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Abstract
This study investigates the stability of a uniformly distributed loaded strip footing located above a horseshoe-shaped tunnel 
in the rock mass. The study employs the Adaptive Finite Element Limit Analysis (AFELA) and machine learning approaches, 
including Artificial Neural Network (ANN) and Multiple Linear Regression (MLR), to assess the stability number (Nv). The 
study examines the impact of several governing parameters on Nv, such as the vertical (D) and horizontal (H) distance of the 
tunnel from the footing, Geological Strength Index (GSI), Uniaxial Compressive Strength (UCS) (σci), and material constant 
(mi) of rock mass. The study findings indicate that all parameters, except UCS, have a significant effect on Nv. Additionally, 
if the depth of the tunnel is greater than three times the width of the footing, the presence of the tunnel does not affect the 
stability of the footing. The dominant potential failure envelopes are evaluated based on the tunnel's position with respect to 
the footing, enhancing the understanding of the associated potential failure mechanisms. It also highlights the importance of 
governing parameters such as H/B and D/B in predicting the associated potential failure planes. The study also develops ANN 
and MLR models with high accuracy in predicting Nv. The sensitivity analysis provides insight into the relative significance 
of each input parameter affecting Nv. The findings of this study could serve as a valuable basis for establishing recommenda-
tions and design principles for the development of the infrastructure over the underground tunnels.

Keywords  Adaptive finite element analysis (AFELA) · Artificial neural network (ANN) · Multiple linear regression (MLR) · 
Rock mass · Footing

Introduction

Rock mass is a highly desirable foundation material owing to 
its exceptional strength to withstand the applied load, mak-
ing it the preferred choice for foundation construction. How-
ever, accurate determination of the ultimate bearing capacity 
(UBC) of the foundation is critical for designing engineering 
structures such as dams, bridges, piers, and tunnels. Fur-
thermore, rock masses pose various challenges in construc-
tion activities such as tunnelling and pipeline laying due to 

micro-scale imperfections including cavities and flaws that 
result from long-term geological processes such as weather-
ing and erosion (Fam et al. 2002; Waltham et al. 2005). The 
existence of underground structures such as tunnels, pipe-
lines, shafts, caverns, and voids, whether natural or man-
made, can pose significant safety risks for adjacent or nearby 
foundations. Such structures can cause settlement and reduce 
the ultimate bearing capacity of nearby foundations. In cases 
where rock masses contain tunnels or cavities, accurately 
determining their location in relation to the loaded area is 
crucial. This is because even if the tunnel or cavity is located 
at significant depths and horizontal distances from the foun-
dation, it can still substantially decrease the foundation’s 
load-carrying capacity. Previous studies have demonstrated 
the impact of underground structures on foundation design, 
making it essential to account for their interaction during 
design and accurately evaluate the ultimate bearing capacity 
of the foundation to ensure safe construction of structures 
above it or in the vicinity (Xiao et al. 2018, 2019; Wu et al. 
2020a; Kumar and Chauhan 2022a; Kiyosumi et al. 2011; 
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Ukritchon and Keawsawasvong 2018; Wang and Badie 
1985; Wu et al. 2020a; Zhao et al. 2021) have examined 
these effects.). Previous research has extensively investi-
gated the detrimental effects of various unlined tunnel/cavity 
cross-sectional shapes, such as rectangular, square, circular, 
or irregular, on the ultimate load-carrying capacity (UBC) 
and stability of shallow foundations. While some studies 
have focused on the impact of a single unlined rectangular 
cavity/tunnel (Kiyosumi et al. 2011; Wang and Badie 1985), 
many others have investigated the effects of dual cavities/
tunnels on the UBC of shallow foundations (Xiao et al. 2019; 
Wu et al. 2020a).

Numerous studies in the field have shown that advanced 
numerical techniques can be highly effective in analyzing 
the interaction between cavities and footings in rock masses. 
For instance (Badie and Wang 1984), utilized the Finite Ele-
ment Method (FEM) and the Upper-Bound (UB) theorem 
to initially evaluate the load-bearing capacity of footings 
positioned above cavities. Since then, many studies have 
tackled the problem of cavity/tunnel–footing interaction in 
rock masses by employing FEM under various conditions 
(e.g., Hoek and Brown 1980; Carranza-Torres 1998; Fraldi 
and Guarracino 2010).

The determination of the bearing capacity of a strip foot-
ing using Finite Element Method (FEM) has become sub-
jective due to the deceptive load-settlement curve resulting 
from substantial displacement of the footing (Wong and Wu 
2015; Lee et al. 2014; Lai et al. 2022a, b, c, d, e). To over-
come the limitations of FEM, Finite Element Limit Analy-
sis (FELA) is considered a viable method to determine the 
ultimate bearing capacity (UBC) of a foundation resting on 
a rock mass (Jaiswal and Chauhan 2021). FELA has been 
extensively employed for accurate determination of UBC 
of footings resting over cavities/tunnels in rock mass under 
various loading considerations (Chauhan et al. 2022; Kumar 
and Chauhan 2022a, b, c). The stability of the footing is also 
affected by changes in the shape, location, and rock mass 
parameters of the tunnel (Xiao et al. 2018, 2019; Wu et al. 
2020a; Zhao et al. 2021; Kumar and Chauhan 2022a). The 
presence of natural structural discontinuities in rock masses 
such as joints, cracks, and bedding planes, particularly with 
significant voids, poses challenges to engineering investiga-
tions. In such cases, advanced numerical techniques, includ-
ing the Generalized Hoek Brown (GHB) criterion (Hoek 
et al. 1980, 2002), a widely recognized nonlinear failure 
criterion for rock failures, are beneficial in understanding 
the issue and identifying progressive failure.

Recent advancements in shield technology have facili-
tated the excavation of various types of tunnels, including 
circular and non-circular configurations such as elliptical, 
rectangular, and horseshoe-shaped tunnels, in practical 
engineering. Among these, non-circular tunnels are pre-
ferred due to their superior section utilization and lower 

construction costs compared to circular tunnels. Horseshoe-
shaped tunnels, in particular, are commonly used in tunnel 
and subway construction, especially in mountainous areas 
where rock excavation is necessary. These tunnels feature 
a semi-circular roof and two vertical wall and a horizontal 
bottom, offering load distribution benefits similar to those of 
circular tunnels, while allowing for effective section utiliza-
tion. Consequently, horseshoe-shaped tunnels are considered 
more efficient than circular, square, and rectangular tunnels.

While several studies have investigated the effects of foot-
ings resting above single or multiple unlined tunnels of vari-
ous shapes, including circular and square, no research has 
yet explored the impact of footings resting above a horse-
shoe-shaped unlined tunnel. However, limited exploration 
into the stability analysis of horseshoe-shaped tunnels in 
soil or rock mass subjected to gravity or surcharge loading 
is evident from the literature (Zang et al. 2018; Rehman 
and Kumar 2022; Liu et al. 2022; Lowongkerd et al. 2022; 
Jearsiripongkul et al. 2022a). Additionally, a recent study by 
Ahmadi et al. (2023) examined the impact of a horseshoe-
shaped tunnel and metro station on adjacent deep bridge 
foundations in cohesive soil.

This study aims to investigate the response of a strip foot-
ing subjected to a uniformly distributed load in the presence 
of an unlined horseshoe-shaped tunnel within a rock mass. 
Accurately evaluating the ultimate bearing capacity (UBC) 
of the footing and understanding the interaction between 
the foundation and the underground structures are crucial 
for ensuring the secure construction of any nearby or on-top 
structures. Therefore, designers require data on the reduction 
in UBC resulting from voids or tunnels, as this information 
significantly impacts the project’s safety and overall cost. 
The primary objective of this research is to provide such data 
to designers to ensure the secure construction of structures 
above or near unlined horseshoe-shaped tunnels.

Soft computing, specifically the use of artificial neural 
networks (ANNs), has emerged as a promising alternative 
to traditional analytical and numerical methods for solving 
problems. ANNs can generate large datasets and construct 
black-box predictive models using simple equations. This 
approach has been effective in predicting the bearing capac-
ity of foundations in rock masses, as demonstrated by vari-
ous studies. However, there are no studies available on the 
stability of foundations laid over a rock mass with an unlined 
horseshoe-shaped tunnel. To address this gap, a stability 
equations and stability charts were derived using Adaptive 
Finite Element Limit Analysis (AFELA), Artificial Neural 
Network (ANN), and Multiple Linear Regression Analysis 
(MLR). These equations and stability charts enable a com-
prehensive assessment of the stability of a footing in this 
particular condition, which is valuable for geotechnical engi-
neers for safe and cost-effective design practices. The analy-
sis considered the positional variation of the footing with 
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respect to the horseshoe-shaped tunnel and varying critical 
rock parameters, including Geological Strength Index (GSI), 
material constant (mi), uniaxial compressive strength (σci), 
and disturbance factors (DF), all following the generalized 
Hoek–Brown failure criterion.

The investigation aimed to examine the influence of these 
parameters on the stability of a footing situated above a 
horseshoe-shaped tunnel. Furthermore, the potential failure 
mechanism of the strip footing in the presence of a horse-
shoe tunnel was also examined to demonstrate the effect of 
the positional variation of the footing with respect to tun-
nel and rock mass parameters on the development of failure 
patterns.

Problem definition

Figure 1 depicts an overview of the problem considered 
in the present study, which shows a weightless, rigid strip 
footing of width B resting on a rock mass with unit weight, 
γ. A horizontal ground overlays a rock mass containing 
an unlined horseshoe-shaped tunnel. The horseshoe tun-
nel’s geometry can be described completely by two distinct 
segments: a flat bottom floor beneath the ceiling with a 
width of W and vertical walls with a height of W/2, and 
a semi-circular tunnel ceiling with a diameter of W. The 
relative position of the tunnel in relation to the footing is 
indicated by two parameters: the vertical depth, D, and 

the horizontal offset distance, H. D represent the depth of 
the tunnel’s crest from the horizontal ground surface, and 
H represents the horizontal distance of the tunnel’s crest 
from the footing’s central vertical axis. The strip footing is 
subjected to a uniformly distributed load, qu. To simplify 
the representation of the tunnel’s dimensions and its posi-
tion with respect to the footing, the distances and dimen-
sions are normalized by the width of the footing, which 
is referred to as the normalized tunnel width (W/B), the 
normalized depth of the tunnel (D/B), and the normalized 
horizontal distance of the tunnel (H/B). Additionally, to 
study the positional variation of the tunnel with respect to 
the footing, the variation of the horizontal position of the 
tunnel is considered to be unidirectional, namely in the 
leftward direction of the footing’s symmetry axis, to avail 
the advantage of the symmetry of the system.

In the present study, it is assumed that the rock mass 
follows the Generalized Hoek–Brown (GHB) failure crite-
rion, which was proposed by Hoek et al. (2002) to account 
for the complex non-linear strength properties of rock 
masses. This criterion serves as a fundamental tool for 
accurately estimating the stability of a footing by incorpo-
rating the inherent non-linear properties of the underlying 
rock formations. The GHB failure criterion expresses a 
mathematical formula that enables one to determine the 
maximum load capacity (effective major principal stress) 
that a foundation can withstand before experiencing struc-
tural failure and is shown in Eq. (1).

Fig. 1   Uniformly loaded strip footing supported by rock mass over a horseshoe shaped tunnel
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The variables �′

1
 and �′

3
 , represent the effective major and 

minor principal stresses at point, respectively and σci rep-
resents uniaxial compressive strength of intact rocks. The 
GSI (geological strength index) utilizes the inherent char-
acteristics of rock types, structural arrangements, and the 
conditions of discontinuity substrates (Soleiman et al. 2019) 
present in the rock mass to determine the material param-
eters mb, s, and a, via the implementation of the following 
empirically derived relationships shown in Eqs. (2–4).

The material constant for rock mass strength is denoted as 
mb, whereas the constants s and a represent the Generalized 
Hoek–Brown failure criterion constants for the rock mass. 
The material constant of the intact rock, mi is determined 
by the frictional properties of the minerals comprising the 
intact rock mass and has a significant impact on the rock's 
strength characteristics. The disturbance factor, DF, quan-
tifies the amount of disturbance caused by blast damage, 
impact loading and stress relaxation on the rock mass. To 
evaluate the effect of an unlined horseshoe-shaped tunnel 
on the stability of the footing, this study proposes a stability 
number Nv, which is the ratio of the ultimate bearing capac-
ity of the footing, qu, to the unconfined compressive strength 
of the intact rock mass, σci. This study further assumes that 
Nv is a function of various parameters as shown in Eq. (5).
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Figure 2 presents the relevant GHB rock mass parameters 
and their corresponding values, which fall well within the 
recommended ranges outlined by Hoek et al. (2002). Fur-
thermore, it portrays the intervals of D/B and H/B that were 
investigated in the parametric analysis.

Methodology

Adaptive Finite Element Limit Analysis (AFELA)

The present study developed a numerical model using finite 
element limit analysis with adaptive mesh refinement tech-
niques for simulating the behavior of a strip footing in the 
presence of a horseshoe tunnel under uniform distributed 
load OPTUM G2 (Optum G2 2020) software was employed 
for the simulation, and to ensure accuracy, a six-noded tri-
angular element and Gaussian integration rule were used, 
based on the recommendations of a previous study (Lai 
et al. 2022a; Kumar and Chauhan 2022a). Figure 3 shows 
the adaptive mesh used in the simulation comprised 8534 
number of edges and 5595 triangular elements, with a finer 
mesh around the footing and tunnel areas where maximum 
changes in stress and strain occurred. The computational 
mesh size was set to 15B and 30B in the vertical and hori-
zontal directions, respectively, to prevent adverse effects on 
the results caused by domain size and minimize the pos-
sibility of failure plane development under the footing with 
the mesh boundaries. The interface between the foundation 
material and rigid foundation was assumed to be a perfectly 
rough interface (Jaiswal and Chauhan 2021), and the inter-
face factor was assigned a value of one. A sensitivity analy-
sis was carried out by varying the total number of elements 
in the mesh within a range of 1500 to 19,000, and it was 

(5)Nv =
qu

�ci
= f

(

D

B
,
H

B
,DF,GSI,mi,

�ci

�B

)

Fig. 2   Details of parameters used in the present study
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determined that 13,000 elements provided an optimal level 
of accuracy for the numerical model, as shown in Fig. 4.

Machine learning

Database

The study employed AFELA solution to generate large data-
sets, as shown in Fig. 2. The dataset was meticulously segre-
gated into three distinct subsets: namely, the training, valida-
tion, and testing by 70%, 15%, and 15%, respectively. The 
training dataset was utilized to augment the learning process 
by adjusting weights. Meanwhile, the validation dataset was 
judiciously employed to finetune the model selection pro-
cess, such as optimizing the number of hidden neurons and 
layers and culminating in the ultimate model determination. 
Finally, the testing set was employed exclusively to expound 
the generalizability of the trained models with remarkable 
proficiency.

Multiple linear regression

Linear regression is a statistical technique used for model-
ling the relationship between a dependent variable and one 
or more independent variables. The dependent variable is a 

Fig. 3   Adaptive finite element mesh arrangement for the strip footing overlaying unlined horseshoe shaped tunnel in rock mass that is obtained 
from OPTUM G2 (2020)

Fig. 4   Variation of collapse multiplier load with the total number of 
elements in the mesh
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single response variable, while the independent variables, 
also called explanatory variables, can be one or more. In the 
case of multiple independent variables, it is called multiple 
linear regression. This equation can be used to predict the 
value of the dependent variable based on the values of the 
independent variables. The equation that is used to calculate 
the output, which is dependent on the input or independent 
variables, is a linear combination of the defined variables. 
This is done by employing a mathematical formula, such 
as Eq. (6), which specifies how the independent variables 
should be combined to obtain the predicted value of the 
dependent variable.

where yi = dependent variable (output), xi1, xi2,… xip = 
independent variable (input), �1, �2 … , �p = slope coeffi-
cients, � = residual error.

(6)yi = �0 + �1xi1 + ... + �pxip + �

Artificial Neural Network (ANN)

This paper employs an Artificial Neural Network (ANN) to 
provide a data interpretation platform based on the inherent 
characteristics of the human brain’s composition. Several 
studies (Azarafza et al. 2021; Jearsiripongkul et al. 2022a; 
Lai et al. 2022a, c, d; Sirimontree et al. 2022; Jearsiripong-
kul et al. 2022b; Ngamkhanong et al. 2022; Yodsomjai et al. 
2022) demonstrate that the use of Artificial Neural Networks 
(ANNs) is a highly effective soft-computing approach in civil 
engineering. ANNs are machine learning algorithms that 
can recognize patterns and make predictions based on input 
data (Ansari et al. 2023). The neural network is composed 
of many interconnected nodes, or neurons, which create a 
computer model. The ANN model is made up of three layers: 
the output layer, the hidden layer, and the input layer. The 
input layer transmits the feature vector. During the learning 
process, the network’s weights are incrementally modified 

Fig. 5   Comparison of reduction factor, Rf  obtained from present study and former study (Kumar and Chauhan 2022) for different values of a 
D∕B ; and b H∕B

Fig. 6   Potential failure envelopes of strip footing resting above circular tunnel for various position-validation study
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until they achieve an appropriate level of accuracy to pre-
dict the target with reasonable precision. This technique is 
particularly effective in addressing nonlinear problems, as 
stated by Park and Lek (2016).

This investigation uses an input layer comprising of four 
sets of five input nodes each, which correspond, respectively, 
to the parameters D/B, H/B, GSI, mi, and σci/γB. The second 
layer is known as the hidden layer, which consists of one or 
multiple threshold logic unit layers. The optimal configura-
tion of hidden layers and neurons is usually obtained through 
trial and error, starting with a single hidden layer, followed 
by varying the number of hidden neurons from one to the 
maximum value that yields an accurate model. The primary 
function of the hidden layer is to process the input informa-
tion and transform it into a format that can be efficiently 
used by the output layer to generate predictions. The hidden 
layer computes weighted sums of inputs and applies a step 
function to them using the rectified linear unit (ReLU) acti-
vation function, which adds nonlinearity to the network. The 

output layer presents dependent variables, and in this paper, 
it consists of a single node that predicts the Nv.

Additionally, LM back-propagation algorithm is utilized 
to determine output parameters, achieving second-order 
training speeds without the need to compute the Hessian 
matrix. The LM algorithm modifies weight and bias values 
and provides the advantages of both the Gauss–Newton tech-
nique and gradient descent algorithm, addressing the limita-
tions of other algorithms. The LM algorithm is an improved 
Newton approach, as demonstrated by Eq. (7).

where xk = weight, J = Jacobian matrix, I = identity matrix, 
e = vector, k and u = damping factor. By adjusting damping, 
the accuracy and performance of the supervised algorithm 
can be improved based on stage outcome. Although this 
may require additional storage, it is recommended as the 
first-choice algorithm. The effectiveness of the ANN model 
is evaluated in this study using two statistical indicators: 

(7)xk+1 = xk − [JTJ + uI]−1JTe

Fig. 7   Effect of D/B on Nv for varying H/B for a low GSI, low mi (GSI = 40, mi = 5); b low GSI, high mi (GSI = 40, mi = 35); c high GSI, low mi 
(GSI = 100, mi = 5); and d high GSI, high mi (GSI = 100, mi = 35)
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Mean Squared Error (MSE) and the coefficient of determina-
tion (R2). The MSE is the average value of a function used 
to construct a regression model that minimizes the sum of 
squared errors (SSE), which measures the difference between 
predicted and actual values. Atici (2011) describes the cal-
culation of MSE and RMSE in Eqs. (8) and (9). Furthermore, 
Mean Squared Error (MSE) is commonly used, but Root 
Mean Squared Error (RMSE) is occasionally preferred as it 
provides a similar error scale to the predicted value. MSE 
is easy to alter mathematically and frequently used in math-
ematical approaches. RMSE is used more often than MSE 
to compare regression model performance against random 
models. Lower MSE and RMSE values indicate higher model 
accuracy. where ‘n’ and (y

�

i
− yi) represent the number of 

samples and the difference between predicted and actual 
values on testing datasets, respectively.

(8)MSE =
1

n

n
∑

i=1

(y
�

i
− yi)

2

In this study, the effectiveness of trained models is 
assessed by utilizing the coefficient of determination (R2), 
as defined in Eq. (10).

R2 is a measure of the proportion of real-value fluctua-
tions that can be explained by changes in the predicted value, 
with a range of values between 0 and 1. The numerator and 
denominator of the equation mentioned above represent the 
difference between actual and predicted values on testing 
datasets and the sum of squared differences between true 
values and the mean, respectively (Bilim et al. 2008). A 
higher R2 value indicates a better fitting effect, implying that 
the model can explain a larger proportion of the variability 
in the data.

(9)RMSE =

√

√

√

√

1

n

n
∑

i=1

(y
�

i
− yi)

2

(10)R2 = 1 −

∑n

i=1
(y

�

i
− yi)

2

∑n

i=1
(yi − y)2

Fig. 8   Effect of H/B on Nv for varying D/B for a low GSI, low mi (GSI = 40, mi = 5); b low GSI, high mi (GSI = 40, mi = 35); c high GSI, low mi 
(GSI = 100, mi = 5); and d high GSI, high mi (GSI = 100, mi = 35)
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Validation of AFELA model

In this study, the accuracy and effectiveness of a numerical 
model based on AFELA is evaluated by comparing it to the 
results of a former study conducted by Kumar and Chau-
han (2022a). The behavior of a strip footing on an unlined 
circular tunnel in rock mass is analyzed using the proposed 
model and compared to the results of the previous study. The 
ultimate bearing capacity (UBC) values obtained from finite 
element limit analysis with a six-noded Gaussian element 
are compared and presented in Fig. 5, with the reduction 
factor (Rf) used to quantify the effect of the tunnel on the 
UBC. The results show (Fig. 5a) that the trends in the varia-
tion of the simulated model are similar to those reported in 
the previous study, with a difference in the magnitude of Rf 
of approximately 4% at H/B = 1 and D/B = 3.5.

Similarly, Fig. 5b shows that the trends in the variation 
of Rf in this model are slightly lower than those reported in 
the previous study, with a maximum deviation in the mag-
nitude of Rf of less than 3.3%. Additionally, potential failure 
envelopes for the strip footing with the tunnel/void located 

at various positions are compared in Fig. 6, and the results 
obtained from the numerical model used for validation are 
similar to those of the previous study. Based on the com-
parison of the findings and discussion, it can be concluded 
that the proposed model is suitable for conducting further 
investigations.

Results and discussion

This section presents the results related to the impact of 
geometrical parameters, such as the normalized horizontal 
distance (H/B) and normalized depth (D/B) of a horse-shoe 
shaped unlined tunnel relative to the centre of a footing, 
as well as the influence of rock mass strength parameters, 
such as the geological strength index (GSI), the material 
constant of rock mass (mi), and the normalized uniaxial com-
pressive strength (σci/γB), on the stability of the footing as 
measured by stability number, Nv. The analysis also presents 
the impact of various governing parameters on the potential 

Fig. 9   Effect of GSI on Nv for high mi (mi = 35) with varying H/B for a D/B = 1; b D/B = 2; c D/B = 3; and d D/B = 5
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failure envelope of a strip footing caused by the presence of 
a tunnel in the rock mass.

Effect of D/B on Nv for different H/B

The effect of D/B on the bearing capacity factor (Nv) for 
various H/B is presented in four distinct scenarios, namely, 
low GSI-low mi, low GSI-high mi, high GSI-low mi, and high 
GSI-high mi, in Fig. 7a–d, respectively. The results indicate 
that Nv increases rapidly with an increase in the offset dis-
tance of the tunnel from the footing for depth ratios less than 
3. This can be attributed to the fact that as the depth of the 
tunnel from the footing increases, the impact of the tunnel 
on the footing’s ultimate bearing capacity decreases rapidly, 
thereby increasing Nv. However, beyond a specific threshold 
depth of tunnel, i.e., D/B ≥ 3, the Nv becomes almost con-
stant, and all values of Nv coincide irrespective of horizontal 
offset distance. This threshold depth is referred to as the 
critical depth. Beyond this depth, the effect of the tunnel on 
the footing's bearing capacity is negligible, and the scenario 

is similar to that of a footing resting on rock mass without 
any tunnel.

The pattern of all curves in Fig. 7a–d is almost identical 
for any given values of mi and GSI. However, it is observed 
that the magnitude of Nv increases with an increase in mi, 
irrespective of the GSI values. This trend is supported by a 
comparison of Fig. 7a–d, which reveal that the percentage 
increases in the magnitude of Nv for mi = 35 is approximately 
3.6 times and 2.5 times greater than that for mi = 5, for GSI 
values of 40 and 100, respectively.

This suggests that the stability of a footing is more sig-
nificantly influenced by mi for rock masses with lower GSI 
values compared to those with higher GSI values. Hence, the 
effect of mi on the stability of the footing is more prominent 
when the rock mass exhibits lower strength characteristics, 
as indicated by lower GSI values.

Moreover, a comparing Fig. 7a–d reveals that the maxi-
mum difference in the magnitude of Nv, between minimum 
and maximum values of H/B (i.e., H/B = 0 to 5) for D/B = 1, 
2, and 3, is approximately 2.25 times, 1.4 times, and 1.01 
times, respectively. This indicates that the change in Nv is 

Fig. 10   Effect of GSI on Nv for low mi (mi = 5) with varying H/B for a D/B = 1; b D/B = 2; c D/B = 3; and d D/B = 5
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not solely dependent on H/B and D/B because the percentage 
difference in Nv remains constant for a given tunnel depth 
among all the cases presented in Fig. 7. However, the change 
in the magnitude of Nv is influenced by varying the rock 
parameters such as GSI and mi.

Effect of H/B on Nv for different D/B

Figure 8a–d illustrate the effect of the tunnel’s horizontal 
offset distance from the footing, H/B, on Nv for different 
values of D/B and rock mass properties (Low GSI-Low mi, 
Low GSI-High mi, High GSI-Low mi, and High GSI-High mi, 
respectively). The analysis reveals that Nv increases with an 
increase in H/B, and this effect is more prominent at smaller 
values of D/B. However, for D/B ≥ 3, the effect of H/B on 
Nv becomes negligible, and the trend lines for all H/B values 
merge with each other.

Furthermore, a comparison between the curves for 
H/B = 0 and 1 shows a similar trend for Nv, except for 
D/B = 2, where Nv for H/B = 1 is marginally lower than Nv 
for H/B = 0. This deviation might be due to the non-uniform 
loading on the tunnel caused by the unsymmetrical position 

of the tunnel at H/B = 1, leading to a lower load-bearing 
capacity of the footing compared to the case of symmetrical 
loading at H/B = 0.

Effect of GSI on Nv for different H/B

Figures 9 and 10 display the plots of Nv versus GSI for 
two different values of mi (i.e., 5 and 35) and varying H/B 
(0–5) while maintaining σci/γB = 100 constant for D/B (1, 
2, 3, and 5). The plots demonstrate a nonlinear relation-
ship between Nv and GSI, with Nv increasing for all values 
of H/B, D/B, and mi. The increase in Nv with GSI is more 
significant for higher values of H/B, especially for a tunnel 
located at a shallow depth from the horizontal ground (i.e., 
D/B = 1 and 2). However, for tunnels situated at D/B ≥ 3, 
Nv does not vary with change in H/B for any given value 
of GSI. As the tunnel depth increases, the impact of H/B 
diminishes in relation to higher GSI. This observation is 
explained by the fact that the stability of the footing is 
primarily controlled by GSI when the tunnel is situated 
far enough vertically and horizontally from the centre of 
the footing. Higher GSI values represent a stronger and 

Fig. 11   Effect of mi on Nv for low GSI (GSI = 40) with varying H/B for a D/B = 1; b D/B = 2; c D/B = 3; and d D/B = 5
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less fractured rock mass, resulting in an increase in the 
magnitude of Nv and improved stability of the footing. The 
effect of GSI is more pronounced for larger values of H/B, 
with changes in Nv ranging from 3.5 to 8.5 times as GSI 
increases from 40 to 100 for D/B = 1.

Figures 9 and 10 also compare the impact of GSI on Nv 
for extreme values of mi (i.e., 5 and 35). It is noted that as 
mi decreases, the magnitude of Nv also decreases. For low 
mi values, the curves of Nv versus GSI are identical for all 
ranges of H/B beyond D/B ≥ 3, indicating that GSI has no 
effect on Nv for a tunnel in a rock mass with low mi. How-
ever, for high mi values, a marginal variation of Nv versus 
GSI is noted for various values of H/B, even at D/B ≥ 3.

Effect of mi on Nv for different H/B and D/B

Figures 11 and 12 depict the effect of the parameter mi on Nv 
for two distinct values of GSI, 40 and 100, respectively. An 

increasing linear correlation is observed between mi and Nv, 
throughout the range of H/B corresponding to D/B. This phe-
nomenon can be attributed to the diverse factors that influ-
ence mi, such as mineralogy, composition, degree of inter-
locking, and grain size of the intact rock. As mi increases, 
the rock mass’s governing parameters, including grain 
packing patterns, interlocking degree between rock parti-
cles, and angularity, also increase. These factors contribute 
to an increased rock strength, leading to a higher value of 
Nv. In addition, for low values of mi, the Nv—GSI curves are 
similar for all H/B ranges beyond D/B ≥ 3, indicating that the 
rock mass has low mi. Moreover, the stability of a footing 
resting over a tunnel is not affected by the variation of H/B 
when the tunnel is located at D/B ≥ 3, given a particular mi 
and GSI value.

Fig. 12   Effect of mi on Nv for high GSI (GSI = 100) with varying H/B for a D/B = 1; b D/B = 2; c D/B = 3; and d D/B = 5
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Effect of σci/γB on Nv for different H/B and D/B

Figures 13 and 14 illustrate plots of σci/γB versus Nv for 
two different GSI values of 40 and 100, respectively, while 
mi is kept constant at 35. It is observed that the trend of Nv 
for a given H/B and D/B remains unchanged, regardless of 
the variation in σci/γB. This results in all the curves being 
parallel to the x-axis. It is noted that the authors assumed 
σci/γB = ∞, which is not physically possible for rocks in a 
weightless state (i.e., γ = 0) (Keawsawasvong and Shiau 
2022). However, the outcomes obtained by assuming σci/
γB = ∞ indicate that the rock is very strong. In numerical 
simulations, σci/γB = ∞ can be achieved by assigning a very 
large value of UCS or a very light rock mass to produce valid 
numerical results. It is interesting to note that the observed 
trends are independent of the GSI value, as demonstrated in 
the cases of low (Fig. 13) and high (Fig. 14) GSI values of 
the rock mass.

Multiple linear regression

In this study, the WEKA software is used to create a multi-
ple regression model to examine the relationship between 
predictor variables and a response variable. The fitted 
regression weights or coefficients to the model using 
sophisticated algorithms that minimized the difference 
between the predicted and actual values of the response 
variable. These coefficients represent the influence of each 
predictor variable on the response variable. As a result 
of this optimization process, authors derived Eq.  (11) 
for multiple linear regression, which expresses the com-
plex relationship between the predictor variables and the 
response variable in mathematical terms.

Figure 15 compares stability factor assessed by FELA 
with predicted values obtained from MLR. Statistical tests 
such as coefficient of determination (R2) and Root Mean 

(11)
Nv = (0.187�ci∕(�B) + (12.249GSI) + (2.148D∕B)
+ (0.6208H∕B) + (6.2637mi) − 5.0749

Fig. 13   Effect of σci/γB on Nv for low GSI (GSI = 40) and low mi (mi = 5) with varying H/B for a D/B = 1; b D/B = 2; c D/B = 3; and d D/B = 5



664	 Modeling Earth Systems and Environment (2024) 10:651–670

1 3

Square Error (RMSE), which yield corresponding values 
of 0.86 and 3.1247, respectively, can be used to evaluate 
the effectiveness of the Eq. (10). Whereas the sensitiv-
ity analysis results are presented in Fig. 16, highlighting 
the relative importance of five dimensionless parameters. 
The Relative Importance Index (RII) is used to quantify 
the significance of each parameter, with a value of 100% 
denoting the highest importance. The Geological Strength 
Index (GSI) is identified as the most critical parameter 
with an RII value of 100%. The other parameters, includ-
ing (mi), (D/B), (H/B), (σci/γB), are of lesser importance 
with RII values of 70.4%, 50.11%, 17.54%, and 1.52%, 
respectively.

Artificial Neural Network (ANN)

Optimizing the number of hidden layers and neurons is 
crucial for improving the predictive power of an artificial 
neural network (ANN) model. This study demonstrates that 
an ANN model can accurately predict stability factor by 

Fig. 14   Effect of σci/γB on Nv for high GSI (GSI = 100) and high mi (mi = 35) with varying H/B for a D/B = 1; b D/B = 2; c D/B = 3; and d D/B = 5

Fig. 15   Comparison of predicted value of Nv from MLR versus actual 
values of Nv obtained AFELA results
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utilizing a single hidden layer with varying numbers of neu-
rons. The results presented in Fig. 17 show a clear relation-
ship between the number of hidden neurons and the model’s 
performance, indicating a significant improvement in per-
formance when the number of neurons exceeds a certain 
threshold. It is expected that once this threshold is reached, 
the performance of the ANN model becomes stable.

Among the evaluated models, the “5-11-1” ANN model 
(consisting of 5 input variables, 11 hidden neurons, and 1 
output) was found to be the most effective, displaying the 
lowest mean squared error (MSE), Root mean square value 
(RMSE) and the highest coefficient of determination (R2) 
are as 1.1067, 1.051 and 0.992, respectively. Additionally, 
Fig. 18 demonstrates good agreement between the results 
obtained from the proposed ANN model and the finite ele-
ment limit analysis (FELA) model.

Comparing the performance of the multiple linear 
regression (MLR) and ANN models, the latter demon-
strated superior results, as indicated in Table 1. Therefore, 
the optimal ANN model with the “5-11-1” architecture can 
be utilized for predicting the stability factor from the ANN 
model.

The function can be used to generate output by con-
sidering weighted inputs and transfer function with an 

optimal ANN architecture. This network can simulate 
general functions and accurately predict functions with 
a finite number of discontinuities if the hidden layer has 
enough neurons. Weights for each parameter determine 
their impact on stability factor, and Eq. (12) represents the 
prediction equation using matrices from the ANN model.

The proposed ANN models represent x as input variables, 
J as the number of input variables, and N as the number of 
hidden neurons. Weight matrices IW1 and IW2 represent 
the hidden and output layers, while b1i and b2 represent the 
associated biases. The hidden weight matrix IW1 is selected 
based on N and J, resulting in an output matrix with a single 
column. The input weight matrix IW2 has the same number 
of rows as N and the same number of columns as the output 
neurons (k), with one column per neuron in the output layer.

Table 2 illustrates the utilization of weight and bias matri-
ces, as constants within an optimized Artificial Neural Net-
work (ANN) model, for the determination of the stability 
factor of strip footing over a horseshoe tunnel. The values 
obtained from the optimal ANN network can be leveraged 
to construct predictive equation functions, which can subse-
quently undergo rigorous testing on novel datasets, varying 
in data ranges, to enhance their accuracy and applicability.

Associated potential failure mechanism

This section describes the failure mechanisms of a strip 
footing under various scenarios where a tunnel is located at 
different distances and depths from the footing. The impact 
of governing parameters on the potential failure planes is 
also highlighted. The velocity field contours for the footing 
under different H/B ratios and depth ratios (D/B = 1, 2.5, and 

(12)

Predictedvalue =

[

N
∑

i=1

IW2itansig(

J
∑

j=1

IW1ijxj + b1i) + b2

]

Fig. 16   Variation of relative importance index, (RII) on all dimen-
sionless input variables

Fig. 17   Performance evaluation of square shaped tunnels versus the 
number of hidden neurons
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3) are shown in Figs. 19, 20 and 21 to illustrate the failure 
mechanisms.

In Fig. 19, for the case where D/B = 1 and H/B = 0, the 
tunnel experiences a combined failure of the roof and both 
sides of the vertical edge due to the high-stress concentration 
caused by the tunnel's placement directly below the footing 
at shallow depth. As the tunnel is situated away from the 
central vertical axis of the footing (H/B = 1, 2, and 3), two 
failure planes originate from both corners of the footing, 
converging at the crest of the roof and the left bottom corner 
of the edge, affecting the entire periphery of the left edge. 
An additional failure plane extends from the crest of the tun-
nel's roof to the horizontal ground, resulting in the squeezing 
of the rock mass above this failure plane. For H/B = 4 and 
5, there is limited interaction between the tunnel edge and 
the footing, and an extra failure plane originates from the 
tunnel's roof, extending outwards until it intersects with the 

Fig. 18   Comparison of predicted value of Nv from ANN versus Nv obtained from AFELA results for the optimal ANN architecture (Model: 5-11-
1) for horseshoe shaped tunnel

Table 1   Evaluation Metrics for Multiple Linear Regression (MLR) 
and Artificial Neural Networks (ANN) Performance

Machine learning approach R2 RMSE

Multiple linear regression (MLR) 0.869 3.127
Artificial Neural Network (ANN) 0.992 1.051
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horizontal ground surface. The zone of influence of the fail-
ure plane in the rock mass increases as the distance between 
the footing and tunnel increases horizontally. The maximum 
influence zone is 8.5B in the horizontal direction and 2B in 
the vertical direction from the central vertical axis of the 
footing and ground level, respectively for a given magnitude 
of H/B and D/B.

In Fig.  20, for the scenario where D/B = 2.5 and 
H/B = 0, 1, 2, and 3, the failure mode behaves similarly 

to the previous scenario. However, the maximum extent 
of the influence zone in the vertical direction enlarges to 
3.5B due to the increased depth of the tunnel. For H/B = 4 
and 5, the roof and left vertical edge of the tunnel interact 
with both corners of the footing through the failure plane, 
and the influence zone of the failure plane remains nearly 
constant at approximately 11B.

In Fig. 21, for the scenario where D/B = 3, the failure 
plane depicts a typical general shear failure below the 

Table 2   Neural network constants of the optimal model for stability prediction of strip footing laying over horseshoe tunnel

Hidden layer 
neurons (i)

Hidden layer 
bias (b1)

Hidden weight, IW1 Output layer node, k = 1
�ci

�B
 (j = 1) GSI (j = 2) D/B (j = 3) H/B (j = 4) mi (j = 5) Output weight, IW2 Output bias, b2

1 2.5835 − 0.7442 0.7033 − 0.0220 − 1.7522 − 0.2553 0.014 0.8727
2 − 3.1188 1.4209 − 2.8613 0.2099 − 3.7487 2.9843 − 0.6246
3 1.6377 1.1937 − 0.0849 − 1.6579 3.6523 0.7118 0.2877
4 − 1.0048 − 1.7435 − 0.0252 − 1.0875 1.1033 0.0995 0.3257
5 − 1.1481 0.6619 − 1.7116 − 0.0543 − 0.2782 1.1423 0.2637
6 0.4115 0.8294 0.0096 − 0.8482 − 3.9851 − 0.0649 − 0.4873
7 − 2.7780 − 1.2147 2.1955 − 1.3819 1.0203 0.1385 − 0.7074
8 − 1.5262 − 0.3698 0.8612 − 2.5984 1.4403 − 1.5077 0.0100
9 − 0.5110 − 0.0839 0.2021 2.8771 0.1559 − 1.5077 − 0.1301
10 0.8053 1.5020 − 0.4906 − 1.6203 1.2611 − 0.1234 − 0.0391
11 0.3541 − 0.6232 − 0.0989 0.7402 − 2.6560 − 2.6611 0.2064

Fig. 19   Comparison of shear dissipation contours of footing above horseshoe shaped tunnel for various H/B with D/B = 1
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footing, similar to Terzaghi's failure mechanism for strip 
footing resting on semi-infinite soil mass (Craig 2004). 
The presence of the tunnel beyond the depth, D/B ≥ 3, 
has no impact on the generated failure plane. The zone of 
influence within rock mass, which is affected by the failure 
plane, exhibits symmetry. Additionally, this zone extends 
to a distance of 3.5 times the width of footing on both 
sides for the given value of H/B (except H/B = 0). This 
failure plane that has been observed in this study is similar 
to the one reported by Kumar and Chauhan (2022a), where 

a footing was situated above a circular unlined tunnel in 
a rock mass. The findings suggest that the presence of 
the tunnel beyond a depth ratio of D/B ≥ 3 does not have 
any significant impact on the generated failure plane. As a 
result, the influence zone of the rock mass affected by the 
failure plane is symmetrical and extends up to a distance 
of 3.5B on both sides of the footing, for a given value of 
H/B (except when H/B = 0).

Fig. 20   Shear dissipation contours of footing above horseshoe shaped tunnel for various H/B with D/B = 2.5

Fig. 21   Shear dissipation contours of footing above horseshoe shaped tunnel for various H/B with D/B = 3
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Conclusions

In this study, the stability number (Nv) for a strip foot-
ing subjected to uniformly distributed loading above 
a horseshoe-shaped tunnel in rock mass was analysed 
using adaptive finite element limit analysis (AFELA) and 
dependability of Nv with of various positional and rock 
mass parameters, including the depth of the tunnel (D/B), 
the horizontal distance of the tunnel (H/B), the geological 
strength index (GSI), the normalized uniaxial compressive 
strength of the rock mass (σci/γB), and the material con-
stant of the rock mass (mi) was investigated. Generally, the 
magnitude of Nv increases with increasing D/B and H/B, 
but when D/B ≥ 3, the magnitude of Nv remains constant 
for any given value of H/B, indicating that the presence 
of the tunnel has no impact on the stability of the footing. 
Increasing GSI and mi tends to increase the magnitude 
of Nv, but the impact of σci/γB on Nv is negligible. The 
failure mechanisms of tunnels can be classified into three 
categories based on the horizontal and vertical positions of 
the tunnels. These categories are as follows: (1) the com-
bined failure of the roof and vertical edge of the tunnel, 
(2) vertical edge failure only, and (3) general shear failure 
below the footing, which is similar to the one described in 
Terzaghi's failure mechanism for strip footings resting on 
semi-infinite soil mass. In the third category, there is no 
interaction between the tunnel and the footing is observed. 
A stable and high-performing neural network model with 
a single hidden layer of fifteen neurons was constructed 
and validated for evaluating the stability factor of the strip 
footing. These models and equation are specifically cus-
tomized for the ranges outlined in the present study and 
can be employed for assessing new data with great assur-
ance. The combination of AFELA with artificial neural 
network (ANN) and multiple linear regression (MLR) mod-
els is proposed as a reliable tool for geotechnical engineers 
to assess the stability of strip footing in inference of tun-
nel. The ANN and MLR models offer faster prediction of 
tunnel stability compared to AFELA.
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