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Abstract
Indonesia is susceptible to natural disasters including earthquakes, volcanic eruptions, tsunamis, floods, and landslides. 
This catastrophe wreaked havoc on infrastructure, residences, and businesses, resulting in enormous economic losses. One 
of the frequent natural catastrophes in Indonesia is an earthquake, particularly in the province of Banten, one of potential 
areas exposed to megathrust earthquake. Peak ground acceleration (PGA) can be used to measure earthquake risk, but cur-
rent calculations are univariate, meaning that seismic hazard calculations are performed independently across regions. In 
reality, seismic conditions in a region are influenced by seismic conditions in neighboring regions, making the independent 
calculation of PGA less pertinent. In this article, we propose to construct a model for earthquakes based on PGA values 
by incorporating the dependencies among PGA occurrences via the D-vine copula method. We discovered that the greater 
the distance between a quake-affected location and the epicenter, the greater the influence of ground motion from nearby 
locations. These findings can be used as a tool to mitigate earthquake occurrences in Indonesia, a similar strategy can also 
be implemented in other regions.
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Introduction

Indonesia is a country that is prone to natural disasters such 
as earthquakes, volcano eruptions, tsunamis, floods, and 
landslides. An earthquake is one of the frequent natural dis-
asters in Indonesia. Earthquake zones on the southern coast 

of West Java and southeast Sumatra are known to be very 
active due to the confluence of the Indo-Australian plate and 
subduction under the Sunda plate (Supendi et al. 2022). In 
addition, earthquake events in Sumur Banten, which hap-
pened on January 2022, and Cianjur, which happened on 
November 2022, triggered megathrust issues. The Meteor-
ology, Climatology, and Geophysics Agency of Indonesia 
(BMKG) also predicts the potential for a megathrust earth-
quake on the Sunda Plate with a magnitude of 8.7. These 
catastrophes cause significant damage to infrastructure, 
homes, and businesses, leading to substantial economic 
losses. As a mitigation effort, many studies have been con-
ducted to identify the potential for an earthquake. Farid and 
Mase (2020) provided a seismic hazard mapping based on a 
shear strain indicator that may cause an earthquake in Beng-
kulu City, Indonesia, by performing microtremor measure-
ments that observe the geophysical characteristics. Jena et al. 
(2020) estimated the earthquake risk based on probability 
and hazard as a mitigation effort of the earthquake occur-
rence in Palu, Indonesia. They used earthquake probability 
assessment (EPA), earthquake hazard assessment (EHA), 
susceptibility to seismic amplification (SSA), and earth-
quake vulnerability assessment (EVA) to generate the risk of 
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earthquake occurrence. They also clustered the earthquake-
prone areas using hierarchical and pure locational clustering. 
Fuady et al. (2021) summarized several disaster events in 
Indonesia as one of the disaster mitigation efforts to mini-
mize disaster risk, especially in urban areas. They concluded 
three major disasters in 2018, including earth-shaking in 
West Nusa Tenggara, earthquake, tsunami, and liquefaction 
in Central Sulawesi, and tsunamis in Sunda Strait.

One of the quantities commonly used to measure earth-
quake risk is peak ground acceleration. The peak ground 
acceleration (PGA), also known as the acceleration value 
in the ground, can be used to calculate the earthquake dan-
ger and its link to the destruction of building infrastructure 
(Irwansyah et al. 2013). This measure builds a catastrophic 
model through the probabilistic seismic hazard analysis 
(PSHA), which can probabilistically estimate the ground 
movement events that could result in damage. Tavakoli and 
Ghafory-Ashtiany (1999) used historical earthquake data, 
geology, tectonics, fault activity, and seismic source models 
in Iran to build a probabilistic seismic hazard computation. 
They provided an Iranian seismic hazard map and probabil-
istic PGA estimates for 75 and 475 years of return periods. 
In those studies, they used the maximum expected param-
eter, Mmax , the activity rate, � , and the b value of Guten-
berg–Richter relation, and used the probabilistic method 
of maximum likelihood estimation adopted from Kijko 
and Sellevoll (1989). One of the assumptions held by this 
method is that the occurrence of earthquakes is assumed to 
be independent from time and space domains to conform 
with the Poisson distribution. This means that there is no 
mutual connection between the locations affected by the 
earthquake. A similar study has also been done by Ghodrati 
Amiri et al. (2003) and Hamzehloo et al. (2012). Ghodrati 
Amiri et al. (2003) and Hamzehloo et al. (2012) used the 
same approach as Tavakoli and Ghafory-Ashtiany (1999). 
Crowley and Bommer (2006) performed independent proba-
bilistic seismic hazard assessment calculations simultane-
ously at several locations and combined the losses at each 
site for each annual frequency of exceedance to create loss 
exceedance curves. They calculated the PSHA hazard curves 
at a single site and assumed that there was no need to pro-
duce a correlated random field of ground motion.

All of the studies mentioned above assume that the occur-
rence of earthquakes calculated from the PGA value is inde-
pendent of each other between locations. However, several 
studies have shown that the link between locations cannot 
be ruled out. Amendola et al. (2000) proposed a spatial-
dynamic, stochastic optimization model that considers the 
complexities and dependencies of catastrophic hazards. The 
risk management model is tailored for this goal, explicitly 
incorporating the location’s geological characteristics, seis-
mic risks, and the built environment’s sensitivity. Ansari 
et al. (2015) conducted a recent study that combined fuzzy 

clustering analysis and Monte Carlo simulation to determine 
and model the seismic sources. They compared the observed 
PGA on a grid of points and the simulation values and found 
that the definition of seismic sources and the distribution of 
earthquakes within each source are better consistent with 
seismological and seismotectonic observations when the 
findings of clustering analysis are used. The results showed 
that the clustered areas produced a higher estimated PGA 
value. This shows that the relationship between locations 
in the PGA calculation cannot be ignored because the clus-
tered areas generally have similar characteristics. Cheng 
et al. (2020) also proved that ground motion parameters are 
interconnected.

PGA calculations generally involve several parameters, 
such as the earthquake’s magnitude, the horizontal distance 
to the epicenter, and the depth of the epicenter. Hence, the 
PGA calculation is univariate at each location point. How-
ever, intuitively, the movement of the ground in a specific 
area can be influenced by the movement of the ground in 
nearby locations. Therefore, the assumption of dependencies 
between locations must be addressed. This assumption has 
also been demonstrated by Amendola et al. (2000), Ansari 
et al. (2015), and Cheng et al. (2020), as mentioned before. 
Consequently, the univariate PGA calculations are consid-
ered less representative of the actual conditions. Using this 
basis, we propose a catastrophic model that assumes depend-
encies between the locations around the subject area of the 
calculation using a D-vine copula. A D-vine copula is an 
innovative mathematical technique that can model the prob-
ability distribution of the joint occurrence of multivariate 
events as an extension of the conventional bivariate copula 
(Bedford and Cooke 2001; Kurowicka and Cooke 2005; Aas 
et al. 2009; Brechmann and Czado 2013). Compared to con-
ventional techniques such as linear regression models, the 
advantage of the D-vine copula model is that it can model 
the dependencies of multivariate events, both having linear 
and nonlinear relationships, which are not found in conven-
tional models. In addition, the D-vine copula is also more 
flexible to use because the probability density function of 
multivariate events is decomposed into a bivariate function 
so that the dependency structures between locations that may 
vary can be identified. Therefore, this paper aims to develop 
an earthquake model based on simultaneous peak ground 
acceleration occurrences using the D-vine copula.

We also develop the model computationally using an 
open-source framework to facilitate the computation pro-
cess. We take the following steps: First, we identify and 
determine the earthquake sources. Then we determine the 
peak ground acceleration (PGA) for the given epicenter 
using probabilistic seismic hazard analysis (PSHA). Subse-
quently, we determine the dependencies between locations 
in the area that contains the earthquake epicenter using 
a D-vine copula. Finally, we determine the exceedance 



1323Modeling Earth Systems and Environment (2024) 10:1321–1336	

1 3

probability of the original and D-vine copula-based PGA, 
compare the results, and draw conclusions. This model 
would support the development of all needs related to cata-
strophic models, such as disaster mitigation, catastrophic 
insurance, and so on.

Methodology

In this section we provide an in-depth discussion about the 
original model of the univariate PGA calculation through the 
use of the ground motion prediction equation and the basic 
concept of the D-vine copula in modeling the dependence 
of PGA between the quake-affected areas.

Ground motion prediction equation (GMPE)

The development and testing of earthquake models requires 
the use of accurate and thorough earthquake catalog data. 
The International Seismological Centre (ISC) is one such 
source of earthquake catalog data. The ISC keeps track of 
earthquakes that happened all around the world from 1904 to 
the present. In order to concentrate primarily on earthquakes 
that happened in and close to the Banten Region, we have 
filtered the ISC earthquake database for this study. We also 
added updated data found from several other sources. Banten 
is a seismically active area situated in the western portion of 
Indonesia’s Java Island. We can learn more about the seismic 
activity and features of the Banten Region by restricting the 
earthquake catalog data to this area.

Ground motion is a crucial element in earthquake mod-
eling that must be precisely observed and accounted for in 
models. The term “ground motion" describes the trembling 
that takes place at a specific location when an earthquake 
occurs. Peak ground acceleration (PGA), a popular gauge 
of ground motion, is the highest acceleration a particle on 
the ground experiences during an earthquake (GEM Foun-
dation 2021).

Ground motion sensors, often positioned at key points 
in earthquake-prone areas, can be used in practice to assess 
PGA. The models that are created to estimate PGA values 
for places without sensors can subsequently be built using 
the recorded ground motion data.

In order to predict the shaking that might happen at a 
location when an earthquake of a specific magnitude occurs, 
ground motion prediction equations (GMPEs) are utilized. 
GMPEs are empirical models that forecast the anticipated 
ground motion for future earthquakes of comparable magni-
tude and distance using recorded ground motion data from 
prior earthquakes.

The selection of GMPEs is extremely reliant on the local 
environment in one place. The equality of the geological 

and tectonic conditions in the region where GMPE is cre-
ated is the basis for selecting GMPE (Irsyam et al. 2008). 
We have chosen GMPE for this study from Youngs et al. 
(1997), which is used by Irwansyah et al. (2013) to model 
earthquake hazards in Aceh. The formula is as follows:

 where Yi is the PGA value of location i, M is the earth-
quake magnitude, rrup,i is the horizontal distance of loca-
tion i from the epicenter, H is the depth of the earthquake 
center, and ZT is the indicator function identifying whether 
it is an interface (0) or intraslab (1) earthquake. These are 
the output and four input parameters for the GMPE. All 
earthquakes from the catalog data are assumed to be inter-
face earthquakes.

Based on the GMPE formula defined in Eq. 1, the PGA 
value can be calculated as follows.

The PGA formula defined in Eq. 2 is used to calculate 
the ground motion in a single site, overriding any links to 
other sites. Through the D-vine copula, we accommodate 
the dependence assumption of the joint occurrence of the 
ground motion in the affected locations (Table 1).

The United States Geological Survey developed the shake 
maps based on the value of the PGA which characterize 
the range value of the PGA with its perceived shaking and 
potential damage as presented in Table 1 (U.S. Geological 
Survey 2011).

(1)

lnYi = 0.2418 + 1.414M + C1 + C2(10 −M)3

+ C3 ln
(
rrup,i + 1.7818e0.554M

)

+ 0.00607H + 0.3845ZT

(2)

Yi = exp
{
0.2418 + 1.414M + C1 + C2(10 −M)3

+ C3 ln
(
rrup,i + 1.7818e0.554M

)

+0.00607H + 0.3845ZT
}

Table 1   Shake maps

Instru-
mental 
intensity

PGA (g) Perceived shak-
ing

Potential damage

I < 0.000464 Not felt None
II–III 0.000464–

0.00297
Weak None

IV 0.00297–0.0276 Light None
V 0.0276–0.115 Moderate Very light
VI 0.115–0.215 Strong Light
VII 0.215–0.401 Very strong Moderate
VIII 0.401–0.747 Severe Moderate to heavy
IX 0.747–1.39 Violent Heavy
X+ > 1.39 Extreme Very heavy
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D‑vine copula

The calculation of the PGA using GMPE in Eq. 2 is a uni-
variate and deterministic calculation. Meanwhile, as we have 
previously explained, the acceleration of ground motion in 
an area is very likely to be affected by ground motion in the 
surrounding areas so univariate calculations that are inde-
pendent of each other between locations become less rel-
evant. In addition, even though the PGA calculation is deter-
ministic, earthquake events that result in accelerated ground 
motion are probabilistic, so PGA events are also indirectly 
probabilistic. Based on these two reasons, it is necessary 
to have a PGA calculation that considers the influence or 
interdependence between PGA events in adjacent locations. 
In this paper, we propose the use of the copula function, 
specifically the D-vine copula, to evaluate the dependency 
of multivariate PGA events.

Suppose Y1, Y2,… , Yn is a set of random variables rep-
resenting the PGA values of each location and have a joint 
probability function f (y1,… , yn) for the joint occurrence 
of the PGA events. This joint probability function can be 
factorized as.

The joint probability function of the PGA occurrences 
implicitly describes both the marginal behavior of individual 
variables of PGA in each location and the structure of their 
dependencies. Copula, a multivariate distribution function, 
describes their dependence structure (Aas et al. 2009). Based 
on Sklar’s theorem (Sklar 1959), the multivariate distribu-
tion function of the joint occurrences of PGA events can be 
expressed as a copula function.

The joint probability function in Eq. 3 can also be expressed 
in the copula function by deriving the multivariate distribu-
tion function of Eq. 4 such that.

The multivariate density copula c1,…,n(F1(y1),… ,Fn(yn)) 
in Eq. 5 is quite complex; however, we can decompose it 
into the bivariate density copula. To do so, we can express 
the conditional probability function provided in Eq. 3 in 
the bivariate copula function so that later we can get the 
pair copula decomposition form of the multivariate density 

(3)
f (y1,… , yn)

= f (yn)f (yn−1|yn)f (yn−2|yn−1, yn)⋯ f (y1|y2,… , yn).

(4)F(y1,… , yn) = C(F1(y1),… ,Fn(yn)).

(5)

f (y1,… , yn) =
�n

�y1 … �yn
F(y1,… , yn)

=
�n

�y1 … �yn
C(F1(y1),… ,Fn(yn))

=c1,…,n(F1(y1),… ,Fn(yn))f1(y1)⋯ fn(yn).

copula defined in Eq. 5. First, for the bivariate case, we have 
the following formula.

Therefore, the conditional probability function of f (y1|y2) 
can be written as

We can also decompose the other conditional probability 
provided in Eq. 3. For example, for the second conditional 
probability f (y1|y2, y3) we have

 or

By substituting Eq. 7 to Eq. 9, we have

Therefore, the general formula for the conditional probabil-
ity of the multivariate density function defined in Eq. 3 is

 where yj is an arbitrarily chosen variable of y and y−j is the 
y-vector excluding yj.

For multivariate distribution with higher dimensional-
ity, many possible copula pairs exist. Bedford and Cooke 
(2001) introduced a Regular vine (R-vine) copula to help 
organize the copula pairs. Kurowicka and Cooke (2005) 
and Aas et al. (2009) provided special cases of R-vine 
copula, known as canonical (C-) and drawable (D-) vine 
copula. The vine copula decomposes the multivariate cop-
ula into bivariate copula through the nested set of trees 
which consist of nodes and edges. If we have n variables, 
then we will have n − 1 trees, each tree consists of n nodes 
and n − 1 edges. Specifically, for the C-vine copula, the 
tree structure is constructed into a star structure with a key 
node connecting to all other modes (Kurowicka and Cooke 
2005; Aas et al. 2009; Cheng et al. 2020). While for the 
D-vine copula, the tree structure is constructed into a path, 
where each node is connected to no more than two other 
nodes (Aas et al. 2009; Cheng et al. 2020). In this paper, 
we focus on utilizing the D-vine copula because the pair of 
locations to be checked for dependencies are considered to 
have the same position; in other words, there is no specific 
location as a key variable as is commonly described in the 
C-vine copula. The pair structure of the D-vine copula for 
four variables is provided in Fig. 1.

(6)f (y1, y2) = c12(F1(y1),F2(y2))f1(y1)f2(y2).

(7)f (y1|y2) = c12(F1(y1),F2(y2))f1(y1)

(8)f (y1|y2, y3) = c12|3(F(y1|y3),F(y2|y3))f (y1|y3)

(9)f (y1|y2, y3) = c13|2(F(y1|y2),F(y3|y2))f (y1|y2)

(10)
f (y1|y2, y3) =c13|2(F(y1|y2),F(y3|y2))

c12(F1(y1),F2(y2))f1(y1)

(11)f (yi|y) = cyi��|�−�(F(yi|y−j),F(��|y−�))f (yi|y−j)
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Based on the pair decomposition, the multivariate den-
sity function of n variables of PGA events defined in Eq. 3 
can be written as.

Parameter estimation of the D-vine copula is conducted 
using the two procedures of maximum likelihood estimation 
method: (1) parameter estimation for the marginal distribu-
tion and (2) for the copula function (Patton 2006; Jondeau 
and Rockinger 2006; Aas et al. 2009). Suppose Ψ and Θ are 
the parameter spaces of the marginal distributions and the 
copula functions.

 where ỹ is the vector of the PGA values in location i, 
ũ = Fi(yi) and ṽ = Fj(yj) are the cumulative distribution 
functions of the PGA values at location i and j, i ≠ j , and 
L(Ψ|ỹ) and L(Θ|ũ, ṽ) are the log-likelihood functions of the 
marginal distributions and the copula functions, respectively.

Several popular copula families can be used, in Table 2 
we provide some popular copula families.

For the case of pairing PGA for several locations, sup-
pose that Yi be the PGA values of i = 1, 2,… , n location. 
We can calculate the D-vine copula-based PGA by the fol-
lowing procedures. First, calculate the original PGA value 
using the GMPEs equation provided in Eq. 2. To identify 
which locations, have a strong relationship, calculate the 
correlation between each location using the three popular 

(12)

f (y1,… , yn) =Πd
k=1

fk(yk)×

Πd−1
i=1

cj,i+j|j+1,…,(i+j−1)(F(yj|yj+1,
… , yi+j−1),F(yi+j|yj+1,… , yi+j−1))

(13)Ψ̂ = argmaxL(Ψ|ỹi)

(14)Θ̂ = argmaxL(Θ|ũ, ṽ)

dependence measures: Pearson correlation coefficient, 
Spearman’s rho, and Kendall’s tau. Then pair the subject 
locations using the D-vine copula and estimate the param-
eters of the marginal distribution and the copula function 
using Eqs. 13 and 14. Last, estimate the PGA values of 
location i which already involves dependencies from PGA 
events in the surrounding areas using the D-vine copula 
regression, which is defined as the following conditional 
expectation.

 where f (yi|y) is the conditional density function of a PGA 
event in location i given the occurrences of the PGA events 
in all other locations, which is obtained from the D-vine 
copula decomposition such derived in Eq. 11.

Probability of exceedance

The last part of the catastrophic model built using the 
D-vine copula is calculating the probability of exceed-
ance (POE). POE is the probability that a random variable 
exceeds a certain amount of value. In probabilistic termi-
nology, it is the survival function of the random variable 
(Casualty Actuarial Society 2021). In seismic hazard anal-
ysis, we calculate the exceedance probability to estimate 
the probability that, in any given year, the condition will 
exceed a certain value of PGA (Aslani and Miranda 2005; 
Bradley et al. 2009). In this paper, we use two approaches 
to calculate exceedance probabilities: (1) empirical POE 
and (2) parametric megathrust POE.

Empirical POE is calculated based on historical PGA 
values, i.e. PGA calculations resulting from original cal-
culations and based on D-vine copulas. Empirical POE 
calculations are carried out to estimate how big the proba-
bility is that if one day an earthquake occurs, the event will 
cause ground motions that exceed the historical ground 
motion values. Dotson (2020) presents an empirical for-
mula to calculate POE as follows.

 where P(Yi > yi,j) is the probability of exceeding historical 
PGA value of epicenter j at location i, mj is the rank of the 
PGA value j, and n is the number of observations.

Furthermore, the parametric megathrust POE is calcu-
lated to obtain the description of at what probability level the 

(15)

E(Yi|Y) =∫
∞

−∞

yif (yi|y)dyi

=∫
∞

−∞

yicyi��|�−�(F(yi|y−j),F(��|y−�))f (yi|y−j)dyi

(16)P(Yi > yi,j) =
mj

n + 1

Fig. 1   Example of the tree structure of the D-vine copula for four 
variables
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estimated PGA, both original and D-vine copula-based, will 
exceed the PGA value of the possibility of a megathrust event 
where the magnitude of the earthquake reaches 8.7 SR. First, 
we assume that the probability of the PGA of a megathrust 
event in location i is normally distributed (Septianusa and 
Ahdika 2015).

 where yi,m is the PGA value of a megathrust event in loca-
tion i, �m and �m are the mean and standard deviation of 
PGA of megathrust event. Then, we obtain the parametric 
megathrust POE by integration.

(17)P(yi,m) =
1

�m

√
2�

exp

�
−

�
yi,m − �2

m

2�m

��

(18)

P(Yi > yi,m) =
1

𝜎m

√
2𝜋

∫
∞

yi,m

exp

�
−

�
yi,m − 𝜇2

m

2𝜎m

��
dyi,m

=1 − 𝜙

�
yi,m − 𝜇m

𝜎m

�

Algorithm of the proposed model

All these procedures are encapsulated in the algorithm that 
we run on the following open-source framework, particularly 
in R software.

PGA Calculation Algorithm

Initialization Phase

1.	 Load the required package.
2.	 Load the earthquake catalog data.

Main Phase

1.	 Prepare the longitude and latitude data for each epi-
center.

2.	 Prepare the grid points or the location coordinates where 
the PGA value will be calculated.

3.	 Calculate the distance between the location and the epi-
center using the Haversine distance. 

Table 2   Copula families 
(Scholzel and Friederichs 2008; 
Weber 2015; Embrechts et al. 
2003; Taillon and Miyagawa 
2019; Buike 2018; Brechmann 
and Schepsmeier 2013)

u = F
i
(y

i
) and v = F

j
(y

j
) , i ≠ j

Copula family Copula Copula function

Elliptical Gaussian C
Ga

R
(u, v)

Copula
= ∫ �−1(u)

−∞
∫ �−1(v)

−∞

1

2�(1−R2)1∕2
exp

(
−(s2

1
−2�s1s2+s

2
2
)

2(1−R2)

)
ds1 ds2,

� ∈ (−1, 1)

Student-t C
t

𝜈,R
(u, v) = t

n

𝜈,R
(t−1
𝜈
(u), t−1

𝜈
(v)), 𝜈 > 2,R is correlation matrix

Archimedean Clayton
C𝜃(u, v) = [u−𝜃 + v

−𝜃]
−

1

𝜃 , 𝜃 > 0

Copula Frank
C�(u, v) = −

1

�
ln
(
1 +

(e−�u−1)(e−�v−1)

e−�−1

)
, � ≠ 0

Gumbel
C�(u, v) = exp

(
−[(− ln u)� + (− ln v)�]

1

�

)
, � ≥ 1

Joe
C�(u, v) = 1 − ((1 − u)� + (1 − v)� − (1 − u)(1 − v)�)

1

� , � ≥ 1

Tawn C(u, v) = (u, v)P(�), � =
ln(u)

ln(uv)
,

P(t) = (1 − �2)(1 − t) + (1 − �1)t +
[
(�1(1 − t))� + (�2t)

�
] 1

� ,

t ∈ [0, 1], 0 ≤ �1,�2 ≤ 1, � ∈ [1,∞)

Joe–Clayton
C
BB7
��

(u, v) = 1 −
[
1 −

(
(1 − u

�)� + (1 − v)−� − 1
)− 1

�

] 1

�

(BB7) 𝜃 ≥ 1, 𝛿 > 0

Joe–Frank
C
BB8
��

(u, v) =
1

�

(
1 −

[
1 −

1

1−(1−�)
(1 − (1 − �u)�)(1 − �v)�

] 1

�

)

(BB8) 𝜃 ≥ 1, 0 < 𝛿 ≤ 1

Rotated 90 degrees- C90(u, v) = v − C(1 − u, v)

Copula rotated
180 degrees-rotated C180(u, v) = u + v − 1 + C(1 − u, 1 − v)

270 degrees-rotated C270(u, v) = u − C(u, 1 − v)
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 where � is the central angle between any two points on 
a sphere, �1 and �2 are the latitude of locations 1 and 2, 
and �1 and �2 are the longitude of the location 1 and 2.

4.	 Calculate the PGA value using Eq. 2.

Additional Phase

1.	 Load the map data for Indonesia.
2.	 Create the map providing the PGA value of each loca-

tion.

After calculating the PGA value, hereinafter referred to as 
Original PGA, we estimate the D-vine copula-based PGA 
value, which is provided in the following algorithm.

D-vine copula-based PGA

Initialization Phase

1.	 Load the required package.
2.	 Load the Original PGA that has been calculated in the 

first algorithm.

(19)
hav(�) = hav(�2 − �1) + cos(�1) cos(�2)hav(�2 − �1)

3.	 Plot the correlation between the Original PGA in several 
locations.

Main Phase

1.	 Estimate the marginal distribution function of the Origi-
nal PGA of each location.

2.	 Estimate the parameter of the D-vine copula.
3.	 Estimate the D-vine copula-based PGA using Eq. 15.
4.	 Calculate the empirical and parametric megathrust POE 

(Eqs. 16 and 18).

Results

Data used in this study is Earthquake Catalogue Data taken 
from International Seismological Centre (1904–2019) 
(International Seismological Center 2023). In this study, 
the data is filtered to earthquakes that happened around the 
Banten Region with additional latest data from Wikipedia 
up to 2022. The data consist of 60 earthquake epicenters. 
The variables used are the magnitude of the earthquake in 
each epicenter, M, the depth of the earthquake epicenter, H, 
and latitude and longitude of the subject locations i, �i and 

Fig. 2   Maximum PGA values of the 12 major areas in Banten Region. Calculations were performed univariately
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�i . Most of the epicenters were located in the Indian Ocean 
area (located to the left and below Banten Region) and the 
Java Sea (water area above Banten Region).

In this study, we build the catastrophe model for 12 
major areas in the Banten–Jakarta Region, two provinces 
close to the center of the Indonesian government, based on 
earthquake epicenters located in the Banten Region. The 
12 major areas include Ujung Kulon, Lebak, Cilegon, Pan-
deglang, Serang City, Tangerang City, West Jakarta, South 
Tangerang, South Jakarta, North Jakarta, Central Jakarta, 
and East Jakarta. However, the PGA calculation involving 
the D-vine copula was only carried out in the seven areas 
with the strongest dependencies, among others. Figure 2 
provides the maximum value of the original PGA from 60 
epicenters at each of 12 major areas in the Banten–Jakarta 
Region, ranging from, approximately, 0.10–0.25 g. The far-
ther the subject location is from the epicenter, the smaller 
the PGA value.

Based on Fig. 2, we assume that the clustered locations 
at the top right of the map have very strong dependencies 
because the distance between the locations is quite close. 

However, to strengthen the assumption, we calculate the 
dependencies of the original PGA between locations. Fig-
ure 3 provides the PGA correlation pairs.

Based on Fig. 3, very strong dependencies are shown by 
the areas closer to Jakarta (provided by the bottom right of 
the pairs), including Tangerang City, West Jakarta, South 
Tangerang, South Jakarta, North Jakarta, Central Jakarta, 
and East Jakarta. As supporting evidence, Fig. 4 provides the 
Pearson correlation coefficient, Spearman’s rho, and Kend-
all’s tau rank correlation, whose absolute values are greater 
than 0.50. The three measures are used to accommodate all 
possible dependency structures of the PGA events between 
locations, both linear and nonlinear.

The darker the circle color in the correlation plot, the 
stronger the dependency. From the three dependence meas-
ures, we obtain some areas having very strong dependen-
cies (greater than 0.90), consisting of Tangerang City, West 
Jakarta, South Tangerang, South Jakarta, North Jakarta, 
Central Jakarta, and East Jakarta. This proves our previous 
hypothesis. Therefore, we limit our analysis to these seven 
areas as this study focuses on showing that ground motions 

Fig. 3   PGA correlation pairs of the 12 major areas in Banten–Jakarta Region. The areas in the red box are the ones with the strongest relation-
ships
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due to earthquake events are interrelated between adjacent 
locations, which have so far been assumed to be independent 
of each other.

To simplify the analysis, we assign a number to each area 
as follows: (1) Tangerang City, (2) West Jakarta, (3) South 
Tangerang, (4) South Jakarta, (5) North Jakarta, (6) Central 
Jakarta, and (7) East Jakarta.

Following the next step in our proposed modeling, the 
marginal distribution of the PGA in each location can be 
identified by evaluating the shape of its histogram. Figure 5 
shows the histogram of the PGA for the seven major areas.

The histograms show that the data are not normally dis-
tributed. Therefore, we further perform the marginal distri-
bution fitting process and obtain the results of the marginal 
distribution for each location along with the parameter esti-
mates which are provided in Table 3. The results show that 
the marginal distribution that best fits the PGA value for all 
locations is the log-normal distribution. These results are 
consistent with the histogram which shows the data pattern 
tends to be positively skewed, where those kind of data pat-
tern is more of a log-normal distribution.

Furthermore, the tree structure and the parameter esti-
mates of the D-vine copula are provided in Fig.  6 and 
Table 4.

The tree structure of the D-vine copula formed arranges 
the sequence of locations with the strongest dependencies. 
Based on Fig. 6, we obtain the following information. Loca-
tion pairs that have strong dependencies formed in the first 
tree are (6) Central Jakarta and (5) North Jakarta, (5) North 
Jakarta and (3) South Tangerang, (3) South Tangerang and 
(2) West Jakarta, (2) West Jakarta and (1) Tangerang City, 
(1) Tangerang City and (4) South Jakarta, (4) South Jakarta 
and (7) East Jakarta. Each has Kendall’s tau values of 0.93, 
0.90, 0.88, 0.93, 0.86, and 0.93, respectively. For the second 
to sixth trees, conditional marks indicate the dependency 
between the original PGA of two locations given the PGA 
values from other locations. For example, 6, 3|5 indicates the 
dependence between the PGA of (6) Central Jakarta and (3) 
South Tangerang given the PGA values of (5) North Jakarta 
and so on up to the sixth tree, which shows the dependency 
between the PGA values of (6) Central Jakarta and (7) East 
Jakarta given the PGA values of the other five locations. The 
tree structure shows that the D-vine copula can provide an 
overview of the dependencies of PGA events between loca-
tions, for all location pairs, conditionally or not.

An interesting fact shows that in the first tree, the most 
suitable copula for all pairs is the Joe copula, which has 
upper tail dependence, with values greater than 0.95. In 
addition, Kendall’s tau values for all pairs in the first tree 
are more than 0.85, indicating a very strong dependency 
among related location pairs. The upper tail dependence can 
be interpreted as the relationship between the large PGA 
values in each area. Meanwhile, for the second to sixth trees, 

Fig. 4   Dependency measures of original PGA values of some locations 
with a dependency value of more than 0.50; i.e. those with a fairly strong 
relationship



1330	 Modeling Earth Systems and Environment (2024) 10:1321–1336

1 3

the dependency structure among the pairs is more varied 
with fewer pairs having tail dependencies.

Using the parameter estimates of the marginal distribu-
tion and the D-vine copula model, we then construct the 

multivariate density functions of the PGA values of the 
seven areas (see Eq. 12). The multivariate density functions 
are used to estimate the D-vine copula-based PGA values 
using Eq. 15, whose results are compared to the original 
PGA and are provided in Fig. 7.

The black and red circles in Fig. 7 indicate the origi-
nal and D-vine copula-based PGA, respectively. In general, 
there are several differences in the original PGA and D-vine 
copula-based PGA values at several epicenters. Even though 
it seems not so significant, the difference in value cannot be 
ignored due to uncertain natural conditions. In addition, the 
range of PGA values is not large, even small differences must 
be considered. Based on Fig. 7, the difference in PGA values 
that occurred the most is in the three areas farthest from the 
epicenters of the earthquake, covering North Jakarta, Central 

Fig. 5   Histogram of original PGA values of seven major areas

Table 3   Marginal distribution fit

Location Marginal distribution Parameter estimates

Tangerang City Log-normal 𝜇̂ = −4.5873 , 𝜎̂ = 0.7756

West Jakarta Log-normal 𝜇̂ = −4.6437 , 𝜎̂ = 0.7668

South Tangerang Log-normal 𝜇̂ = −4.5769 , 𝜎̂ = 0.7521

South Jakarta Log-normal 𝜇̂ = −4.7104 , 𝜎̂ = 0.7329

North Jakarta Log-normal 𝜇̂ = −4.8576 , 𝜎̂ = 0.7333

Central Jakarta Log-normal 𝜇̂ = −4.8706 , 𝜎̂ = 0.7251

East Jakarta Log-normal 𝜇̂ = −4.8576 , 𝜎̂ = 0.7166
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Jakarta, and East Jakarta. This is presumably because the 
area farthest from the epicenter is the area that gets the most 
influence from land shifts from other locations closer to the 
epicenter. Meanwhile, the areas where the original and the 
D-vine copula-based PGA value are not too different are 
Tangerang City, West Jakarta, South Tangerang, and South 
Jakarta because these areas are closer to the epicenter than 
the other four areas. Ground movement at a location closer 
to the epicenter is more influenced by its proximity to the 
epicenter but is less affected by ground movement from the 
surrounding areas. Therefore, the estimated value of the 
D-vine copula-based PGA is not much different from the 
original PGA which involves the influence of the distance to 

the epicenter rather than the influence of other locations. As 
a comparison, Table 5 provides the summary statistics of the 
original PGA and D-vine copula-based PGA for the seven 
areas which are calculated from 60 epicenters.

Based on Table 5, generally, the maximum and aver-
age values of the PGA based on D-vine copula are greater 
than the original PGA values, especially for the last three 
areas farther from the epicenter. This indicates that ground 
motions in areas far from the epicenter are likely to be 
affected by ground motions in areas closer to the epicenter. 
In addition, modeling using the D-vine copula also provides 
a more varied PGA value indicated by a larger standard devi-
ation value and a wider range of minimum and maximum 

Fig. 6   Tree structure of the PGA values
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values. After obtaining the original and D-vine copula-based 
PGA, we analyze the results of the empirical and paramet-
ric megathrust POE using original and D-vine copula-based 
PGA, respectively for the seven areas which are provided in 
Figs. 8 and 9.

Based on the result provided in Figs. 8 and 9, the same 
POE value corresponds to different values for original and 
D-vine copula-based PGA. Both POE approaches indi-
cate similar characteristics, which show that the farther 
an area is from the epicenter, the greater the influence 
of ground motions in surrounding areas that are located 
closer to the epicenter. Although the POE values are the 
same vertically, the PGAs are affected by area dependen-
cies the further they are from the epicenter. As we can 
see from the graphs, East Jakarta is more affected by the 
dependencies of neighboring areas than Tangerang. If we 
take a closer look at the empirical and parametric megath-
rust POE values, especially in the three areas further from 
the epicenter, we can see that for the same POE values, 
the D-vine copula-based PGA has smaller values than the 
original PGA.

Discussion

Earthquake modeling through the calculation of the peak 
ground acceleration (PGA) has been carried out by embed-
ding the assumption of dependency on events that cause 
ground motion for adjacent areas. Unlike the previous simi-
lar studies which assumed that the calculation of PGA is uni-
variate because the occurrence of earthquake is independent 
of time and space domain (Kijko and Sellevoll 1989; Tava-
koli and Ghafory-Ashtiany 1999; Ghodrati Amiri et al. 2003; 
Hamzehloo et al. 2012), we have proven that the occurrence 
of earthquakes impacting on PGA events to be dependent on 
the space domain. This is identical to the results of the study 
conducted by Cheng et al. (2020). Study shows that there 
are very strong dependencies between the geographically 
close areas, where dependency measures show a very strong 
dependency value between these regions, which is above 
0.90. First, we obtained univariate PGA values from each 
study location in Banten Region from 60 epicenters. The 
results show that the PGA values due to these earthquakes 
is included in the moderate and strong vibrations, with very 
light and light potential damage (U.S. Geological Survey 

Table 4   Parameter estimates 
of the D-vine copula for PGA 
values

par and par1 are the first and second (if any) parameters, � is Kendall’s tau value, �
U

 and �
L
 are the upper 

and lower tail dependencies

Tree Edge Copula par1 par2 � �
U

�
L

1 4,7 Joe 27.97 0.00 0.93 0.97 –
1, 4 Joe 13.37 0.00 0.86 0.95 –
2, 1 Joe 27.97 0.00 0.93 0.97 –
3, 2 Joe 15.12 0.00 0.88 0.95 –
5, 3 Joe 18.92 0.00 0.90 0.96 –
6, 5 Joe 27.97 0.00 0.93 0.97 –

2 1, 7|4 Student-t − 0.09 22.61 − 0.06 0.00 0.00
2, 4|1 BB8 2.43 0.86 0.31 – –
3, 1|2 BB8 3.78 0.68 0.34 – –
5, 2|3 BB8 6.00 0.81 0.60 – –
6, 3|5 Tawn2_180 3.42 0.73 0.55 – 0.64

3 2, 7|1, 4 Joe 13.37 0.00 0.86 0.95 –
3, 4|2, 1 Tawn 5.82 0.92 0.77 0.83 –
5, 1|3, 2 SC 0.00 0.00 0.00 – –
6, 2|5, 3 Frank − 2.28 0.00 − 0.24 – –

4 3, 7|2, 1, 4 Frank 0.39 0.00 0.04 – –
5, 4|3, 2, 1 Student-t 0.37 3.54 0.24 0.21 0.21
6, 1|5, 3, 2 Joe 13.37 0.00 0.86 0.95 –

5 5, 7|3, 2, 1, 4 Normal 0.04 0.00 0.03 – –
6, 4|5, 3, 2, 1 Clayton_270 − 0.01 0.00 − 0.01 – –

6 6, 7|5, 3, 2, 1, 4 Student-t 0.11 12.10 0.07 0.01 0.01
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Fig. 7   Original and D-vine copula-based PGA

Table 5   Summary statistics of 
the original and D-vine copula-
based PGA values

aMin diff and max diff are the minimum and maximum values of the differences between original and 
D-vine copula-based PGA

Area PGA Min Max Mean Std dev Min diffa Max diffa

Tangerang City Original 0.00241 0.16891 0.01502 0.02235 9.6908e−05 0.02932
D-vine 0.00240 0.16877 0.01501 0.02232

West Jakarta Original 0.00229 0.13945 0.01388 0.01881 1.8574e−06 0.01298
D-vine 0.00232 0.13944 0.01394 0.01884

South Tangerang Original 0.00231 0.13577 0.01442 0.01816 0.00028 0.04603
D-vine 0.00235 0.13598 0.01444 0.01819

South Jakarta Original 0.00207 0.08995 0.01215 0.01270 0.00016 0.00815
D-vine 0.00208 0.07942 0.01197 0.01168

North Jakarta Original 0.00189 0.07127 0.01051 0.01065 3.1249e−06 0.00701
D-vine 0.00183 0.07168 0.01054 0.01076

Central Jakarta Original 0.00187 0.06544 0.01024 0.00987 4.7069e−07 0.00484
D-vine 0.00190 0.06571 0.01027 0.00992

East Jakarta Original 0.00184 0.06087 0.01022 0.00929 0.00189 0.06998
D-vine 0.00189 0.06998 0.01036 0.01032
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2011). Next, the PGA values were checked for dependence 
and it was found that areas that were close to each other 
had a very strong correlation. These areas are Tangerang 
City, West Jakarta, South Tangerang, South Jakarta, North 
Jakarta, Central Jakarta, and East Jakarta.

To develop our model, we employ the D-vine copula to 
model earthquake events resulting in simultaneous PGA 
events. We obtained some findings as follows. There are 
some differences in the PGA values between the original 
and D-vine copula-based PGA. The PGA values based on 
D-vine copula vary more with a wider range, as evidenced 
by a larger range of minimum and maximum values, and 
a larger standard deviation. In addition, the maximum and 
average value of PGA based on D-vine copula in areas far 
from the epicenter of the earthquake is greater than the 
value of the original PGA. This shows that PGA values in 
areas farther from the epicenter get more influence from the 
ground motion of locations closer to the epicenter. While 
the areas closer to the epicenter are more influenced by its 
proximity to the epicenter.

Although numerically the difference between the original 
and D-vine copula-based PGA is not very significant, this dif-
ference cannot be ignored because the range of different values 
is still in the moderate category. Meanwhile, the results of the 

exceedance probability show that for the same POE values, the 
D-vine copula-based PGA values are smaller than the original 
PGA. This indicates that if an earthquake occurs, the prob-
ability of the event causing damage is greater if the PGA is 
estimated using the D-vine copula, especially for areas farther 
from the epicenter. In these areas, the PGA values obtained 
were not only based on pure PGA calculations but also influ-
enced by the occurrence of PGA in surrounding locations that 
were closer to the epicenter.

Conclusions

In earthquake disaster modeling, peak ground accelera-
tion (PGA) is a crucial variable that must be precisely 
observed. The PGA calculation may not only be affected 
by the magnitude of the earthquake, the horizontal dis-
tance to the epicenter, and the depth of the epicenter but 
also by the ground motion in the surrounding areas, so the 
assumption of dependencies between locations is required. 
Vine copula can be used to calculate the joint probabil-
ity of land movement events in adjacent areas. In this 
paper, we estimate the PGA value and its corresponding 

Fig. 8   Empirical POE
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probability of exceedance using a D-vine copula-based 
probabilistic seismic hazard analysis.

Although it seems not so significant, there is a discrep-
ancy in the result obtained between the original PGA and 
D-vine copula-based PGA for seven major areas in Ban-
ten–Jakarta provinces, with differences of 4.7069e− 07 to 
0.06998 g (see Table 5). This difference, in earthquake 
disaster modeling, cannot be ignored because it is included 
in the moderate category for perceived shaking.

Overall, this proposed earthquake model is able to cap-
ture dependencies among areas to support better quality 
development of catastrophe modeling for the use of miti-
gation toward catastrophe events, especially earthquakes.
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