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Abstract
A side orifice is a mechanism integrated into one or both side walls of a canal to redirect or release water from the main 
channel, and it has numerous applications in environmental engineering and irrigation. This research paper evaluates dif-
ferent artificial neural network (ANN) modeling algorithms for the estimation of discharge of a circular side orifice in open 
channels under free flow conditions. Four training algorithm were compared, namely, Gradient Descent (ANN-GD), Lev-
enberg–Marquardt (ANN-LM), Gradient-Descent with Momentum (GDM), and Gradient-Descent with Adaptive Learning 
(GDA). Among all the models developed for discharge prediction through a circular side orifice, the ANN-LM model, which 
employed the LM algorithm for optimization during the backpropagation process, had the best performance during both 
training and testing. The AARE, R, E, and RMSE values were 3.13, 0.9994, 0.9987, and 0.0005, respectively, during train-
ing and 4.43, 0.9976, 0.9952, and 0.0010, respectively, during testing. The predicted discharge from the ANN-LM model 
was compared to the discharge equation proposed in the literature, and the comparison revealed that the ANN-LM model 
reduced the error in predicted discharge by 50%.
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Introduction

A side orifice refers to a type of outlet located on the side 
of a channel that is commonly used to redirect water flow 
from the main channel. It is a useful mechanism for manag-
ing water levels in canals, controlling floods, and diverting 
water from irrigation or drainage systems. Side orifices are 
also employed for various purposes such as chemical dis-
tribution in factories and redirecting water flow from dam 
reservoirs. Side weirs and side orifices are characterized 
by variable flow with a declining discharge, and they have 
been widely researched due to their practical applications in 
environmental engineering and water management (Hussain 
et al. 2010; Hussain and Haroon 2019; Zaji and Bonakdari 

2014). In addition to side orifices, there are several other 
hydraulic structures used for redirecting water flow. These 
include sluice gates, weirs, intake structures, spillways, and 
others. These structures have been studied extensively in the 
field of hydraulic engineering and have various applications 
in water management, irrigation, and flood control. Some of 
the research studies that have investigated these hydraulic 
structures include Hashid et al. (2015), Hussain et al. (2010, 
2011, 2014, 2016), Ramamurthy et al. (1986, 1987), and 
Shariq et al. (2018). Wastewater treatment plants commonly 
utilize hydraulic structures such as weirs, sluice gates, and 
intake structures to distribute incoming flow to parallel pro-
cessing units like flocculation tanks, sedimentation tanks, 
and aeration basins. Understanding the science of accurately 
directing discharge from a channel is crucial in wastewater 
treatment plants for optimal processing of wastewater (Hus-
sain and Haroon 2019).

Side weirs have been extensively studied due to their 
wide range of applications in environmental and hydraulic 
engineering. The first analysis of flow over a side weir was 
conducted by De Marchi (1934), and since then, numerous 
researchers have conducted experimental, theoretical, and 
numerical studies on the hydraulics and flow characteristics 
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of side weirs of various shapes. These shapes include rec-
tangular, triangular, trapezoidal, elliptical, and circular 
(Emiroglu et al. 2011; Hager 1987; Mohammed et al. 2014; 
Mohammed and Golijanek-Jędrzejczyk 2020; Ranga Raju 
et al. 1979; Shariq et al. 2018; Vatankhah 2012; Vatankhah 
and Rafeifar 2020; Ramamurthy et al. 1986, 1987) devel-
oped an analytical method for calculating the flow rate of 
side orifices. Using laboratory measurements to validate 
their methods, they demonstrated that their suggested ana-
lytical model accurately predicted discharge data. A survey 
of the literature on flow through sharp-crested side weirs 
reveals that the coefficient of discharge depends mostly on 
the approach flow Froude number, flow depth in the main 
channel, weir crest height, weir length, top flow breadth, and 
cannel slope (Borghei et al. 1999). Experiments conducted 
in an effort to determine the coefficient of discharge for a 
circular side orifice under various geometric and hydrau-
lic conditions (Hussein et al. 2010). They had developed 
numerous multiple regression formulas for estimating the 
discharge coefficient based on their experimental results. 
Their proposed relations determined the coefficient based 
on the width of the channel, the diameter of the side orifice, 
and the Froude number. Hussein et al. (2011) investigated 
the flow pattern in a square-sided orifice and conducted 
tests to establish the discharge coefficient. They concluded 
that the coefficient of discharge for an orifice with square 
sides relates to the Froude number, the Reynolds number, 
and its geometric parameters. They had also developed a 
relationship for the coefficient of discharge that could be 
applied to both circular and square side orifices. Hussein 
et al. (2016) analysed and experimentally tested the hydrau-
lic behaviour of circular side orifices under submerged and 
non-submerged situations. By analysing the results of their 
experiment, they derived different formulas for calculating 
the discharge coefficient and explained that the errors for 
submerged and free situations are 10 and 5%, respectively. 
Moreover, Vatankhah and Mirnia (2018) measured dis-
charge coefficients for triangular side orifices under a vari-
ety of geometric and hydraulic situations. They developed 
discharge coefficient-influencing parameters and proposed 
estimate formulae. The coefficient of discharge for a steep 
crested side orifice under a free flow condition was estimated 
using three linear data-driven models: locally weighted lin-
ear regression (LWLR), multiple linear regressions with 
interaction (MLRI), and multivariate linear regression 
(MLR) (Jamei et al. 2021). Recently, researchers have pro-
posed Regularized Extreme Learning Machine (RELM) 
models to predict the discharge coefficient of triangular side 
orifices and compared their performance with the Extreme 
Learning Machine (ELM) model. Their findings suggest 
that the RELM model (with R = 0.995 and RMSE = 0.003) 
performed better than the ELM model (with R = 0.982 and 
RMSE = 0.010) (Mahmoudian et al. 2022; Moghadam et al. 

2022 Gerami Moghadam et al. (2022) ; Shen et al. 2022) 
also used artificial intelligence to predict the discharge coef-
ficient (Cd) of triangular side orifices. They trained their 
model using a backpropagation neural network (BPNN) 
and optimized its weights and thresholds using a sparrow 
search algorithm (SSA). Their results showed that the SSA-
BPNN model had high accuracy and strong generalization 
ability, with a maximum error of 6.56% and an average error 
of 1.73%. Mahmodian et al. (2019) presented self-adaptive 
extreme learning machine (SAELM) to model the discharge 
coefficient of rectangular and circular side orifices in open 
channels. The models were evaluated using Monte Carlo 
simulations and k-fold cross validation. The shape coeffi-
cient parameter was found to increase the accuracy of the 
models. The most effective parameter was identified as 
the ratio of the flow height above the weir to the weir crest 
height with R = 0.995, and RMSE = 0.004. Evidently, arti-
ficial intelligence (AI) models and learning machines have 
been successfully used for modelling and forecasting the dis-
charge coefficient of divergent structures. These models are 
precise, dependable equipment for simulating the discharge 
capacity and estimating the influence degree of various vari-
ables on the discharge coefficient. Moreover, AI techniques 
are so efficient that they enable researchers to save a signifi-
cant amount of time, money, and effort.

The past researchers proposed models for the estimation 
of discharge coefficient of weirs using Gene Expression Pro-
gramming (GEP) (Ebtehaj et al. 2015a; Azimi et al. 2017a; 
Hussain et  al. 2021). Hybrid neuro-fuzzy models have 
also been employed to predict the discharge coefficient of 
weirs and side orifices using hybrid neuro-fuzzy models 
(Khoshbin et al. 2016; Azimi et al. 2017b; Ebtehaj et al. 
2015b) used the Group Method of Data Handling (GMDH) 
to predict the discharge coefficient of orifices with square 
sides, while Akhbari et al. (2017) determined the discharge 
coefficient of triangular weirs using radial basis function 
neural networks. In addition, Azimi et al. (2017c) utilized 
the Extreme Learning Machine (ELM) to identify variables 
that influence the discharge coefficient of weirs positioned 
in trapezoidal canals. Support vector regression (SVM) was 
also used by Azimi et al. (2019) to simulate the discharge 
coefficient of rectangular side weirs. Furthermore, Bagheri-
far et al. (2020) used computational fluid dynamics (CFD) 
to model the flow field in a circular flume along a rectangu-
lar side weir, determining that the projected energy reduc-
tion along the side weir was minimal and that the specific 
energy along the side weir was mostly constant, resulting 
in an anticipated average difference between upstream and 
downstream specific energy of 2.1%.

Gerami Moghadam et al. (2022) developed a new algo-
rithm called the generalized structure group method of data 
handling (GSGMDH) to simulate the coefficient of discharge 
(Cd) of triangular lateral orifices. They identified that the 
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upstream Froude number and orifice height ratio were the 
most influential factors in the model. The study concluded 
that the GSGMDH algorithm performed better than the clas-
sical group method of data handling (GMDH) in predicting 
the Cd.

Extensive research for the prediction of discharge through 
the side orifice have been conducted using various artificial 
intelligence techniques. There is a gap in comparative study 
of different training algorithms of ANN for the prediction 
of discharge coefficient of side orifice. In the present study, 
a comparative study of four different training algorithms 
namely Gradient Descent (ANN-GD), Levenberg–Mar-
quardt (ANN-LM), Gradient-Descent with Momentum 
(GDM) and Gradient-Descent with Adaptive Learning 
(GDA) have been conducted for the estimation of discharge 
of a circular side orifice.

Experimental setup and data collection

Hussain et al. (2010) conducted experiments in a rectangular 
main channel of 9.15 m in length, 50 cm in width, and 50 cm 
in depth. At the end of the primary channel, a sluice gate was 
erected to regulate the flow’s depth. Two 20 cm diameter 
supply pipes supplied water to the main canal. On the left 
side of the channel, 5.18 m from the upstream end of the 
main channel, a circular orifice was created. The discharge 
from the aperture was channelled into a 3.80 m long, 26 cm 
wide, and 41 cm deep diversion canal, followed by a return 
channel. Experiments were performed with varied orifice 
diameters (D) of 5, 10, and 15 cm and with varying orifice 
crest heights (W) of 50, 10, 15, and 20 cm. Three to four 
main channel discharges were observed against each set of 
D and W measurements. By modulating the sluice gate, dif-
ferent flow depths were maintained in the main channel for 
each discharge value. Using a digital point gauge with a pre-
cision of 0.01 mm, the water level in the main channel near 
the orifice and across the crests for each run was measured.

From Hussain et al. (2010), a total of 214 experimen-
tal data have been acquired. The schematic diagram of the 
experimental setup and further description of the design of 
the experiment can be found in Hussain et al. (2010). Table 1 

contains the descriptive statistics of the variables employed 
in the present investigation. Randomly selected 70% of the 
available data sets were used for training, 15% for testing, 
and the remaining 15% for the validation of ANN models.

Modeling techniques

The modelling techniques and performance assessment 
parameters adopted in the present study are   discussed 
herein.

Artificial neural networks

Artificial neural networks (ANNs) are a popular method in 
machine learning that imitates the central nervous system 
of the human brain. ANNs are utilized to simulate complex 
non-linear processes and to match inputs with outputs, 
including for classification problems. ANNs consist of 
artificial neurons as the primary processing unit, and typi-
cally have an input layer, hidden layer(s), and output layer. 
The number of neurons in the hidden layers is determined 
by the complexity of the problem being studied, and all 
neurons are connected to one another with accompany-
ing weights. Feed-forward neural networks transfer input 
signals to the output layer through the hidden layers, with 
each neuron in a given layer receiving signals from all 
neurons in the layer below it. Training an ANN involves 
adjusting the weights between connections using input-
output data sets, typically utilizing the back-propagation 
algorithm. The training process consists of two phases: 
feed-forward and back-propagation. During the feed-for-
ward stage, the input layer receives data and transmits it 
to the output layer via the hidden layers, with each neuron 
receiving signals from all neurons in the layer below it and 
using related weights to sum all incoming inputs. This can 
be represented mathematically as Eq. (1) (Zurada 1994; 
Schalkoff 1997).

where, Netj = Input at neuron j; wij = associated weight 
between the connection of ith and jth neuron; n1 = number 
of neurons in the layer; xi = input at the ith neuron and 
b = bias weight. The input received (Netj) at jth neuron is 
then transformed using a non-linear sigmoid activation 
function to get the output yj for each neuron, as shown in 
Eq. (2).

(1)Netj =

n1
∑

i=1

wijxi + b

(2)yj = f (Netj) =
1

1 + exp(−�Netj)

Table 1   Basic statistics of the data

Variables D/B Ym/B W/B Qm
√

gB5

Q
√

gB5

                    Minimum 0.100 0.343 0.100 0.029 0.002
                    Maximum 0.300 1.187 0.500 0.283 0.053
                    Mean 0.192 0.797 0.249 0.152 0.019
                    Standard deviation 0.072 0.159 0.114 0.063 0.014
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where, f is a sigmoid activation function; yj = output at 
jth neuron and α is a slope parameter. In the back-propaga-
tion phase of training an artificial neural network (ANN), the 
weights between the connections wij are initialized, and the total 
error function for the training data set at the output layer is cal-
culated. After that, in the conventional back-propagation step, 
an optimization technique is used to minimize the total error 
function, and this is usually done using the Gradient Descent 
(GD) algorithm. However, there are alternative optimization 
techniques that can be used, such as the Gradient Descent with 
Momentum (GDM), Gradient Descent with Adaptive Learn-
ing (GDA), and Levenberg–Marquardt (LM) algorithms. These 
techniques can help to improve the speed and accuracy of the 
optimization process and can be particularly useful in situations 
where the GD algorithm may struggle to find an optimal solu-
tion or may converge too slowly.

By incorporating a momentum element in the Gradi-
ent Descent with Momentum (GDM) algorithm, it can 
learn faster and potentially overcome local minima more 
efficiently. Both regular Gradient Descent (GD) and GDM 

Development of ann model

Discharge (Q) through a sharp-crested side orifice is deter-
mined by flow depth in the main channel (Ym), crest height 
(W), orifice diameter (D), main channel discharge (Qm), 
and channel width (B). Using dimensional analysis, all 
variables have been non-dimensionalized to generalise the 
ANN model. In this study, a feed-forward back-propaga-
tion ANN model was created to determine the dis-
charge  through a side orifice with a sharp crest. Three 
layers comprise the constructed ANN model: input layer, 
hidden layer, and output layer. The input layer has four 
neurons, while the output layer contains a single neuron. 
The ANN model uses the non-dimensional terms D/B, 
Ym/B, W/B, and Qm

√

gB5
 as inputs corresponding to four neu-

rons of the input layer and the non-dimensionalized 

(3)RMSE =

√

1

n

∑
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Qobserved − Qpredicted

)2
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Fig. 1   Artificial neural network architecture

utilize a fixed learning rate throughout the training process. 
However, since GD and GDM are highly sensitive to the 
correct selection of the learning rate, their performance can 
be enhanced by allowing the learning rate to change during 
training. The Gradient Descent with Adaptive Learning rate 
(GDA) algorithm adjusts the learning step size during the 
training process to keep it as large as possible while main-
taining stable learning. Another algorithm that improves 
upon these methods is the Levenberg–Marquardt (LM) algo-
rithm, which uses both first and second-order derivatives to 
search for the optimal solution. However, the performance 
of these algorithms depends on the initialization procedure 
and is problem-specific, so it is necessary to test them for 
each specific situation (Hagan and Menhaj 1994; Marques 
de Sa JM et al (2007)). .

Statistical metrics

To evaluate the performance of the developed ANN model 
five different statistical measures, namely, root mean square 
error (RMSE), average absolute relative error (AARE), Pear-
son’s coefficient of correlation (R), Nash–Sutcliffe efficiency 
(E), and mean squared error (MSE) were used in this study 
(Eqs. (3)–(7)).



277Modeling Earth Systems and Environment (2024) 10:273–283	

1 3

discharge Q
√

gB5
 as an output as shown in Fig. 1. The con-

structed feed forward back-propagation neural network 
model is trained to assess the performance parameters. The 
experimental data as shown in Table 1 were utilised to 
train the ANN model’s input-output pattern. Following the 
feed-forward step, the related weights between the various 
connections of artificial neurons were initialised, and the 
total error function was determined at the output layer. In 
the back-propagation step, four distinct algorithms, GD, 
GDM, GDA, and LM, were employed to modify the 
weights appropriately by reducing the output layer’s total 
error function.

Results and discussion

The performances of developed ANN models using four 
different training algorithms, namely, ANN-GD, ANN-
GDM, ANN-GDA, and ANN-LM models, in prediction 
of circular side orifice discharge have been evaluated by 
using the experimental data collected by Hussain et al. 
(2010). First, the best architectures of the ANN models 

have been determined by using the training and testing 
data sets. To determine the optimal neural network archi-
tecture, the trial-and-error method was employed, which 
involved fixing the size of the hidden layer (i.e., the num-
ber of neurons in the hidden layer) and comparing the 
RMSE values for different hidden layer sizes ranging from 
1 to 20. The architecture which provided the least value 
of RMSE is selected as the best architecture as shown 
in Fig. 2. The performance statistics of ANN-GD, ANN-
GDM, ANN-GDA, and ANN-LM with number of hidden 
neurons are shown in Tables 3, 4, 5 and 6 respectively. 
From Fig. 2, it can be observed that architectures 4-1-1, 
4-1-1, 4-2-1, and 4-8-1 are the best architectures found 
for the ANN-GD, ANN-GDM, ANN-GDA, and ANN-LM 
models, respectively. The parameters for algorithms, GD, 
learning rate (α) = 0.01; GDM, α = 0.01, momentum factor 
(η) = 0.9; GDA, α = 0.01, ratio to increase α = 1.05, ratio 
to decrease α = 0.7; and LM, initial μ = 0.001, decrease 
factor for μ = 0.1, increase factor for μ   = 10 were found 
to be the best during training among all the trial values of 
parameters.

After development of these models, their performances 
in discharge prediction from the circular side orifice are 

Fig. 2   Architecture selection for various ANN models
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compared with each other. The performances of the devel-
oped ANN models have been evaluated using five differ-
ent statistical measures, namely, root mean square error 
(RMSE), average absolute relative error (AARE), Pearson 

coefficient of correlation (R), Nash–Sutcliffe efficiency (E), 
and mean squared error (MSE) (Eqs. (3)–(7)).

Table 2 displays the statistical measures obtained from 
various models created in this study. The ANN-LM model, 
which used the Levenberg–Marquardt algorithm as the opti-
mization technique during the backpropagation step, out-
performed all other models for predicting discharge from a 
circular side orifice. During training, the ANN-LM model 
achieved an AARE value of 3.13, an R value of 0.9994, an 
E value of 0.9987, and an RMSE value of 0.0005. During 
testing, the model achieved an AARE value of 4.43, an R 
value of 0.9976, an E value of 0.9952, and an RMSE value 
of 0.0010.

The scatter plots of the discharge obtained from dif-
ferent ANN models and the experimental discharge data 
are plotted and shown in Fig. 3. From Fig. 3, it can be 
observed that the discharge obtained from ANN-LM 
which utilized the LM algorithm during training  in 

Table 2   Performance evaluation of ANN models

Models AARE R E RMSE MSE

During training
 ANN-GD 7.12 0.9861 0.9722 0.0387 0.0015
 ANN-GDM 8.47 0.9890 0.9778 0.0361 0.0013
 ANN-GDA 5.03 0.9959 0.9911 0.0223 0.0005
 ANN-LM 3.13 0.9994 0.9987 0.0005 3E-07

During testing
 ANN-GD 7.77 0.9865 0.9713 0.0373 0.00139
 ANN-GDM 10.42 0.9862 0.9712 0.0355 0.00126
 ANN-GDA 8.69 0.9863 0.9698 0.0408 0.00166
 ANN-LM 4.43 0.9976 0.9952 0.0010 9.6E-07

Fig. 3   Scatter plot between Q (ANN) and Q (experiment)
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Table 3   Performance of 
ANN-GD algorithm for 
different number of hidden 
neurons

 n Training Testing

AARE R E RMSE MSE AARE R E RMSE MSE

1 7.12349 0.98612 0.97218 0.03871 0.00150 7.769432 0.98646 0.97125 0.03729 0.00139
2 19.23918 0.97268 0.94611 0.05557 0.00309 20.7471 0.96685 0.93378 0.05840 0.00341
3 22.07816 0.96460 0.93044 0.06118 0.00374 22.04334 0.96326 0.90780 0.05684 0.00323
4 12.20669 0.96647 0.93385 0.05821 0.00339 14.30834 0.97026 0.93106 0.06725 0.00452
5 13.14649 0.97624 0.95272 0.04902 0.00240 12.61204 0.98364 0.96727 0.04507 0.00203
6 9.72827 0.97702 0.95452 0.04917 0.00242 9.886589 0.98753 0.97484 0.03854 0.00149
7 14.57213 0.97681 0.95404 0.04887 0.00239 16.02781 0.97708 0.94950 0.05331 0.00284
8 16.83228 0.96563 0.93224 0.06157 0.00379 17.93485 0.94438 0.87641 0.07729 0.00597
9 14.87234 0.97604 0.95265 0.04912 0.00241 17.82925 0.96706 0.92553 0.06550 0.00429
10 18.46617 0.95626 0.91403 0.06735 0.00454 19.86551 0.93777 0.87921 0.07492 0.00561
11 17.31506 0.97893 0.95775 0.04746 0.00225 25.06623 0.95390 0.90595 0.07399 0.00547
12 21.11491 0.95046 0.90335 0.06954 0.00484 23.5021 0.94606 0.88453 0.09096 0.00827
13 20.01323 0.94785 0.89814 0.07190 0.00517 18.61501 0.96490 0.93053 0.06251 0.00391
14 20.82898 0.95033 0.90267 0.06999 0.00490 24.58057 0.93766 0.86425 0.09529 0.00908
15 17.85042 0.96912 0.93846 0.05999 0.00360 15.61687 0.97512 0.94338 0.05350 0.00286
16 18.31050 0.97212 0.94340 0.05302 0.00281 23.94243 0.95709 0.91395 0.06632 0.00440
17 14.07079 0.97937 0.95897 0.04724 0.00223 14.18084 0.98244 0.96052 0.04790 0.00229
18 18.15245 0.96739 0.93487 0.05914 0.00350 20.87539 0.96563 0.91072 0.06811 0.00464
19 17.06923 0.96870 0.93811 0.06002 0.00360 17.14326 0.96398 0.92395 0.05809 0.00337
20 13.46974 0.97215 0.94340 0.05376 0.00289 16.19028 0.97571 0.94883 0.06042 0.00365

Table 4   Performance of ANN-
GDA algorithm for different 
number of hidden neurons

 n Training Testing

AARE R E RMSE MSE AARE R E RMSE MSE

1 6.21076 0.99265 0.98448 0.02844 0.00081 7.80324 0.98725 0.97421 0.03609 0.00130
2 5.02848 0.99590 0.99108 0.02229 0.00050 8.69497 0.98632 0.96976 0.04076 0.00166
3 10.09181 0.98732 0.97374 0.03654 0.00134 9.87832 0.98801 0.97508 0.03896 0.00152
4 15.45926 0.98253 0.96091 0.04640 0.00215 17.04179 0.96952 0.93421 0.05238 0.00274
5 10.22283 0.98395 0.96763 0.04219 0.00178 11.93987 0.97683 0.94542 0.05282 0.00279
6 11.90309 0.98285 0.96534 0.04412 0.00195 9.29634 0.98412 0.96700 0.03941 0.00155
7 10.83500 0.98813 0.97233 0.04003 0.00160 12.48740 0.98270 0.96452 0.04485 0.00201
8 18.51553 0.97513 0.93844 0.05661 0.00321 17.39981 0.95942 0.90610 0.06920 0.00479
9 18.16975 0.97169 0.94049 0.05645 0.00319 13.34241 0.97555 0.95020 0.05402 0.00292
10 16.27942 0.97131 0.93910 0.05341 0.00285 15.56221 0.98029 0.95533 0.05773 0.00333
11 15.82883 0.97448 0.94674 0.05439 0.00296 15.12917 0.98486 0.96132 0.04284 0.00184
12 19.40015 0.96782 0.92933 0.06330 0.00401 19.68721 0.96240 0.92214 0.06457 0.00417
13 9.55446 0.99027 0.97971 0.03207 0.00103 15.50169 0.98893 0.97630 0.03622 0.00131
14 19.70851 0.95613 0.90602 0.06980 0.00487 21.41736 0.95678 0.87871 0.07517 0.00565
15 20.58981 0.95736 0.90827 0.06871 0.00472 20.12635 0.94578 0.88876 0.07749 0.00600
16 22.49097 0.95373 0.88853 0.07370 0.00543 30.51483 0.96388 0.88872 0.08194 0.00671
17 24.54846 0.94961 0.88744 0.08022 0.00643 25.29822 0.95114 0.85003 0.08308 0.00690
18 14.81857 0.97408 0.94691 0.05611 0.00315 18.54464 0.96242 0.91362 0.05872 0.00345
19 24.66156 0.93071 0.84309 0.08812 0.00776 25.99777 0.91974 0.79919 0.09415 0.00886
20 17.85955 0.97348 0.94439 0.05377 0.00289 19.44976 0.98007 0.95364 0.05067 0.00257
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Table 5   Performance of ANN-
GDM algorithm for different 
number of hidden neurons

 n Training Testing

AARE R E RMSE MSE AARE R E RMSE MSE

1 8.46930 0.98896 0.97784 0.03605 0.00130 10.42419 0.98615 0.97116 0.03547 0.00126
2 40.95074 0.69245 0.47886 0.16445 0.02704 44.31118 0.73073 0.49749 0.18158 0.03297
3 12.19391 0.98176 0.96379 0.04259 0.00181 11.44195 0.98107 0.95975 0.04966 0.00247
4 20.34645 0.95337 0.90876 0.06942 0.00482 17.00934 0.95433 0.90856 0.06740 0.00454
5 17.02930 0.97476 0.95010 0.05135 0.00264 13.00672 0.97228 0.94331 0.05506 0.00303
6 19.76346 0.96325 0.92760 0.06238 0.00389 18.49399 0.95114 0.89769 0.07833 0.00614
7 16.70098 0.95762 0.91701 0.06616 0.00438 15.78975 0.95713 0.91133 0.06806 0.00463
8 12.72278 0.98657 0.97314 0.03666 0.00134 13.43321 0.98725 0.96761 0.04276 0.00183
9 12.65087 0.97194 0.94465 0.05598 0.00313 12.9571 0.95303 0.90488 0.05933 0.00352
10 11.79053 0.98776 0.97562 0.03813 0.00145 12.42337 0.98313 0.96417 0.03937 0.00155
11 19.72507 0.96640 0.93345 0.05984 0.00358 30.80636 0.95378 0.90392 0.08089 0.00654
12 18.77622 0.97348 0.94763 0.05355 0.00287 18.7442 0.95959 0.90554 0.05072 0.00257
13 16.04448 0.98133 0.96261 0.04554 0.00207 12.6278 0.98681 0.97317 0.03951 0.00156
14 14.45402 0.97688 0.95411 0.05029 0.00253 20.24894 0.94295 0.88785 0.07604 0.00578
15 18.48220 0.97049 0.94136 0.05861 0.00344 22.2066 0.96027 0.91270 0.06996 0.00489
16 22.39401 0.94728 0.89709 0.07606 0.00579 27.76485 0.93762 0.87178 0.07680 0.00590
17 15.98567 0.97466 0.94924 0.05372 0.00289 13.53196 0.96958 0.93467 0.05402 0.00292
18 22.12893 0.95601 0.91111 0.07028 0.00494 22.23179 0.96631 0.92343 0.06349 0.00403
19 16.34340 0.96661 0.93410 0.05935 0.00352 13.21536 0.96804 0.93684 0.06237 0.00389
20 16.62798 0.97021 0.93973 0.05666 0.00321 15.22377 0.93053 0.85955 0.07985 0.00637

Table 6   Performance of ANN-LM algorithm for different number of hidden neurons

 n Training Testing

AARE R E RMSE MSE AARE R E RMSE MSE

1 9.791 0.99660 0.99321 0.0012485 0.0000016 10.955 0.99401 0.98667 0.00156 0.00000243
2 4.428 0.99808 0.99617 0.0008654 0.0000007 6.209 0.99614 0.99158 0.00159 0.00000252
3 4.938 0.99827 0.99654 0.0008820 0.0000008 6.253 0.99657 0.99291 0.00131 0.00000171
4 4.326 0.99815 0.99631 0.0009121 0.0000008 6.122 0.99853 0.99698 0.00071 0.00000051
5 3.890 0.99859 0.99719 0.0007653 0.0000006 4.902 0.99798 0.99591 0.00092 0.00000084
6 3.725 0.99832 0.99664 0.0008275 0.0000007 3.375 0.99935 0.99842 0.00060 0.00000035
7 5.134 0.99803 0.99558 0.0009922 0.0000010 4.244 0.99858 0.99695 0.00083 0.00000068
8 3.132 0.99936 0.99870 0.0005268 0.0000003 4.430 0.99763 0.99523 0.00098 0.00000096
9 3.063 0.99901 0.99803 0.0006318 0.0000004 5.016 0.99521 0.99029 0.00128 0.00000164
10 4.536 0.99779 0.99557 0.0009645 0.0000009 3.007 0.99957 0.99899 0.00048 0.00000023
11 4.192 0.99867 0.99721 0.0007917 0.0000006 6.116 0.99771 0.99529 0.00103 0.00000107
12 4.245 0.99804 0.99606 0.0008946 0.0000008 4.154 0.99932 0.99842 0.00067 0.00000045
13 3.272 0.99872 0.99743 0.0007538 0.0000006 3.915 0.99878 0.99720 0.00066 0.00000044
14 3.104 0.99875 0.99749 0.0007281 0.0000005 5.432 0.99787 0.99569 0.00097 0.00000094
15 4.232 0.99813 0.99626 0.0008603 0.0000007 5.027 0.99798 0.99594 0.00091 0.00000082
16 3.794 0.99854 0.99708 0.0007832 0.0000006 4.410 0.99843 0.99687 0.00086 0.00000074
17 3.759 0.99861 0.99720 0.0007638 0.0000006 4.158 0.99927 0.99836 0.00067 0.00000044
18 4.153 0.99857 0.99713 0.0007946 0.0000006 5.032 0.99744 0.99472 0.00097 0.00000094
19 3.685 0.99793 0.99585 0.0008786 0.0000008 2.722 0.99937 0.99855 0.00065 0.00000042
20 3.582 0.99875 0.99749 0.0007181 0.0000005 4.750 0.99826 0.99643 0.00091 0.00000083
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perfect agreement with  the discharge obtained from the 
experiments with excellent agreement.

Comparison of developed ANN model 
with Hussain et al. (2010) model

Hussain et al. (2010) investigated the discharge over a circular 
side orifice and developed Eq. (8) to estimate the discharge.

To further assess the performance of the proposed ANN-
LM model, the predicted discharge values were compared to 
those obtained from the Eq. (8) proposed by Hussain et al. 

(8)Q =
�

4

�

0.678 − 0.072Fr − 0.130
D

B

�

√

2gHD2

(2010). Figure 4 shows that the ANN-LM model is closer to 
the line of agreement than Eq. (8). Additionally, the scatter 
plot of the ANN-LM model falls within the ± 5% error line, 
while the discharge predicted using the  Eq. (8) falls within 
the ± 10% error line, as shown in Figs. 5 and 6, respectively. 
These results indicate that the ANN-LM model proposed in 
this study has reduced the error by 50%.

Conclusions

This research utilized artificial intelligence technology to pre-
dict the discharge from a circular side orifice and compared 
the performance of four different ANN training algorithms: 
ANN-GD, ANN-GDM, ANN-GDA, and ANN-LM. To deter-
mine the optimal neural network architecture, the trial-and-
error method was employed, which involved fixing the size 
of the hidden layer (i.e., the number of neurons in the hidden 
layer) and comparing the RMSE values for different hidden 
layer sizes ranging from 1 to 20. The optimal structures were 
found to be 4-1-1, 4-1-1, 4-2-1, and 4-8-1 for the ANN-GD, 
ANN-GDM, ANN-GDA, and ANN-LM models, respectively. 
The ANN-LM model that applied the LM algorithm as an 
optimization approach in the backpropagation step outper-
formed all other models, with AARE, R, E, and RMSE val-
ues of 3.13, 0.9994, 0.9987, and 0.0005 during training and 
4.43, 0.9976, 0.9952, and 0.0010 during testing, respectively. 
Moreover, when compared to the discharge equation proposed 
in literature, the ANN-LM model was found to significantly 
reduce the error in discharge prediction by 50%. This indicates 
that the proposed ANN-LM model is highly accurate and can 
be utilized for discharge prediction from circular side orifices.

Fig. 4   Comparison of performance of discharge prediction models 
proposed in this study and that of Hussain et al. (2010)

Fig. 5   Observed discharge verses predicted discharge using ANN-LM 
model

Fig. 6   Observed discharge verses predicted discharge using Eq. (8)
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