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Abstract
Estimating spring discharge in karst aquifers is challenging due to non-linear and non-stationary hydrological processes 
caused by spatial and temporal variations. This study mimicked the phenomenon by simulating spring discharge using a 
laboratory physical model. The hydrological processes adopted in the simulation include systems such as infiltration, fissure-
conduit, and drainage. We then recorded spring discharge and precipitation values from the simulated model along side the 
corresponding air temperature and humidity—in order to analyse the time series behaviour of the system. To estimate spring 
discharge from the simulation, a deep learning algorithm is developed taking temperature, humidity and precipitation as 
the input. In this work, the Bayesian optimisation was used to sweep through a range of hyperparameter values to search 
for the top 5 optimal training options for a Long Short Term Memory (LSTM) neural network. In addition, XGBoost was 
employed to identify the key predictors of spring discharge, resulting in enhanced predictability. The results show that LSTM-
1, LSTM-2, LSTM-3, and LSTM-4 are the recommended recurrent neural network designs for predicting spring discharge 
using all three input parameters.  LSTM-1, LSTM-2, and LSTM-3 network architectures are optimal for utilising two input 
variables: precipitation intensity and temperature. LSTM-5 has shown that a single parameter is inadequate for estimating 
spring discharge. The LSTMs yielded an RMSE value of ∼0.04, as well as a R2 value of ∼98.01%. The study showed that 
using different input parameters, the suggested LSTM model can effectively simulate spring discharge in a karst environment.

Keywords Karst spring discharge · Laboratory physical model · Hydrological parameters · LSTM · Bayesian optimisation

Introduction

Karst springs are naturally occurring formations that serve 
as a principal water source for local communities around 
the world. The hydrological disposition of a karst system is 
mostly identified by the complex spatial and temporal vari-
able processes of recharge, such as precipitation, surface 
runoff, infiltration, groundwater flow, conduits and fissure 
zones, as well as anthropogenic factors (Telesca et al. 2013; 
Yu et al. 2018). Figure 1 presents a 3D illustration of the 
hydrological behaviour of a karst aquifer. Generally, karst 
springs are a direct reflection of the state of groundwater in 
the aquifers that feed them, reflect the variability of ground-
water storage in the basins, and have a direct impact on 
the streams and other surface water bodies into which they 
discharge, as well as all dependent ecosystems. Addition-
ally, spring water replenishes the majority of rivers. These 
springs have significance for the survival of microhabitats in 
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river systems (Hartmann et al. 2021; Ikard and Pease 2019; 
Kareem et al. 2022).

When the world’s population distribution is compared 
to the distribution of carbonate rocks, karst groundwater 
accounts for approximately 20% of the Earth’s land surface 
and can be accountable for about a quarter of the world’s 
water supplies (Ding et al. 2020; Ford and Williams 2007; 
Parise et al. 2004). Carbonate rocks underlie 3 ×  106  km2 
of the land surface in Europe and provide water for major 
cities, including Bristol, London, Paris, Montpellier, Rome, 
and Vienna (Andreo 2012; Biondić et al. 1998). In addition, 
karst water is crucial for the survival of more than 100 mil-
lion individuals in South China (Ding et al. 2020).

Predicting spring flow in karstic aquifers is challenging 
due to their heterogeneous nature and non-linear relation-
ship. Furthermore, insufficient observational data on spring 
flow hinders prediction studies and analysis. Overexploita-
tion and inadequate water resource management have caused 
a spring dry-up. The discharge of springs has decreased 
due to increased abstraction to meet domestic, industrial, 
and agricultural water supply demands (Mohammed et al. 
2022). The drying up of particular springs underscores the 
need for improved comprehension of regional groundwater 
systems and efficient management strategies to ensure the 
uninterrupted supply of groundwater resources and restore 
spring flow (An et al. 2019). Karst aquifers exhibit a range 
of conduits, cracks, and pores that possess hierarchical per-
meability structures and flow pathways. The Niangziguan 
Springs in China serve as an instance of aquifers (An et al. 
2019, 2020).

Human activities, on the other hand, have decreased karst 
spring discharge. Previous research discovered that anthro-
pogenic effects influenced or impacted karst hydrological 

processes in the Niangziguan Springs catchment more than 
climate change effects (An et al. 2019, 2020). However, it is 
still unclear how human activity affects the magnitude and 
periodicity of spring discharge due to the strong non-linear 
trend and non-stationary fluctuations (An et al. 2019, 2020; 
Hao et al. 2016).

Physical-based numerical models are commonly used 
to forecast spring discharge. The governing equations 
are applied to compute spring flow, considering relevant 
assumptions and boundary conditions. These models require 
significant amounts of accurate data for parameter calibra-
tion. In certain uncharted regions, acquiring precise and 
adequate data presents challenges, leading to suboptimal 
model efficacy and increased uncertainty (Hassanzadeh 
et al. 2020; Khorrami et al. 2019; Milly et al. 2008; Tavakol-
Davani et al. 2019). However, owing to the complexities 
caused by random uncertain boundary conditions of pre-
cipitation, extreme karst aquifer heterogeneity, hydrological 
modelling errors such as initial conditions, model parame-
terisation, structure, and anthropogenic impacts, interpreting 
and predicting spring discharge data using only a physical 
model is a challenge for understanding the contributions of 
each component (Khorrami et al. 2019; Quan et al. 2022; 
Tavakol-Davani et al. 2019; Hartmann et al. 2021; Jeannin 
et al. 2021).

Various prediction models, including statistical learn-
ing, artificial neural networks (ANNs), and grey systems 
have been developed and applied to address uncertainties in 
spring flow simulation and solve practical issues (Alameer 
et al. 2020; Quan et al. 2022). Therefore, in this work, the 
prediction model adopted the techniques in ANN.

ANNs are training based-models designed to have a 
functional mapping between input predictor and output 

Fig. 1  A schematic drawing of 
a heterogeneous karst aquifer 
system showing the primary 
source of aquifer recharge (rain-
fall) and recharge from runoff 
from non-karst rocks (surface 
runoff), infiltration, spring 
discharge outlet, porosity, and 
flow (characterised by conduits 
and fissures) (Ding et al. 2020; 
Williams 2009)
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prediction variables when relevant historical big data is 
processed (Anand and Oinam 2022; Roshani et al. 2022). 
This approach has proven to produce more accurate predic-
tions of hydrological events than the traditional calibrated 
numerical hydrological models (Sharafati et al. 2020; Akano 
and James 2022), although they are unable to explain the 
underlying processes, being data-driven rather than process-
driven models. This provides an opportunity for improving 
prediction accuracy by coupling with other robust schemes 
such as Bayesian optimisation.

ANNs have been employed by several researchers to 
model and forecast non-stationary hydrological processes 
(He et al. 2020; Meng et al. 2019; Niu and Feng 2021; Singh 
et al. 2023; Xie et al. 2019; Yan et al. 2021; Khorram and 
Jehbez 2023; Haggerty et al. 2023). Optimal use of ANNs 
in karst aquifer systems can improve model prediction accu-
racy. An ANN typically consists of two primary compo-
nents: The network comprises numerous interconnected arti-
ficial neurons. These links extract relevant parameters from a 
dataset. An artificial neural network (ANN) model does not 
require a data distribution assumption prior to feature engi-
neering. ANN finds applications in diverse domains. RNNs 
are more appropriate for modelling dynamic systems than 
feed-forward neural networks, as Bailer-Jones et al. (1998) 
and Tsung (2010) suggested. The issue frequently encoun-
tered when training RNNs with numerous hidden layers is 
the exploding gradient problem, as Hochreiter identified in 
1998. The problem arises during the weight adjustment of 
the RNN for gradient computation through backpropagation 
(Hochreiter 1998).

To address the problem of exploding gradient in RNN, 
long short-term memory (LSTM) network was developed 
using the activation functions of the forget gate in addition 
to the cell state (Sahar and Han 2018; Thonglek et al. 2019). 
LSTM, a type of artificial neural network, has feedback con-
nections, making it ideal for data processing and prediction. 
Recent studies by hydrologists (Yang et al. 2019; Yin et al. 
2021) have exhibited the potential of LSTM in the applica-
tion of hydrological sciences. For example, Kratzert et al. 
(2018) used LSTM to model rainfall-runoff because of its 
ability to learn and store long-term dependencies between 
the provided input and output of the network. Using the for-
get gate and cell state activation functions, long-short-term 
memory (LSTM) networks were developed to limit gradient 
explosion in RNNs (Sahar and Han 2018; Thonglek et al. 
2019).

LSTM is an artificial neural network with feedback con-
nections, making it ideal for data processing and prediction. 
Recent studies by hydrologists (Yang et al. 2019; Yin et al. 
2021) have exhibited the potential of LSTM in applying 
hydrological sciences. For example, Kratzert et al. (2018) 
used LSTM to model rainfall-runoff because of its abil-
ity to learn and store long-term dependencies between the 

provided input and output of the network. They found that 
LSTM produced better model performance than the tradi-
tional RNNs. Like other machine learning (ML) models, 
RNN models may have several vital hyperparameters that 
must be optimised to improve model performance (Cheng 
et al. 2019). As a result, hyperparameter optimisation is a 
critical step (Ma et al. 2020). Therefore, Bayesian Optimisa-
tion (BO) was used in this study to set the network size. BO 
is more appropriate when objective functions are computa-
tionally expensive to calculate due to its higher efficiency 
compared to alternatives such as genetic algorithms (Aliza-
deh et al. 2021; He et al. 2019; Lin et al. 2020).

This study aimed to achieve two objectives to compre-
hend the karst spring discharge in the Jinan basin. A 3D 
physical laboratory model was put up to replicate the Jinan 
spring basin (see Fig. 2). Subsequently, rainfall-runoff exper-
iments were performed to collect data on spring discharge. 
Second, LSTM coupled with BO was used to produce the 
best LSTM-RNN model that predicts the spring discharge 
in the simulated area using precipitation intensity, tempera-
ture, and humidity. Statistical metrics (the root mean square 
error (RMSE), the mean absolute error (MAE), the mean 
absolute percentage error (MAPE), Pearson product-moment 
correlation coefficients ( � ), and the coefficient of determina-
tion ( R2 )) were used to assess the performance of the top 5 
LSTM models developed with different input combinations.

Materials and methods

Study area

The Jinan Karst System shown in Fig. 2, is located in the 
midwestern Shandong Province of Northern China. The 
springs are important historical sites in China. Jinan City has 
been known as “Spring City” since ancient times due to its 
fractured-karst springs. However, due to Jinan’s social and 
economic development, urbanisation and over-exploitation 
have negatively impacted the level of karst groundwater in 
recent years, leading to a substantial decrease in the spring 
flow rate (Zhu et al. 2020).

Jinan is abundant in easily dissolvable Cambrian and 
Ordovician carbonate rocks. Because of the geological struc-
ture, lithology, climate, and other factors, many karst frac-
tures and pipelines have been produced, offering a favour-
able conduit for groundwater transport and ample storage 
area. Despite safeguards such as limited mining and artificial 
groundwater recharge in Jinan, the spring is still in danger 
of drying out (Zhang et al. 2018).

The main problem is the difficulty in the prediction of 
spring flow in the field. Hence, there is not enough obser-
vation data on spring flow data. Even the data available 
is insufficient to make any meaningful inference. This 
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is due to the highly heterogeneous nature and non-linear 
relationship of karstic aquifers (Mohammed et al. 2022). 
Therefore, this work used the physical model to aid in the 
simulation of karstic spring flow predictions.

The laboratory physical model

The 3D physical model can simulate surface runoff, 
pore water runoff, and fissure karst water runoff in karst 
areas. The model comprised a test sand tank, precipita-
tion replenishment system, mulch, rift karst zone medium, 
water level monitoring system, and flow monitoring sys-
tem. The upper infiltration system represented the unsatu-
rated zone, while the lower fissure-conduit system repre-
sented the saturated zone. Figure 3 displays a schematic 
representation of the physical model. The labelled parts 
are shown in Table 1.

Experimental set‑up

The physical model can investigate surface runoff, pore 
water runoff, and spring discharges in the karst region. The 
study enhances the theoretical understanding of karst water 
flow and establishes a scientific basis for practically ana-
lysing complex karst groundwater resources. It is crucial 
for developing and utilising water resources in karst areas. 
Figure 4a–k illustrates the sequential process for setting up 
the laboratory experiment.

Figure 4a displays the test sand tank. The sand tank is 
a micro-sloped box that acts as the model domain and is 
inclined at a 2° tilt. To control the initial conditions, allow 
all the water to drain thoroughly after each experiment. The 
tank has multiple outflow holes with no flux boundaries for 
monitoring runoffs and water levels. The inside and outside 
of the tank walls are coated with impermeable waterproof 
paint, preventing water seepage outside the tank’s domain. 

Fig. 2  A geographical map of the Jinan spring basin showing the four main spring groups (Baotu, Heihu, Five Dragon, and Pearl) and the 
Dongwu and Mashan Faults
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It also has a surface flow outlet at the top of the sidewall to 
measure surface runoff and a spring discharge hole at the 
bottom, connected by conduits.

The fissure-conduit system is constructed of 10 cm con-
crete cube bricks. Layer one (see Fig. 4b) contains two con-
nected conduits with a cross-sectional area of 30  cm2 serving 
as the fracture zone and a hydraulic conductivity of 0.05 
m/d. The bricks are arranged systematically with a small 
gap of 2.5 mm in between them. Construction consists of 
the pore, fissure, and pipe layers. These segments simulate 
the flow as it passes through a series of water-conducting 
fissure zones and is then eventually discharged through two 
large fissures at the bottom. The second layer in Fig. 4c, 
showcases the fissure zone designed to aid flow movement. 
For the third layer (in Fig. 4d) two conduits with dimensions 
of 5.2 × 146 × 10 cm and 5.4 × 153 × 10 cm are designed to 
mimic the fracture zone. As depicted in Fig. 4e multiple 
conduits were constructed to improve the drainage system 
in the installation. In layer 5 (refer to Fig. 4f), a piece of 
cloth is added to the set-up to block sand from filling up the 
space created.

The experiment also included an infiltration system to 
simulate vegetation cover and the soil profile. Figure 4g 
shows how the soil layer is loamy and sandy. The loamy soil 

has an average particle size of 57 μm, and that of the sand is 
753 μm. The hydraulic conductivity of this layer is approxi-
mately 24 m/d, and the specific yield is 0.24. Additionally, 
the state of saturation was measured using the pressure sen-
sor probes in layer 6.1. Layer 6.2 in Fig. 4h shows how the 
soil layer with buried pressure tubes is wholly covered. The 
vegetation cover is simulated using a cloth designed with 
cotton-like material to cover the soil layer with buried pres-
sure tubes. Figure 4i displays the set-up of the simulated 
vegetation cover. Figure 4j shows the various positions of the 
passage for measuring surface runoff and pore water runoff 
conduits for the developed physical model.

Figure 4k shows the complete experimental set-up for this 
study. The precipitation recharge system comprises a water 
tank, a variable frequency pump, hosepipes, and four noz-
zles to simulate the process of natural rainfall supplying the 
surface karst region of the area. The flow rate is recorded at 
different times to measure the intensity of the rain.

Data description

Data from the unsaturated test scenario was used for the 
analysis of this study. Short-term rainfall was performed 
in the sand tank area utilising a frequency pump and a 

Fig. 3  Schematic diagram of the 
physical laboratory model

Table 1  The parts of the 
schematic diagram of the 
laboratory physical model

1. Test sand tank with dimension
2. ns of 2.5 × 1.3 × 0.9 m

9. Water tank

3. Bottom of the tank with an inclination of about 2° 10. Rubber hose (for transferring 
simulated Rainfall to the sand tank)

4. Side face aperture (diameter of 0.02 m) for controlling the 
initial water levels

11. Bracket or boundary of a sand tank

5. Surface runoff outlet 12. The nozzle of the hose pipe (for 
spraying simulated Rainfall)

6. Pore water outlets 13. Paperless recorder
7. Fissure karst water outlet (spring discharge) 14. Pressure sensor
8. Pressure measuring holes 15. Rubber tube
9. Variable frequency pump (to simulate Rainfall) 16. Flux flow meter
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Fig. 4  Experimental set-up of 
the physical model: a shows the 
sand tank with multiple outflow 
holes; b–f are the fissure con-
duit system at various layers; 
g–j describes the infiltration 
systems to mimic the vegetation 
cover and the soil profile, and 
k is the complete lab set-up for 
the experiment
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Fig. 4  (continued)
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Fig. 4  (continued)
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spraying apparatus (mimicking rainfall). Using the pump, 
the intensity of the rain varied at different rates. Surface 
runoff and fissure karst water runoff (spring discharge) 
were measured using measuring cups, stop clocks, and a 
flux flow metre.

The descriptive statistics of the research laboratory 
simulation are shown in Table 2. 3968 measurement points 
were obtained in total. The discharge rate, which was used 
as a response variable in this study, had a mean value of 
about 37.59 mL/s and ranged between (0.42, 153.51) mL/s. 
To understand the fluctuations in recorded discharge lev-
els, hydrological parameters such as precipitation inten-
sity, temperature, and humidity were investigated. The 

expected values for these stated variables were 0.024 
mm/s (precipitation intensity), 31.21 °C (temperature), 
and 0.61% (humidity).

Also, as shown in Fig. 5, at a precipitation intensity of 
0.01755 mm/s, the maximum spring discharge rate was about 
78 mL/s, with a median of about 36 . Also, at 0.02017 mm/s, 
the maximum spring discharge rate was about 96 mL/s with 
a median value of about 9 . Furthermore, at a precipitation 
intensity of 0.02279 mm/s, the maximum spring discharge 
rate was about 115 mL/s with a median of about 51, while 
0.02632 mm/s gave a maximum spring discharge rate of 
about 152 and a median of about 36 . The highest precipi-
tation intensity of 0.02925 mm/s had a maximum spring 

Table 2  Descriptive statistics 
of spring discharge and 
independent variables (i.e., 
precipitation intensity, 
temperature, and humidity)

Discharge rate (mL/s) Precipitation inten-
sity (mm/s)

Temperature (°C) Humidity (%)

Count 3968.00 3968.00 3968.00 3968.00
 Mean 37.5925 0.0235 31.2064 0.6092
 Std 35.7408 0.0039 1.7453 0.0478
 Min 0.416667 0.017550 27.000000 0.510000

25% 2.239985 0.020169 30.400000 0.570750
50% 31.449450 0.022788 31.500000 0.610000
75% 66.162571 0.026320 32.500000 0.645000
 Max 153.508772 0.029250 34.500000 0.710000

Fig. 5  A univariate box and whisker plot to show the data distribution in a single graph
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discharge of about 74 with a median of about 37 , less than 
the values recorded by the least precipitation intensity rate. 
This was due to the material composition of the porous layer 
(loam and sand), which showed that not all Rainfall could 
infiltrate the system and further percolate into the aquifer, 
owing to the high rainfall intensity. The porous layer got 
fully saturated quickly, and therefore, overland flow (i.e., 
surface runoff) was higher because the porous layer could 
not absorb all the water coming to it instantly for this par-
ticular test.

The horizontal axis is the precipitation intensity in mm/s, 
and the vertical axis is the spring discharge rate in mL/s. 
The different colours represent different pump set values 
[ 1.2, 1.4, 1.6, 1.8 and 2.0 ( kgf∕cm2 )] which gave rise to the 
respective precipitation intensities, which can be read on 
the vertical axis.

Due to this phenomenon, data collected on spring dis-
charge with the highest precipitation intensity of 0.02925 
mm/s was minimal and had the lowest peak, as shown in the 
spring hydrograph, as compared to the other precipitation 
intensity values of 0.01755 , 0.02017 , 0.02279 , and 0.02632 
mm/s; because less Rainfall infiltrated into the system due to 
rate of infiltration as a result of material composition. Hence, 
a threshold value must be set to manage the spring’s inflow 
and outflow to have a perennial flow, if possible.

The correlation matrix presented in Fig. 6 assesses the 
strength and direction of the linearity between the two 
explanatory variables. Strong positive linearity values show 
that the explanatory variables measure the same character-
istics. Figure 6 shows a moderate to low correlation—indi-
cating that the selected variables may measure different 
characteristics.

Feature importance using extreme gradient 
boosting

The concept behind a decision-tree-based algorithm is to 
build a sequential-like tree diagram, where each inner node 
depicts a test on a feature, each subdivision denotes a test 
score, and each terminal node holds the regressor target value. 
The main idea is to generate a regressor using input features 
(f
1
, f
2
, f
3
,… , fi) and at least one target feature (Υ) . In this study, 

the input features were precipitation intensity, temperature, 
and humidity, and the output feature was the spring discharge 
rate. The learning pattern of a decision tree was developed by 
splitting the data set into multiple sets based on the feature 
value test. The splitting method was done recursively on each 
multiple set. The recursive partitioning process was completed 
when all of the different sets at a node recorded the exact score 
of the output feature. When recursive splitting on many sets 

Fig. 6  The correlation matrix of all independent variables is depicted as a heat map
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does not improve the prediction score, the learning process 
may be discontinued.

The algorithms mostly adopted to create ensemble deci-
sion trees included bagging and boosting methods (Galar 
et al. 2012; Quan et al. 2022; Zhou et al. 2010). The former 
method uses a uniform weak learner by splitting the train-
ing set into multiple sets using the bootstrap sampling tech-
nique and combining the individual sub-sample based on a 
deterministic averaging process. The latter method integrates 
many weak learners to produce a robust learner iteratively. 
Each weak learner after that is taught using a new sub-sample 
of data that includes measurements that were not effectively 
addressed by the previous learners. The ultimate goal is to 
reduce the regressor’s bias by encouraging the weak learner 
to rely on more difficult data.

The XGBoost is a supervised learning technique based 
on the boosting algorithm (Chen and Guestrin 2016), which 
approximates a function through optimisation and regularisa-
tion. The unique nature of this method is how well it can dis-
tinguish the relevant features between selected variables and 
the ability to perform hyper-threading of a computer processor 
to improve the computational cost. It has been utilised suc-
cessfully in a variety of practical applications, including stock 
selection (Li and Zhang 2018), disease diagnosis (Bao 2020), 
and time series forecasting (Zhai et al. 2020). The decision-
tree-based model used in the XGBoost method adopts an itera-
tive approach until the stopping criteria are satisfied. The fol-
lowing equations are used to produce the predicted test values:

(1)Υ̂ =

𝜅∑
𝜔=1

g𝜔(fi), g𝜔 ∈ S

where Υ̂ denotes the predicted test value, g� represents an 
individual regression tree, fi is the input feature, � is the 
number of regression functions, and S is the space of all 
possible cases of g�s.

Figure 7 shows the basic architecture of the XGBoost 
supervised learning method. The regression model can be 
optimised by identifying the optimal node for subdivision 
to minimise the objective function described in Eq. (2). It 
is imperative to determine the most favourable node to sub-
divide to minimise the objective function defined in Eq. (2) 
to fine-tune the regression model as;

where l(.) represents the loss expression depicting how well 
the estimated test value approximates the actual test value, 
gt(.) is the predicted outcome of the decision tree at the tth 
iteration and Θ∗(.) denotes the model regularisation function. 
The regularisation function consists of the number of leaf 
nodes T  and the corresponding weights w such that:

The parameter � represents the complexity cost of add-
ing more leaves to the decision tree, whilst that of � is the 
regularisation coefficient. The coefficients are modulated 
using the L2 norm.

Concerning this work, the specific hydrological features 
that influence spring discharge was determined using the 
XGBoost. Therefore, the bar chart in Fig. 8 indicates that 
precipitation intensity has a higher impact on the model in 

(2)Qt =

n∑
j=1

l(Υj, Υ̂
t−1
j

+ gt(fj)) + Θ∗(gt)

(3)Θ∗(gt) = �T + 0.5� ∥ w∥2;

Fig. 7  The principal decision-
tree design of the XGBoost 
algorithm
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predicting spring discharge than temperature and humidity. 
Thus, in this work, we looked at three significant scenarios:

1. Estimation of the spring discharge rate using all three 
hydrological features as input variables;

2. Estimation of the spring discharge rate using only the 
top two features as input variables; and

3. Estimation of the discharge rate using only the highest 
feature as an input variable.

LSTM with respective gates

The LSTM is an improved model of the conventional RNN. 
It was initially introduced by Hochreiter and Schmid Huber 

(1997) and operates using a cell and three gates (the input, 
the output, and the forget gates). These memory components 
regulate the message inflow inside the network unit. Figure 9 
illustrates how a typical LSTM unit processes information 
using the input gate ( it ), the forget gate ( ft ), the output gate 
( �t ), and the cell state ( �t ). The mathematical formulations of 
the LSTM unit of these memory parts are expressed as:

(4)it = �(ztΛ
i + �t−1Ω

i)

(5)ft = �(ztΛ
f + �t−1Ω

f )

(6)�t = �(ztΛ
� + �t−1Ω

�)

Fig. 8  A plot of the feature 
importance of input variables 
using the XGBoost Regressor

Fig. 9  The general architecture 
of the LSTM model
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where, � is the standard deviation, Λ and Ω are weight vec-
tors for f  , � , i , and � for a given time-step t . The hidden unit 
( � ) studies which info to store and which to discard.

The input gate process is described in Eq. (4). Given 
new input data ( zt ) and the preceding hidden state ( �t−1 ), 
the process here is to search for new information to add 
to the model’s long-term memory (also known as the cell 
state). The forget gate presented in Eq. (5) is used to decide 
which part of the information in the cell state is useful when 
you are provided with both the preceding hidden state and 
the new input data. To achieve this, the preceding hidden 
state and the current input data are supplied into the model 
network to generate a series of elements using the sigmoid 
activation function.

The network considers the elements that are close to 0 as 
insignificant whilst, those close to 1 as relevant. The acti-
vated values are then multiplied element-wise with the pre-
ceding cell state such that the numbers close to 0 will have 
less effect on the following processes. The output gate is 
presented in Eq. (6), and it decides on the new hidden state. 
The expressions above show that the LSTM structure uses a 
set of gates to modulate how a sequence of instructions flows 
into the system, how they are gathered and eventually, how 
they leave the network.

Hyperparameter selection based on Bayesian 
optimisation (BO)

One of the key challenges in designing a neural network is 
knowing the right number of network sizes to use for a spe-
cific task. The network size includes the number of layers in 
the network architecture, the number of nodes in every layer, 
and even the number of connections to be adopted in the 
design. A neural network is mostly designed to map a target 
variable � onto a non-linear function �(�) . The non-linear 
function �(�) is gleaned during the training phase where the 
network tries to study the appropriate way to link the input 
variables � to the output variables �.

However, building a proper network entail fine-tuning 
the hyperparameters. The common hyperparameter tuning 
techniques are the grid search (Ghawi and Pfeffer 2019; 
Quijano et al. 2021; Shekar and Dagnew 2019) and the ran-
dom search (Bergstra and Bengio 2012; Mantovani et al. 
2015) algorithms. The former search algorithm works by 
setting up a framework of hyperparameter values such 
that for every combination in the framework, the network 

(7)�̃t = tanh(ztΛ
g + �t−1Ω

g)

(8)�t = �(ft ∗ �t−1 + it ∗ �̃t)

(9)�t = tanh(�t) ∗ �t

is trained and evaluated on the test data. This makes the 
searching approach in selecting the best network to be very 
exhaustive. By contrast, the framework set in the latter 
search works by choosing random combinations to train the 
network and evaluate. Nevertheless, even though the latter 
approach allows for explicit control in selecting the number 
of parameters to use, there is the possibility of not finding 
an accurate model.

One state-of-the-art hyperparameter optimisation algo-
rithm introduced by Li et al. (2018) is the hyperband. This 
optimisation algorithm is based on a successive halving tech-
nique known as the bandit method (Li et al. 2018), where 
more credits are assigned to hyperparameter configurations 
with very high performance. Here, the configurations with 
low performance are less likely to predict the best model 
and are removed in the process to allocate more weights 
to hyperparameter configurations with good performance. 
Furthermore, this algorithm ensures early stopping in a prin-
cipled way–making it more robust than the regular grid and 
random search schemes.

One major drawback in the previous optimisation tech-
niques is that the hyperparameter settings are treated inde-
pendently. Meanwhile, the space for these settings is mostly 
even; therefore, prior knowledge of the previous perfor-
mance might help improve the performance of the next 
space. The Bayesian optimisation (BO) method addressed 
this issue and ensured homogeneity in the hyperparameter 
space. BO is a probability distribution model that tries to 
understand complex objective functions based on prior 
observations. As a result, in this work, an LSTM model was 
generated using BO to set the network size. Recent studies 
(Bergstra et al. 2011, 2013; Greenhill et al. 2020; Shahri-
ari et al. 2016; Turner et al. 2021) show the potential and 
robustness of the BO method compared to the previously 
mentioned algorithms.

Bayesian optimisation for a classic LSTM

In the prediction of spring discharge values, a simple classic 
LSTM neural network might be adequate, but this same net-
work can perform poorly if parameters such as the learning 
rate, the momentum term, the number of layers, the number 
of hidden units for different layers, and even the batch size 
are not set correctly. As a result, the units for the LSTM 
and dropout, the activation type and the learning rate of 
the model optimiser were chosen as hyperparameters for 
optimisation in this work. Fine-tuning these parameters was 
essential because the LSTM units handle the dimension-
ality of the output vector, whereas the activation function 
adds complexity to the model, making it non-linear. Also, 
to improve the performance of the LSTM model and avoid 
over-fitting, the learning rate must be optimised and some 
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network dropouts must be performed. Table 3 shows the 
parameter sets for fine-tuning.

By fine-tuning, the aim was to discover the appropri-
ate hyperparameter for the proposed LSTM algorithm to 
produce the best performance when measured on the test 
data. Additionally, during the tuning process, the objec-
tive function usually becomes very complex to compute 
(Doke et al. 2020). This is because, to obtain a new set of 
hyperparameters, the neural network must be trained from 
scratch to determine its performance. Furthermore, calcu-
lating the weights of the hyperparameters may be difficult, 
leaving retraining the model as the only option. As a result, 
the BO algorithm was used to solve the problem and ensure 
that the model network learns from the hyperparameter set-
tings. Based on the hyperparameter settings provided, this 
algorithm generates a probability distribution function (also 
known as a surrogate model) to compute the probability of 
obtaining the best score for the objective function.

D was considered to be the independent input data in pre-
dicting the spring water discharge, f  to be the performance 
model, � to be the hyperparameter sets displayed in Table 3, 
and �̂� to be the optimal parameter, then from Bayesian infer-
ence (Matsubara et al. 2021) (Dempster 1968), the likeli-
hood function of the sample data is given as;

Note that Eq. (10) holds based on the assumption that D 
obeys a certain probability density distribution with param-
eter say � . Therefore, the maximum likelihood estimation in 
Eq. (10) becomes;

where argmax is an operation that finds the argument that 
gives the maximum value from a target function. Assuming 
the surrogate model obeys a Gaussian process ( GP ) prior, 
then the operation of Bayesian optimisation is depicted 
below:

(a) Define an objective using a GP prior model: The GP is 
normally an acceptable model to estimate a non-linear 

(10)L(�) = f (D|�) = ∏n

j=1
f (Dj|�),

(11)�̂� = argmax�∈� f (D|�)

regression output which is exactly the purpose of this 
work. The model assumes that input data sampled from 
a distribution with unknown parameters produces an 
output similar to that distribution, resulting in a con-
tinuous objective function. As a result, because the 
hyperparameter settings in Table 3 are non-parametric, 
using the GP as a prior model for this analysis was the 
ideal choice. Following that, a brief review of GP for 
non-linear regression was provided. For an in-depth 
discussion on GP theory, refer to these studies (Ras-
mussen 2004; Rasmussen and Williams 2005; Snelson 
2007).

  Typically, a GP regression uses a joint Gaussian 
density function to map an input observation onto its 
corresponding target variable. It is characterised by 
an expectation function m(�) and covariance function 
Σ(�, ��) such that f (�) ∼ GP(m(�),Σ(�, ��)) . Let define 
Λ = {�j,Φj}

K

j=1
 to be a set of measurements, where, 

�j ∈ Rn are n measurement points in n-dimensions and 
Φj ∈ R are the matching targets. Mathematically, we 
can express this measurement as a supervised learning 
model to have;

  Taking f (�j) as a GP regression, then from (Boyle 
2007) we can represent f  as;

  Note that in Eq. (12), Φ(.) is also GP , since Φ = f + � 
and adding two random variables that are separate but 
exactly distributed is also a Gaussian. Therefore, to 
build a GP model using a training dataset then, Eq. (12) 
becomes;

  Equation (14) does not hold a definite parameter and 
is depicted as non-parametric.

  Finally, to perform a prediction, we identify the joint 
distribution of the original target label Φy of the train 
points (�) and the latent target label Φ̂y of the test obser-
vation (�̂) . Under the GP , the joint distribution of Φy 
and Φ̂y is defined as

  By the conditional probability property of Gaussian 
(Roberts et al. 2013), we have

(12)Φj = Φ(�j) = f (�j) + �, � ∼ N(0, �2

k
)

(13)

fgp =

⎡⎢⎢⎣

f (�
1
)

⋮

f (�K)

⎤⎥⎥⎦
∼ N

⎛⎜⎜⎝
0,

⎡⎢⎢⎣

Σ(�
1
, �

1
) … Σ(�

1
, �K)

⋮ ⋱ ⋮

Σ(�K , �1) … Σ(�K , �K)

⎤⎥⎥⎦

⎞⎟⎟⎠

(14)Φy ∼ N(0,Σ(𝜐, 𝜐) + 𝜎2

𝜏<k
I).

(15)

[
Φy

�Φy

]
∼ N

(
0,

[
Σ(�,�) + 𝜎2

𝜏<k
� Σ(�, ��)

Σ(��,�) Σ(��, ��) + �𝜎2

k−𝜏
�

])
.

Table 3  Tabular description of hyperparameters (LSTM units, drop-
out units, activation function and learning rate) used in the learning 
algorithm with their respective min, max, step size and type functions

Hyperparameter Min Max Step size Type

LSTM units 32 512 32 –
Dropout 0 0.9 0.1 [“True”, “False”]
Activation function – – – [“relu”, “tanh”]
Learning rate e−4 e−2 – “log”
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where the predicted mean is

and variance is

  Therefore, we can estimate the posterior on the test-
ing set given the expected and the covariance kernel 
functions of the GP . With this, we can generate a con-
fidence level of 95% to obtain a Bayesian stochastic 
model on the objective function.

(b) Compute the hyperparameter values that boost the 
acquisition function: The surrogate function described 
in Step (1) provides an assay of the objective function, 
making it useful for direct sampling. The sampling 
uses the posterior in Step (1) to choose the subsequent 
sample from the search space. This technique helps us 
to account for the areas in the domain space that are 
worth exploiting and the ones that are worth explor-
ing. Analytically, we can utilise this acquisition func-
tion by considering a posterior function Ψ models the 
loss such that after k evaluations, the lower bound of 
this posterior becomes Ψ∗ at some measured point, �∗ . 
Performing more evaluations will alter the posterior 
values and the objective function values at, let us say 
Ψ(�) . The result of this optimisation problem becomes 
min(Ψ∗

,Ψ(�)) and the expected difference distinguish-
ing Ψ∗ and the latter produces Eq. (19), (Doke et al. 
2020);

(c) Evaluate the optimal function and insert the outputs 
into the Gaussian process posterior: In this Step, we 
determine the objective function using the optimal 
parameters gathered from the acquisition function. This 
approach improves the performance of the objective we 
aim to model by taking the Gaussian process posterior 
from k measurements to k + 1.

(d) Reproduce Steps 2 and 3 until the maximum number of 
iterations is attained.

  This work used the BO method to perform a hyper-
parameter search by taking the set of hyperparameter 
values presented in Table 3 as inputs and producing the 
evaluation accuracy for the Bayesian optimiser. New 
models are constructed with specific hyperparameters 
during the search process and then trained for several 
epochs. Note that these new models are evaluated 
against a set of metrics. Table 4 lists the top 5 new 
models (described in this work as LSTM-1, LSTM-2, 

(16)p(�̂y|�̂, �,Φy) = N(�̂, Σ̂),

(17)�̂ = Σ(�̂, �)(Σ(�, �) + �̂2I)−1Φy,

(18)
Σ̂ = Σ(�̂, �̂) + �̂2I − Σ(�̂, �)(Σ(�, �) + �̂2I)−1Σ(�, �̂).

(19)EI = Ek

[
Ψ∗ − min(Ψ∗

,Ψ(�))
]
.

LSTM-3, LSTM-4, and LSTM-5) adopted to measure 
the spring discharge.

  To ensure that a robust LSTM is produced for this 
work, the BO approach was used to fine-tune the hyper-
parameters of the neural network. This was achieved 
by creating a training pipeline for the LSTM with the 
simulated measurement set and then customising the 
hyperparameters into an objective function as depicted 
in Table 4. The hyperparameter optimisation was used 
to develop and train 5 new models, that is, LSTM-1 
to LSTM-5. A flowchart illustrating the procedure for 
implementing the LSTM model developed in conjunc-
tion with Bayesian Optimisation hyperparameter tuning 
for spring discharge estimation is shown in Fig. 10.

Performance evaluation

For training the top 5 LSTMs, the mean squared error 
(MSE) of the training dataset was selected as a benchmark 
to calibrate the recurrent networks, and their corresponding 
optimal values of the MSEs were acquired using the Adam 
optimisation scheme. This optimiser is an improved function 
of the stochastic gradient descent, and it was designed to 
update network weights in the training pipeline.

In addition to the above, the prediction performances 
of the five LSTMs were evaluated using the root mean 
square error (RMSE), the mean absolute error (MAE), the 
mean absolute percentage error (MAPE), Pearson prod-
uct–moment correlation coefficients ( � ), and the coefficient 
of determination ( R2 ). The statistical metrics are defined as 
follows:

(20)MSE =
1

N

N∑
j=1

(dj − d∗
j
)2

(21)RMSE =

√√√√ 1

N

N∑
j=1

(dj − d∗
j
)2

(22)MAE =
1

N

N∑
j=1

|dj − d∗
j
|

Table 4  A summary report displaying the top 5 hyperparameters used 
to build the LSTM model via BO

Parameter Types LSTM-1 LSTM-2 LSTM-3 LSTM-4 LSTM-5

LSTM 512 512 512 160 32
Activation relu tanh relu relu tanh
Dropout True False False True False
Learning rate 0.01 0.01 0.01 0.01 0.01



1472 Modeling Earth Systems and Environment (2024) 10:1457–1482

1 3

where N is the sample size of the measured data (that is, the 
real spring discharge data), (dj, d∗j ) are the actual and pre-
dicted data, respectively, d is the mean of the values of the 
dj , and d

∗
 is the mean of the values of the d∗

j
 . The RMSE 

which is also referred to as the standard error, reports on the 
dispersion of the prediction errors. MAE denotes the average 
of absolute errors, and it is used to compute how far the 
predicted values deviate from the test data. MAPE measures 

(23)MAPE =
1

N

N∑
j=1

|||||
dj − d∗

j

dj

|||||
× 100%

(24)� =

∑N

j=1
(dj − d)(d∗

j
− d

∗
)

�∑N

j=1
(dj − d)2(d∗

j
− d

∗
)2

(25)R2 = �2

model accuracy as a percentage, and it works best if there 
are no extremes in the data. As such, MAPE is primarily 
used to determine any irregularity in the test data (Swanson 
et al. 2011). The computed values of RMSE, MAE, and 
MAPE are all within the range of [0,∞] . Usually, a small 
value of RMSE indicates a small deviation between the pre-
dicted and the observed test data. Therefore, the smaller the 
value (that is, RMSE < 1 ), the better the model design. On 
the other hand, the correlation coefficient measures the 
strength of the relationship between the predicted values and 
the original test data. The metric measure ranges from 
[−1, 1] . The extreme values of −1 and 1 indicate a perfectly 
linear relationship between the predicted values and the 
original test data. Meanwhile, as the coefficient approaches 
−1 or 1 , the strength of the relationship increases and the 
data points tend to draw closer to a reference line. Lastly, the 
coefficient of determination measures the extent to which 
the predicted values explain the original test data.

Fig. 10  Flowchart showing the 
implementation procedure of 
the LSTM model developed 
coupled with Bayesian Optimi-
sation hyperparameter tuning 
for spring discharge estimation
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Results and discussions

Generally, three primary methods are used in groundwater 
research to analyse hydrological behaviours; mathemati-
cal models, numerical simulations, and the use of labora-
tory-scaled experiments (Ding et al. 2020; Suresh Kumar 
2014). Mathematical models and numerical simulations 
have gained much attention recently (Chang et al. 2015). 
Initially, laboratory-scaled experiments had some limita-
tions when complex geological conditions needed to be 
studied due to the limited use of materials (Ding et al. 
2020). However, with the advancement of technology, the 
use of laboratory-scaled experiments in conjunction with 
other methods, such as machine learning approaches, has 
made tremendous progress in simulating complex geologi-
cal processes such as karst formations.

The hydrological cycle process in karst environments is 
so complex that a single linear input–output model cannot 
properly explain it (Song et al. 2022). This complexity was 
also evident in research conducted by Labat et al. (2000), 
who created a linear stochastic rainfall-runoff model and 
performed a Fourier analysis on three karst springs in 
France. They concluded that linear input–output models 
could not accurately represent the hydraulic behaviours of 
karst springs. Additionally, research by Tao et al. (2022) 
revealed the importance of humidity in the hydrological 
cycle processes and further use in water resources plan-
ning and management.

Therefore, this work built a 3D physical model based 
on the conceptual model of a karst aquifer and predicted 
spring discharge by combining three factors, precipita-
tion intensity, temperature, and humidity. A novel hybrid 
LSTM-RNN model coupled with BO was employed to 
model the multivariate time series behaviour of the input 
parameters. The study’s findings demonstrated the capa-
bility of a deep learning model for simulating spring dis-
charge with various input parameters in a karst environ-
ment, which validates the findings of previous studies (Hu 
et al. 2018; Kratzert et al. 2018; Song et al. 2022) that 
demonstrated the ability of neural networks in solving 
non-linear relationships in karst terrains.

Influence of rainfall intensity on spring discharge

Examining the influence of rainfall intensity on spring dis-
charge is critical for assessing its impacts and the non-line-
arity trends in karst environments. The spring hydrograph 
was used to investigate the effect of varied precipitation 
intensities on spring flow. The findings revealed that the 
lower the intensity of the rainfall, the lower the peak flow 
of the spring hydrograph, and vice versa. Figures 11a–c 

and 12a–c demonstrate this. However, an intriguing result 
was found in ‘d’ of both Figs. 11 and 12, which deviated 
from the previous trend. At the high precipitation intensity 
of 0.02925 mm/s for 30 min duration of simulated rainfall, 
the peak flow for spring discharge was very low compared 
to the other precipitation intensities which had the highest 
peak flow for the longest duration rainfall of 30 min. The 
deviation shown in ‘d’ of both Figs. 11 and 12, could be 
explained by the heterogeneous nature of the soil (sand 
and loam), which comprised the porous layer.

The porous layer is a layer of soil that has interconnected 
pore spaces through which water can flow. Porosity refers 
to the total amount of pore space available in the soil or 
rock, while permeability refers to how easily water can 
flow through that pore space. When the rainfall intensity is 
high, such as during a heavy rainstorm, the amount of water 
that falls onto the porous layer can exceed the capacity of 
the soil to absorb it. If the porosity and permeability of the 
porous layer are low, the excess rainwater will not be able to 
infiltrate into the system and will instead accumulate on the 
surface as overland flow The infiltration rate is affected by 
the nature of the soil, i.e., its physico-chemical properties 
(Djukem Fenguia and Nkouathio 2023).

The degree of permeability and porosity of the porous 
layer showed that not all the simulated Rainfall could infil-
trate into the system and further percolate into the aquifer, 
owing to the high rainfall intensity. The porous layer became 
fully saturated quickly, and overland flow (i.e., surface run-
off) was higher. This led to a shorter peak of the spring 
hydrograph, as shown in Figs. 11d and 12d. This devia-
tion is also analogous to findings by Djukem Fenguia and 
Nkouathio (2023), whose results identified the nature of the 
soil as one major cause of flooding.

With respect to this study, the porous layer quickly 
reaches its maximum capacity to hold water and becomes 
saturated at a precipitation intensity of 0.02925 mm/s for 
30  min duration of simulated rainfall. This means that 
any additional rainwater will simply run off the surface of 
the soil and contribute to surface runoff. This can lead to 
increased soil erosion, flooding, and decreased groundwater 
recharge. Therefore, it is important to consider the perme-
ability and porosity of the porous layer when designing and 
managing water systems for effective water management 
and sustainability. It is also imperative to pay attention to 
other physico-chemical properties of the soil, such as grain 
size, moisture, pH, compactness, and organic matter in water 
resources planning and management (Ansar and Naima 
2021; Djukem Fenguia and Nkouathio 2023).

Predictive models

Furthermore, to determine the variance of the proposed 
model, the regression models, i.e., LSTM-1 to LSTM-5, 
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were diagnosed and the results are presented in Fig. 13a–e. 
Figure 13a–c shows the prediction plot generated from 
LSTM-1, whilst Fig. 13d, and Fig. 13e were produced from 
LSTM-5. A detailed description of the performance of these 
5 models using 3, 2, or 1 input parameter(s) is presented in 
Table 5. The plots in Fig. 13a–c were predicted using three 
input parameters (precipitation intensity, temperature, and 
humidity), two input parameters (precipitation intensity and 
temperature), and only one input parameter (precipitation 
intensity), respectively.

The left side of the prediction plots presents the original 
targets from the test data versus the predicted values gen-
erated from the trained LSTM models. It can be observed 
from the residual plots on the right-hand side that plots with 
3 and 2 input parameters produced symmetric distribu-
tions with mean errors of 0.003 ± 0.036 and 0.001 ± 0.037 , 
respectively.

The results indicate an acceptable prediction perfor-
mance of LSTM-1, LSTM-2, LSTM-3, and LSTM-4. It 

also validated the established models’ ability to construct 
a robust and dependable learning process. However, based 
on the results, it was discovered that including more climate 
parameters in the prediction, matrix improved prediction 
performance. This can be seen from the results tabulated in 
Table 5 which is also confirmed by studies conducted by Tao 
et al. (2022) on the integration of extreme gradient boosting 
features with machine learning models on relative humidity 
prediction. His results showed that an increase in climatic 
parameters as input parameters improved the model perfor-
mance. Furthermore, studies conducted by Fiorillo et al. 
(2021) revealed that a decrease in spring discharge does not 
appear to be solely dependent on precipitation changes but 
that temperature fluctuations play a vital role. This shows 
that in studying the hydrodynamic characteristics of the karst 
aquifers, particularly pertaining to spring discharge predic-
tion, it is imperative to consider at least precipitation inten-
sity and temperature in the analysis, as evident in Fig. 8 on 
the feature importance using the XGB regressor. However, 

Fig. 11  Spring hydrographs showing the peak flows for different precipitation intensities and different duration of 15, 20, 25, and 30 min. The 
precipitation intensities are 0.02017, 0.02279, 0.02632, and 0.02925 mm/s
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using only precipitation intensity as an input variable in the 
LSTM model (refer to Fig. 13c), is not sufficient to predict 
spring discharge.

To investigate areas within the target that may be prone to 
more or less error, the residual plots displayed in Fig. 14a–c 
capture the disparities between errors on the y-axis and the 
dependent variable on the x-axis.

In Fig. 14a, b, a fairly random, uniform distribution of the 
residuals against the target in two dimensions—indicating 
that our non-linear LSTM-1 model is very robust in pre-
dicting the spring discharge using at least 2 input variables 
is seen. The R2 values for adopting 3 input variables are 
97.2% (for the training set) and 97.1% (for the testing set). 
In addition, the histograms show that the errors obtained are 
symmetrically distributed around zero, which also generally 
indicates a well-fitted model when we consider at least 2 
input variables. However, the scenario is not the same when 
a single input variable is used as shown in Fig. 14c. The R2 
values, in this case, are 4.7% (for the training set) and 2.3% 
(for the testing set).

Additionally, a two-dimensional graphical presentation 
i.e., “Taylor Diagram (Ansar and Naima 2021)” was gener-
ated for the proposed LSTM models 1–5 for the estimation 
of spring discharge in karst terrains and this is shown in 
Fig. 15.

Taylor’s Diagram is normally used to justify the degree of 
agreement between the model developed and the measure-
ment set used (the commonly used precision indexes are the 
Pearson correlation coefficient, the root-mean-square error 
(RMSE), and the standard deviation) to aid in evaluating the 
accuracy of the model. In this study (refer to Fig. 15), the 
same statistical metrics were adopted to assess the perfor-
mance of the 5 LSTM models produced from the Bayesian 
optimisation tuning approach.

The five colours in the plot represent the 5 LSTM mod-
els developed. The black star on the horizontal axis is the 
observed or reference point. When the simulation point is 
close to the observed point, it means they are similar in 
terms of standard deviation, with a high correlation and 
a centred root mean square error (CRMSE) value close to 

Fig. 12  Spring hydrographs showing the peak flows for different precipitation intensities with the same duration. The precipitation intensities are 
0.02017, 0.02279, 0.02632, and 0.02925 mm/s corresponding to times of 15, 20, 25, and 30 min
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Fig. 13  Prediction error plots 
depicting 20% of the actual 
discharge from the simulated 
dataset against the predicted 
values generated by the pro-
posed model: a the best-opti-
mised model using precipitation 
intensity, temperature and 
humidity as input parameters; b 
the best-optimised LSTM model 
using precipitation intensity and 
temperature as input parame-
ters; c the best-optimised LSTM 
model using only precipitation 
intensity as an input parameter; 
d the 5th-ranked-optimised 
LSTM model using precipita-
tion intensity, temperature and 
humidity as input parameters; e 
the 5th-ranked-optimised LSTM 
model using precipitation inten-
sity and temperature as input 
parameters
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zero. The black dashed lines represent the standard deviation 
of the observed time series. Values above the black dashed 
line mean the simulated data set has a higher variation, and 
values below mean the data set has a lower variation. The 
contour lines on the polar plot show the values of CRMSE.

Figure 15 (left panel), models 1, 2, 3, and 4 are similar 
in terms of their standard deviation, which is close to the 
reference or observed point and also falls on or close to 
the black dashed line with a correlation above 99% and a 

CRMSE of about 0.04. Model 5, on the other hand, has 
a lower standard deviation (below the black dashed line) 
with a correlation of around 91% , and the CRMSE is close 
to 0.16. On the other hand, Fig. 15 (right panel) shows 
models 1, 2, and 3 to be slightly below the black dashed 
line even though their respective standard deviations were 
closer to the reference or observed point. All three models 
had a correlation above 99% and a CRMSE of about 0.04. 
Model 4 had a lower deviation than the referenced black 

Fig. 13  (continued)
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Fig. 14  Residual plots showing 
irregularities between the simu-
lated and fitted response values
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dashed line (standard deviation of the observed data set). It 
also had a correlation of about 98% , and the CRMSE was 
very close to the lowest deviation among all with a corre-
lation of about 78% and a CRMSE of about 0.22. From the 
performance metrics of � and R2 , LSTM-1 with three input 
parameters performed better in estimating spring discharge 
than LSTM-2 and LSTM-3, even though the deviation was 
not much, in estimating spring discharge. LSTM-4 and 
LSTM-5 performed relatively poorly in comparison.

Conclusions

Predicting spring flow is very important for management 
of water demand especially in cities. In this study, the 
LSTM-RNN model of deep learning coupled with the BO 
hyperparameter tuning is identified, trained and tested to 
predict spring flow in karst environment using climatic 
variables, based on data gathered from a physical labora-
tory experiment. Different combinations of model input 
parameters are considered in this study to predict spring 
flow.

The experimentation revealed in the results section that 
model performance is primarily determined by input varia-
bles and combinations of parameter selection. Model accu-
racy improves significantly when the number of neurons 
and epochs are optimised; the Bayesian Optimizer was 
employed in this study. The Bayesian Optimiser signifi-
cantly improved the efficiency of the top 5 hybrid versions 
and gave a stronger prediction ability of the model. The 
parameter optimisation using the BO was used to deter-
mine the top 5 high-precision LSTM models (LSTM-1, 
LSTM-2, LSTM-3, LSTM-4, and LSTM-5). Also, the use 
of epochs and hidden layer neurons improves computation 
speed as well.

This study has proven that the LSTM-RNN model can 
be used to predict spring flow and can also predict other 
variables such as rainfall and temperature. It also proved 
that when the input variables of the model are more, the 
output of prediction is better. The advantage of this LSTM 
model is that it may require a smaller training data set to 

Table 5  Comparison of the true mean value (μ) and the 95% confi-
dence interval (2σ) of the five (5) different LSTM models using three 
input parameters (precipitation intensity, temperature, and humid-
ity), two input parameters (temperature and humidity), and one input 
parameter (precipitation intensity)

Model type Estimated errors: � ± 2�

3 inputs 2 inputs 1 input

LSTM-1 0.003 ± 0.0362 0.001 ± 0.0370 0.017 ± 0.225

LSTM-2 0.008 ± 0.036 0.001 ± 0.0037 −

LSTM-3 0.001 ± 0.036 0.007 ± 0.039 −

LSTM-4 0.010 ± 0.038 0.003 ± 0.071 −

LSTM-5 −0.003 ± 0.146 −0.059 ± 0.203 −

Fig. 15  Taylor’s Diagram of the prediction LSTM model developed using three input variables (left panel) and two input variables (right panel), 
respectively
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train the model to predict input variables. It is also benefi-
cial for water resources managers to understand the rela-
tionship between spring discharge and climatic variables.

Overall, the development of the physical model, the 
experimental results, and the deep learning models will 
serve as valuable reference for future research and investiga-
tions in the Jinan Spring Basin and also as useful guidelines 
for other areas.
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