model, though the computational time is higher.

Discussion

Here, meshless LRPIM is used for groundwater flow and con-
taminant transport simulation. LRPIM has be used to simulate 
the flow and transport in groundwater. LRPIM has the advan-
tage of not using any background cells for integration purposes 
as in other weak-form meshless methods such as EFGM. It 
does not need any meshing or re-meshing as in other conven-
tional numerical methods. For inverse modeling and parameter 
estimation, two optimization models namely TLBO and PSO 
are used. The ability of the optimization model to predict the 
global minimum is verified using the two different standard 

Table 3  Comparison of parameters estimated by PSO and TLBO with the true values

Zone no True values of 
transmissivity in 
 m2/day

Values of transmissivity 
from TLBO at the end of 
100 iterations

% deviation b/w true and 
predicted value (TLBO)

Values of transmissivity 
from PSO at the end of 100 
iterations

% deviation b/w true and 
predicted value (PSO)

1 150 149.8 0.1 150.2 0.1
2 150 130.6 12.9 135.2 9.9
3 50 48.4 3.2 49.6 0.8
4 150 150.0 0.0 149.5 0.3
5 50 50.0 0.0 49.9 0.2
6 15 14.9 0.7 14.6 2.7
7 50 50.0 0.0 50.1 0.2
8 15 14.8 1.3 14.6 2.7
9 5 5.0 0.0 5.0 0.0
Time taken 

(seconds)
379 192

RMSE 6.5 4.9

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

eulavssentiF

Iteration number

PSO TLBO

Fig. 4  Convergence graph for the hypothetical case using TLBO and 
PSO
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Fig. 5  (a) Aquifer domain with the TDS source (b) Concentration plume obtained after 500 days
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test functions. The aquifer parameter (transmissivity, longi-
tudinal and transverse dispersivity) was estimated using the 
developed SO model for hypothetical and real field cases. In 
the hypothetical case, the SO model is able to reproduce the 
transmissivity values very closely in all the zones except in 
zone 2 where a maximum deviation of 12.9 percent from the 
true value was observed. In the real field problem while esti-
mating the transmissivity (case A) the value of transmissivity 
at zone 1 shows a maximum deviation of 16.9 percent from 
the actual value. It is observed that TLBO is able to produce 
better solution than PSO in all the zones. When the flow and 
transport parameters are estimated simultaneously (case B), 
the value of transmissivity at zone 9 and 10 shows a maximum 
deviation of 17 percent from the actual value.

The effectiveness of the optimization algorithm depends 
upon the algorithm parameter values used. The TLBO requires 
a lesser number of algorithm parameters whereas, many of the 
optimization techniques such as PSO require a proper selec-
tion of parameter to get the optimal solution of the problem. 

Thus, TLBO is easy to implement and results in rapid con-
vergence within a smaller number of iterations. The LRPIM 
model used for the purpose of flow and transport simulation 
does not require any nodal connectivity information. Coupling 
LRPIM with TLBO to form LRPIM-TLBO makes use of these 
advantages to give good results with rapid convergence.

The convergence rate with respect to the number of objec-
tive function evaluations is studied in case study 2. The num-
ber of iterations was increased from 100 to 300 in case study 
2 to check for any further improvement in the predicted val-
ues of both TLBO and PSO. It shows that even after increas-
ing the number of iterations, only a slight improvement was 
observed from both the TLBO and PSO models. The RMSE 
values were calculated for case study 2 (for both case A and 
case B) at the end of the 100th and 300th iterations. It is 
found that the RMSE value is less than 10 percent for case 
A and is less than 5 percent for case B.

The computational time was observed for computations made 
on a computer having two Intel 2.0Ghz Broadwell cores and 
10 GB RAM. It is found that PSO iterations runs around 2 times 
faster than TLBO. However, TLBO was able to converge in few 
iterations for the real field problem considered in this study.

The limitation of the study is that the accuracy of the 
parameter estimated depends upon the accuracy in the 
measured values from observation wells. Hence, the values 
have to be observed with low measurement error. The PSO 
model parameters such as inertial weight, and acceleration 
coefficients, which are to be fixed or optimized before cou-
pling it with simulation models whereas TLBO requires 
lesser number of parameters to be fixed or optimized. On 
the other hand, LRPIM-TLBO requires more computational 
time. The present study has explored the applicability of the 

Table 4  Observed concentration values from observation wells at the 
end of the 5th year

Node no Concentration values 
( Cobs

i
 ) in mg/l (LRPIM)

Concentration 
values in mg/l 
(FEM)

Percentage 
deviation

448 498 451 10.4
558 989 976 1.3
662 951 927 2.6
552 791 720 9.8
670 718 757 5.1
730 785 804 2.4
545 573 538 6.5

Table 5  Comparison of parameters estimated by TLBO and PSO with the true values (for flow parameter estimation/ Case A)

Zone no True values of 
transmissivity 
in  m2/day

TLBO PSO

100th  
iteration

% deviation 
b/w true and 
predicted

300th  
iteration

% deviation 
b/w true and 
predicted

100th  
iteration

% deviation 
b/w true and 
predicted

300th  
iteration

% deviation 
b/w true and 
predicted

1 170 184.8 8.7 172.7 1.6 141.2 16.9 146.4 13.9
2 150 150.0 0.0 150.0 0.0 150 0.0 150 0.0
3 130 127.3 2.1 127.4 2.0 138.1 6.2 125.5 3.5
4 110 111.2 1.1 111.2 1.1 106.6 3.1 112.1 1.9
5 90 90.1 0.1 90.1 0.1 87.9 2.3 90.3 0.3
6 70 70.0 0.0 70.0 0.0 71.2 1.7 69.9 0.1
7 60 60.0 0.0 60.0 0.0 58.3 2.8 60.2 0.3
8 50 50.1 0.2 50.0 0.0 50.8 1.6 49.9 0.2
9 40 41.6 4.0 45.7 14.3 36.2 9.5 42 5.0
10 30 28.2 6.0 34.4 14.7 25.6 14.7 27.1 9.7
Time taken 

(seconds)
29,736 90,863 15,292 45,585

RMSE 4.8 2.6 9.8 7.7
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LRPIM-TLBO SO model as a tool for calibrating / estimat-
ing unknown aquifer parameters.

Conclusions

In this study, a simulation–optimization model is pre-
sented using the meshless LRPIM method and TLBO. The 
developed SO model is used for parameter estimation of a 
confined aquifer. The LRPIM-TLBO SO model results are 
compared with the LRPIM-PSO SO model. RMSE is used 
to quantify the error between the true values and predicted 
values of transmissivity and dispersivity. It is found that for 
the hypothetical case, the RMS error is less than 7, whereas 
for the real field case, the RMS error is less than 10. The 
TLBO model is coupled with LRPIM to estimate the flow 
and transport parameters and it was demonstrated that it can 
be used effectively in solving groundwater problems. The 
effectiveness of the developed LRPIM-TLBO SO model 
was tested by comparing the results with the LRPIM-PSO 
SO model. The number of unknown parameters affects the 
convergence rate of the models developed. The LRPIM-PSO 
was found to be computationally faster. The LRPIM-TLBO 

is found to give better accuracy and convergence rate than 
the LRPIM-PSO model for the problems considered. How-
ever, the computational time in LRPIM-TLBO is higher 
because of calculating the objective function in the teacher 
phase and the learner phase. The developed SO models may 
be applied to any complex/irregular aquifer for estimating 
the parameters and with suitable modifications.
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