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Abstract
Machine learning is being used by researchers and computer scientists to develop a new method for predicting rainfall. Due 
to the non-linear relationship between input data and output conditions, rainfall prediction is hard, so deep neural network 
(DNN) models substitute for costly, complex systems. Deep neural network-based weather forecasting models can be designed 
quickly and cheaply to predict rainfall. On the other hand, water levels depend on rainfall. Unpredictable rainfall due to 
climate change might cause floods or droughts. Many individuals, especially farmers, rely on rain forecasts. In our study, we 
focus on the area of marshes in southern Iraq, some of the most famous landmarks in the area (and the world), where the Shatt 
al-Arab flows into the Arabic Gulf and the Tigris and Euphrates rivers developed within the Mesopotamian plain to create 
a natural balance. Since the beginning of the 1980s, the wetlands, sometimes known as "the marshes," have experienced 
droughts. And by the late 1990s, a sizable portion of the marshes had dried up, leaving the arid and salty Sabkha lands void 
of life, particularly lands with vast bodies of water and high levels of human activity. Moreover, the corresponding regions 
have undergone visible hydrological and climatic changes. In this study focuses on the marshes of southern Iraq and aims to 
develop a rainfall forecasting model. We propose a novel approach based on optimized LSTM and hybrid deep learning algo-
rithms to improve the forecasting of average monthly rainfall. To evaluate the efficiency of the predictions, a comparison of 
the predicted rainfall and the actual recorded rainfall is made, and the performance and accuracy of the models are examined. 
The hybrid convolutional stacked bidirectional long-short term memory (CNN-BDLSTMs) outperformed the other models.
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Introduction

Wetlands are an important natural resource because they 
have a wide variety of plants and animals and can be used to 
make money for local economies by doing things like graz-
ing cattle or harvesting sugar cane (Maxwell 1957; Young 
1977; Tiner et al. 2015; Albarakat et al. 2018). Some of the 
most densely populated parts of the Earth's water surface are 
swamps, which are wetland ecosystems inhabited by large 
quantities of aquatic plants. Among these is Phragmites in 
Australia, which can be found in almost every swamp (Al-
Handal and Hu 2015). Hydrological changes can destroy 
wetlands, and climate change and human intervention have 

led to the loss of wetlands in many parts of the world. Land 
use and hydrological changes have affected climatic condi-
tions at the local level (Albarakat et al. 2018).

The swamps of Mesopotamia are one of the old-
est ecosystems in the world. They are located between 
three Iraqi governorates: Basra, Dhi Qar, and Maysan. 
The Mesopotamian Marshes are the major wetlands in 
the Middle East and Western Asia and have an important 
role in the region's ecosystem. The lower Mesopotamian 
basin between the Euphrates and Tigris rivers has flat 
areas known as flood plains, formed by the buildup of 
sedimentary material moved upstream by surface waters. 
Currently, the area of the three marshes ranges from 
about 10,500 square kilometers to 20,000 square kilom-
eters. These include the marshes of Hammar, the Central 
Marshes, and the Al-Hawizeh marshes. The entire upper 
Arabian Gulf ecosystem depends on the Mesopotamian 
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marshes' hydrology (https://​earth​obser​vatory.​nasa.​gov/​
images/​1716) (Albarakat et al. 2018). Due to their size, 
abundance of aquatic vegetation, and isolation from other 
similar systems, the marshes are crucial for maintaining 
biodiversity in the Middle East (Al-Handal and Hu 2015; 
Douabul et al. 2013). The Tigris and Euphrates rivers use 
them as natural wastewater treatment systems, filtering 
fertilizers out of the water before releasing it into the Ara-
bic Gulf. The drying of over 10,000 square kilometers of 
wetlands and lakes will have a significant impact on the 
local microclimate. Removing vegetation from wetlands 
will result in significantly lower rates of evaporation and 
moisture, leading to changes in precipitation patterns (Par-
tow 2001). As well as continuous temperature increases, 
particularly during the long and hot summer. The reed 
layer will no longer protect the marsh from strong, dry 
winds above 40 °C (Maltby 1994).

The results of water scarcity and pollution, extreme ther-
mal conditions, and increased vulnerability to toxic dust 
storms that can devastate drinking salt ponds and dry swamp 
basins are just a few of the ways that ecosystem degrada-
tion on this scale can seriously harm human health (Pört-
ner et al. 2022). The exposed salt crusts and dry marsh soil 
will generate higher volumes of dust, and wind erosion will 
distribute various impurities, affecting thousands of square 
kilometers outside of Iraqi borders (Partow 2001). Addition-
ally, due to wind erosion and sand erosion from dry swamps 
and surrounding deserts, the fragile arable land near the for-
mer swamp is likely to contribute to land degradation and 
desertification (Meng et al. 2020). The flow of the Tigris and 
Euphrates rivers changed in the late 1980s and early 1990s 
after the construction of dams and canals; swamps dried up 
due to human-made dams and politically motivated drainage 
practices (Parsaie 2016).

Degradation is the shrinking of the area covered in veg-
etation into arid land. All three of the noted marshes have 
shrunk, which has caused a massive increase in arid areas. 
The swamp has degenerated into a wasteland as a result. The 
Hammar and Fasat Marshes are the most severely degraded, 
with a 95% degradation rate. The Karkheh River contin-
ues to supply water from Iran to the northeastern portion of 
the Hawizeh swamp, preserving about 30% of the land area 
(Partow 2001). One of the biggest ecological disasters affect-
ing wetlands worldwide is large-scale drainage modification 
(Mohamed and Hussain 2016).

The majority of the embankment dams and dams on the 
Tigris and Euphrates rivers were uprooted by the swamp's 
residents after the regime responsible for these drainage 
changes was overthrown in late 2003, and water started to 
flow back into the swamp (Fitzpatrick 2004). After three 
years of natural flow, Mesopotamia's swamps started to 
recover. Between 50 and 60% of the original population of 
plant and animal species have returned, demonstrating the 

wetlands' resilience (Richardson 2005; Richardson et al. 
2005).

Although drought is a natural, somewhat unpredictable 
phenomenon, it can be observed, studied, and predicted 
using contemporary techniques. A catastrophic drought 
occurs when the precipitation system fails, affecting the 
water supply for both natural and agricultural systems and 
human activities. Because rain is one of the most important 
sources of water, its presence or absence can have a signifi-
cant impact on wetlands, particularly due to dams built by 
neighboring countries with a lack of rainfall, which caused 
drought and reduced the wetlands area (Raj et al. 2018; 
Adham 2018; Awchi and Jasim 2017).

The main goal of our research is to study and predict 
rainfall. The University of East Anglia Climatic Research 
Unit (CRU) studied rainfall from 1901 to 2020 and created 
long-term rainfall predictions. We analyzed these data via 
the Google Earth based CRU TS add-on interface. Previous 
studies have used satellite imagery to examine the impact of 
rainfall and climate changes on the landscape over 16 years 
(Rabbani et al. 2022; Alhumaima and Abdullaev 2020). We 
use hybrid deep learning models for modeling and predict-
ing rainfall using univariate time series data. This research 
aims to improve monthly rainfall forecasts for the marshes 
of Hawizeh, Central, and Al Hammar. For this purpose, we 
employ data visualization techniques, such as data explora-
tion (patterns, unusual observations, changes over time, or 
structural breaks). Different underlying assumptions con-
cerning the estimate of data were employed in the hybrid 
machine learning models used in this research.

Our approach that combines different types of deep neu-
ral networks with probabilistic approaches to model uncer-
tainty. Different kinds of deep learning networks, however, 
deep learning algorithms do not model uncertainty, the way 
Bayesian, or probabilistic approaches do. Hybrid learning 
models combine the two kinds to leverage the strengths of 
each. Our approach (CNN-BDLSTMs) combines CNN and 
BDLSTMs, and we find that it outperforms the other models.

Materials and proposed algorithm 
framework

Study area

The Mesopotamian Marshes of Southern Iraq are situated 
between 46.4° E and 48° E longitude and 30.5° N and 32.2° 
N latitude. The wetlands consist of shallow freshwater lakes 
with varying levels of permanence. The mean annual pre-
cipitation and mean annual temperature are less than 25 mm/
year and 26.5 °C, respectively, based on the GLDAS study, 
which allows this land area to be classified as arid (Albarakat 
et al. 2018; Peltier 1950; Fookes et al. 1971).

https://earthobservatory.nasa.gov/images/1716
https://earthobservatory.nasa.gov/images/1716
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Figure 1 shows the normalized difference moisture 
index (NDMI) for the Mesopotamian marshes in southern 
Iraq in 2000, 2010, and 2020 based on MODS satellite 
data. Images were taken in October, when the climatic 
conditions improved. Despite this, drought rates were 
high. The lowest soil moisture index was noted in 2000 
(12%) due to drought and lack of rain; in 2010, the per-
centage improved due to re-flooding (30%); and the high-
est index was recorded in 2020 (56%).

Dataset

To analyze CRU data we installed the CRU TS interface to 
Google Earth Pro. Then we selected the area of study and 
loaded the relevant data. The dataset is updated annually and 
includes data from 1901 to 2020. The interface is available 
on CRU website https://​cruda​ta.​uea.​ac.​uk/​cru/​data/​hrg/​cru_​
ts_4.​02/​ge/.

The highest monthly average in the Hawizeh Marsh 
was recorded in January 1974 (see Fig. 2). We noted high 

Fig. 1   Location of the Meso-
potamian marshes in Southern 
Iraq and NDMI for 2000, 2010, 
and 2020

Fig. 2   Monthly average rainfall 
in the Hawizeh Marsh

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/ge/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/ge/
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volatility in rainfall after 1940, indicating a structural break 
at the variance level (shift). The highest rainfall levels in the 
Central Marsh were recorded in January 2004 (see Fig. 3). 
We noted a change in average rainfall after 1940, indicating 
a structural break at the monthly average level (location). 
The highest monthly average rainfall in the Al Hammar 
Marsh was recorded in April 1939. We noted a change in 
mean rainfall after 1940, indicating a structural break at the 
mean level (location) (Fig. 4).

Figure 5 shows the strength of the relationship between 
variables: there is a nearly perfect correlation between Al 
Hammar Marsh and Hawizeh Marsh and between cen-
tral Marsh and Hawizeh Marsh, and a perfect correlation 
between central Marsh and Al Hammar Marsh. This indi-
cates that the rainfall in one region coincides with the rain-
fall in the other regions.

Proposed algorithm framework

The mechanism underlying our proposed approach for mod-
eling and forecasting average rainfall is depicted in Fig. 6. 
The algorithm consists of the following steps: CSV data and 
the developed hybrid deep learning algorithm are available 
on GitHub (Abotaleb 2022).

First step: Datasets on average rainfall in the Hawizeh 
Marsh, Central Marsh, and Al Hammar Marsh are gener-
ated in Google Earth Pro to train the algorithm. Then, the 
"cruts_4.06_gridboxes.kml" add-on interface is launched 
to display climatic data from January 1901 to December 

2020. We then load the average rainfall data for Hawizeh 
Marsh, Central Marsh, and Al Hammar Marsh. Detailed 
information about each rainfall dataset is stored in a sepa-
rate CSV file. Each CSV file contains two columns: the 
first is the date, and the second is the average rainfall 
value. There are 1440 rows of data, resulting in a table 
of (1440). Al Hammar Marsh has a file size of 13.4 KB, 
Central Marsh—13.5 KB, and Hawizeh Marsh—13.7 KB.

Fig. 3   Monthly average rainfall 
in the Central Marsh

Fig. 4   Monthly average rainfall 
in the Al Hammar Marsh

Fig. 5   Correlation heatmap
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Second step: Input time series data for monthly average 
rainfall in Hawizeh Marsh, Central Marsh, and Al Hammar 
Marsh into our algorithm. Then the input parameters for the 
deep learning model (optimizer, loss function, number of 
epochs, and number of neural networks) are entered, and 
the algorithm is started.

Third step: Preprocessing and training require memory 
and time. Back propagating extended sequences create a 
trained model with poor performance. The data are pre-
pared via normalization and standardization before being 
input into neural networks. Using data normalization, the 
standard deviation is set to 1 and the mean is set to 0.

Fourth step: The dataset is split into three sets namely, test-
ing, validation, and training sets. The size of the test set is 

20% of the dataset. The remaining 80% is split validation set 
of (20%) and training set of (80%). The model is trained using 
the training set to improve the model performance. During 
the training, the test for the overfitting is performed using the 
validation set. However, the model performance evaluation is 
performed using the test set.

Fifth step: The algorithms are executed for the CNN (Con-
volutional Neural Network), LSTM, LSTMs (Stacked LSTM), 
BDLSTM (Bidirectional LSTM), BDLSTMs (Stacked Bidi-
rectional LSTM), GRU (Gated Recurrent Unit), Conv-LSTMs, 
and Conv-BDLSTMs models.

Sixth step: Evaluation of model performance.
Seventh step: Use best models in forecasting.

Fig. 6   Schematic of the pro-
posed algorithm framework
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Methodology and optimization

In contrast to Bayesian and probabilistic approaches, deep 
learning algorithms do not account for uncertainty in their 
calculations. Several varieties of deep neural networks are 
integrated with probabilistic techniques to describe uncer-
tainty in our suggested model. These hybrid models combine 
the best features of both types of deep learning networks. We 
discover that our suggested hybrid model outperforms the 
other models by combining a convolutional neural network 
(CNN) with bi-directional long short-term memory (BDL-
STMs), and we call this method CNN-BDLSTMs. Both data 
and code come from (Abotaleb 2022).

Methodology

We use eight deep-learning models to forecast rainfall.

A. Convolutional neural network (CNN)

The convolutional neural network has a double-convo-
lutional layer architecture to facilitate spatial advantage 
extraction. At each time step t, the flow data xs

t
 is convolved 

with itself in a one-dimensional space. Specifically, the 
local perceptual domain is acquired using a sliding and one-
dimensional convolution kernel filters (Graves et al. 2013). 
The method of the twisted kernel filter is demonstrated as 
follows:

where Ys
t
 is the convolutional layer output; Ws is the filter 

weights; xs
t
 is the input traffic flow at time t; and � is the 

activation functions.
Because CNNs can be trained to recognize patterns in 

time series data and utilize that information to make predic-
tions about the future, they are a valuable tool for anybody 
working with this type of information (Koprinska et al. 
2018). CNN can also automatically recognize and capture 
features from class data without presuppositions and feature 
ordering. They may also work well with time series contain-
ing high noise by filtering out the noise in each subsequent 
layer, generating a set of useful information and features and 
extracting only meaningful features (Koprinska et al. 2018).

(1)Ys
t
= �

(
Ws ∗ xs

t
+ bs

)
,

After moving the input information to the Conv layer, a 
ReLU is used to extract patterns. Then the max pooling layer 
is used to reduce the number of parameters and move the 
information to a lower dimension. Flatten is used in Keras to 
normalize data to the number of elements in the tensor. These 
mechanisms are displayed in Fig. 7 below.

According to the model's processing mechanism for the 
data from Fig. 7, the model is trained to extract data patterns 
with the training stopping at the point that achieves maximum 
accuracy and least information loss. The model weights are 
randomly optimized by improving the accuracy of the training 
data in the model from one layer to another using the keras 
time series data generator (Muftah et al. 2022).

B. Long short‑term memory (LSTM)

When solving the problem of vanishing gradients, long short-
term memory (LSTM) was one of the earliest and most effec-
tive methods to be developed (Hochreiter and Hochreiter 1977; 
Gers et al. 2002). In this context, "long-term" refers to simple 
recurrent neural networks storing information about their pre-
vious decisions as weights. A gradual shift in weights occurs 
throughout training when new information about the data is 
retrieved and used to calibrate the model. Short-lived activa-
tions hop from one node to another and are therefore referred 
to here. In the LSTM paradigm, a memory cell serves as inter-
mediate storage. For the first time, multiplex nodes are incor-
porated into the construction of memory cells, making them a 
more complicated unit. Three gates (input, output, and forget) 
make up a generic LSTM unit (Huynh et al. 2017). With the 
input gate, LSTM may be programmed to either retain existing 
data or learn new information. The sigmoid layer and the tanh 
layer make up this gate's structure. The tanh layer generates a 
vector of potential new values to be added to LSTM (Zhang, 
et al. 2019a, b), whereas the sigmoid layer specifies which 
values will be modified. To derive the final result from these 
layers, we use:

where it is the updated value; ut is new candidate values; � is 
the sigmoid layer (or nonlinear function); xt is a sequence of 

(2)it = �(Wixt + Uiht−1 + bi),

(3)ut = tanh(Wuxt + Uuht−1 + bu),

Fig. 7   Architecture and hyper parameters of the proposed convolutional neural network (CNN)
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length t; b is constant bias; h is RNN memory at time step t; 
and W  and U are weight matrices.

Forget gates, whose sigmoid functions are used to choose 
data for deletion from LSTM, are discussed in detail in 
(Song et al. 2020). The values of h and xt are used heavily 
in making this determination. This gate has an output f that 
may take on the values 0 and 1, where 0 signifies full erasure 
of the acquired value and 1 represents complete preservation 
of the value. This result is derived by:

where ft is updated value; � is the sigmoid layer (or non-
linear function); xt represents a sequence of length t; b is 
constant bias; h represents RNN memory at time step t; and 
W  and U are weight matrices.

The input gate uses a sigmoid layer to determine which 
sub-tree of the LSTM is responsible for the output. A non-
linear tanh function is then used to assign values between −1 
and 1 after that. The output from the sigmoid layer is then 
multiplied by the final product. Following are some formulae 
that are used to determine output:

where ot is an output gate and ht is a value between [1, −1].
The LSTM is kept current by combining these two lay-

ers. The forget gate layer works by first doubling the previ-
ous value, ct−1 , and then adding the candidate value, itut , to 

(4)ft = �(Wf xt + Uf ht−1 + bf ),

(5)ot = �(Woxt + Uoht−1 + bo),

(6)ht = ottanhtct−1,

forget the current value. Specifically, this process requires 
the following equation:

where ct represents a memory cell and ft represents a value 
between 0 and 1 produced by the forget gate. Specifically, 
a value of 0 denotes that the value is nullified, whereas a 
value of 1 indicates that it is retained (Van Houdt et al 2020). 
Figure 8 depicts a potential configuration including these 
components.

In the LSTM model, the input information is passed to the 
forget layer, at which point the model decides to: (a) keep 
the information in the past and use it for prediction, or (b) 
forget the information and rely on the instantaneous state, 
then send this information to a tanh function to normalize 
the information and extract features and patterns and remove 
noise from them (Reddy and Prasad 2018).

Figure 9 shows the characteristics of the kernel used to 
run the LSTM model which is used to fit the model to the 
training data, the memory used to store information, and key 
features in the data and used for forecasting.

C. Stacked long short‑term memory (LSTMs):

Graves et al. (2013) first proposed this model after conclud-
ing that the number of memory cells in a given layer is less 
essential than the network depth for data modeling and pat-
tern extraction. There are several nested layers in the stacked 
LSTM model, and each houses numerous memory nodes. 
Instead of sending a single value to the LSTM layer below, a 

(7)ct = itut + ftct−1,

Fig. 8   The long short-term 
memory (LSTM) model 
(Mohamed and Hussain 2016)
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stacked LSTM sends a sequence. In other words, rather than 
having a single output time step for all input time steps, there 
is one output per input time step (Cui et al. 2020).

Figure 10 shows the structure of a stacked LSTM; the 
mechanism is similar to the LSTM model, but with several 
layers f , i, o(�) , which allows for additional features to be 
extracted from the data.

Figure 11 shows the properties of the kernel used to run 
the Stacked LSTM model and size of the storage memory 
for information storage in preparation for the production of 
predictions. As shown, the model is adapted to the training 
data in more than one layer, which allows the extraction of 
highly complex information (Dikshit et al. 2021).

D. Bidirectional long‑short term memory model (BDLSTM):

The Bi-LSTM model integrates the strengths of two sepa-
rate RNNs. With this setup, the network may exchange 

sequence-related data in both directions at each time inter-
val (Fernández et al. 2007). The input data is processed 
in both directions by the Bi-LSTM, from the future to the 
past and back again. If you utilize LSTM for your back-
wards estimations, you may save your future-oriented data 
and use the two hidden states in combination at any time. 
That way, we would not lose any of the knowledge from 
the past or the future (Shahid et al. 2020). The expression 
for the output y at time t is:

where � is nonlinear function; Wy are weight matrices that 
are used in deep learning model; by is a constant bias; and 
ht is hidden states.

In the BDLSTM model, the hidden state ht works to 
receive information from the past and future xt and take 
advantage of these patterns in prediction yt (see Fig. 12).

To forecast the future value of a variable, yt , a kernel is 
used to extract features from a non-linear function (kernel) 
that is fed information from a time series of inputs, xt , 
both past and future (see Fig. 13). These models allow full 
sequence information to be retrieved for all points before 
or after a given point in the sequence using a bidirectional 
recurrent neural network, which helps to improve predic-
tion accuracy in some areas where past and future data are 
important (Zhang et al. 2022).

Bidirectional stacked long short-term memory model 
(BD-LSTM):

This model combines the features of the BD and LSTM 
models, allowing the user to obtain information about the 
sequence forward and backward at each time step (Fernán-
dez et al. 2007). The model provides multiple sequential 

(8)yt = �(Wy

[
h→
t
, h←

t

]
+ by),

Fig. 9   Schematic and hyper parameters of the proposed LSTM model

Fig. 10   A stacked LSTM architecture (Muftah et al. 2022)

Fig. 11   Architecture and hyper parameters of the proposed stacked long short-term memory (LSTMs) model
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values instead of a single value output to the LSTM layer 
(Shahid et al. 2020).

E. Stacked bidirectional long short‑term memory model 
(BDLSTMs)

The BDLSTMs model uses information from the past 
and future with multiple LSTM layers for processing (see 
Fig. 14).

The BDLSTMs model processes information using the 
same method as the BDLSTM model with several layers 
from LSTM (see Fig. 15) (Biswas and Sinha 2021).

F. Gated recurrent unit model (GRU):

Compared to LSTM, the Gated Recurrent Unit (GRU) is far 
superior. In the same vein, this is a recurrent neural network. 
In comparison to LSTM, which employs three hyper param-
eters, RNG only needs two (a reset gate and an update gate) 
(Dey and Salem 2017). When deciding what data should 
be transmitted to the output, the update gate and reset gate 
act as vectors (Gulli and Pal 2017). The reset gate sets the 

Fig. 12   Bidirectional long-short term memory model (BDLSTM)

Fig. 13   Architecture and hyper parameters of the proposed bidirectional long-short term memory model BDLSTM

Fig. 14   Stacked bidirectional 
long short-term memory model 
(BDLSTMs)
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amount of state that should be retained. The update gate 
then decides if the new state is an exact replica of the previ-
ous one. Two sigmoid-activation-function-equipped, fully-
connected layers provide two gate outputs. All of the GRU 
(Wang et al. 2018) inputs are depicted in Fig. 6, including 
those for the reset and update gates. For a mathematical 
analysis of output, we have:

where rt represents the reset gate, zt represents the update 
gate, ht−1 represents the hidden state from the previous time 
step, � represents the sigmoid activation function, W  and 
U represent weight parameters, and b represents a constant 
bias. Then, we join the reset gate with the standard refresh 
system:

which leads the hidden state; the next candidate:

where rt is the reset gate, ht−1 is the hidden state from the 
preceding time step, w and U are weight parameters, tanh 
is the activation function, and b is a constant bias. Last 
but not least, the update gate's impact must be factored in. 
This evaluates the degree of similarity between the current 

(9)rt = �(Wrxt + Urht−1 + br),

(10)zt = �(Wzxt + Uzht−1 + bz),

(11)it = �(Wixt + Uiht−1 + bi),

(12)at = tanh(wxt + rtU
iht−1 + bh),

hidden state and the previous state, as well as the similarities 
between the current hidden state and the candidate states. 
By selecting convex combinations of elements ht and ht−1 
element-wise, the update gate may be employed for this pur-
pose (Seidu et al. 2022). The following equation is the result 
of this process and represents the final GRU update:

where zt the update is gate; rt is the reset gate; at is the acti-
vation function; and ht is the hidden state output gate.

The input xt is sent to update gate zt , then to reset gate rt , 
and then to activation function tanh , where the information 
properties are extracted less excessively (see Fig. 16).

The GRU model uses a recount to process information, 
which allows access to a shorter form of the previous mod-
els (see Fig. 17). The most prominent feature shared between 
LSTM and GRU model is the additive component of their 
update from t to t + 1, which is lacking in the traditional recur-
rent unit. The traditional recurrent unit always replaces the 
activation, or the content of a unit with a new value computed 
from the current input and the previous hidden state. On the 
other hand, both LSTM unit and GRU keep the existing con-
tent and add the new content on top of it (Chung et al. 2014). 
These two units however have a number of differences as well. 
One feature of the LSTM unit that is missing from the GRU is 
the controlled exposure of the memory content. In the LSTM 
unit, the amount of the memory content that is seen, or used 
by other units in the network is controlled by the output gate. 

(13)ht = ztht−1 +
(
1 − zt

)
at

Fig. 15   Architecture and hyper parameters of the proposed stacked bidirectional long short-term memory model (BDLSTM)

Fig. 16   Gated recurrent unit 
(GRU) layer
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On the other hand the GRU exposes its full content without 
any control. Another difference is in the location of the input 
gate, or the corresponding reset gate. The LSTM unit com-
putes the new memory content without any separate control of 
the amount of information flowing from the previous time step. 
Rather, the LSTM unit controls the amount of the new mem-
ory content being added to the memory cell independently 
from the forget gate. On the other hand, the GRU controls the 
information flow from the previous activation when comput-
ing the new, candidate activation, but does not independently 
control the amount of the candidate activation being added 
(the control is tied via the update gate) (Gaudio et al. 2021).

G. Convolutional neural network long‑short term memory 
model (CNN‑LSTM):

When combining Conv and LSTM, we get the CNN-LSTM 
Model, which takes as input a spatial–temporal traffic flow 
matrix of the form xs

t
 (Mallah and Bagheri-Bodaghabadi 

2022):

(14)xs
t
=

⎡⎢⎢⎢⎣

xs
t−n

xs
t−(n−1)

⋮

xs
t

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

f 1
t−n

f 1
t−(n−1)

… f 1
t

f 2
t−n

f 2
t−(n−1)

⋯ f 2
t

⋮ ⋮ ⋱ ⋮

f m
t−n

f m
t−(n−1)

⋯ f m
t

⎤⎥⎥⎥⎥⎦

where xs
t
= f1

t
…fm

t
 denotes the prediction region’s traffic 

flow at time t, representing the POI’s historical traffic flow 
to be forecasted and its neighbors (Livieris et al. 2020).

In the LSTM model, the initial estimation stage is a CNN 
layer (see Fig. 18), and the last level of estimation is an 
LSTM layer with a dense layer. Each time unit is processed 
by the LSTM model, which is responsible for interpreting 
steps, while the CNN model is responsible for extracting 
relevant data (see Fig. 18). The CNN-LSTM neural network 
architecture allows the hidden relationships to be automati-
cally captured and used for prediction, which may lead to 
the method being more applicable and easy to implement 
(Zha et al. 2022).

H. Convolutional neural network bidirectional long‑short 
term memory model (CNN‑BDLSTM)

By utilizing CNN to capture characteristics and then feeding 
those features into a BDLSTM model, this model can fully 
use the capabilities of both models. In the next step, the 
outputs from each max pooling layer are combined to gen-
erate the BDLSTM input, before the layer's three gates are 
used to perform a recursive backpropagation-style filtering 
operation. Input to the fully connected layer (Lu et al. 2021), 
which connects each input to a subset of the output (Nie 
et al. 2021; Casallas, et al. 2022), is the result of this stage.

Fig. 17   Architecture and hyper parameters of the proposed gated recurrent unit (GRU) layer

Fig. 18   The CNN-LSTM model 
is a combination of Conv and 
LSTM (Livieris et al. 2020)
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It can be seen how the CNN-BDLSTM model works 
in Fig. 19. For instance, the BDLSTM model lets you get 
forward and backward information about the sequence at 
each time step, while the CNN model is utilized to extract 
the relevant information. In the left panel, we can see the 
first CNN layer, followed by the subsequent LSTM layers 
and finally, the dense layer at the very end (right panel).

Optimization: Adam optimization algorithm

Adam optimization is an extension of stochastic gradient 
descent that allows for more effective updates to network 
weights. Adam optimization arises from a two-factor inter-
action (RMSprop and Momentum, see Fig. 19 and Pseudo-
code 1). In the field of stochastic optimization, adaptive 
moment estimation is employed (Jais et al. 2019; Kim and 
Choi 2021). Since Adam optimization also displays this 
behavior, understanding how the pace of learning might 
change over time is crucial.

Adam optimization is the stochastic optimization algo-
rithm proposed in this work. The elementwise square 
g2
t
 is calculated forgt ⊙ gt . The default values are set as: 

α = 0.001, �1 = 0.9, �2 = 0.999 and ϵ = 10−8 . The element-
wise operation is applied for all vectors. With � t

1
 and � t

2
 

we denote �1 and �2 to the power t (Kingma and Ba 2015).

Require: a : Stepsize
Require: f (�) : Stochastic objective function with parameters �
Require: �1, �2 ∈ [0, 1) : Exponential decay rates for the moment 

estimates
Require:�0 : Initial parameter vector:
Initialize timestep:t ← 0

Initialize 2nd moment vector: v0 ← 0

Initialize 1st moment vector: m0 ← 0

while � not converged do
t + t1
gt ← ∇� ft

(
�t−1

)
 (Get gradients w.r.t. stochastic objective at timestep 

t)
mt ← �1 ∙ mt−1 + (1 − �1) ∙ gt (Update biased first moment estimate)
vt ← �2 ∙ vt−1 +

(
1 − �2

)
∙ g2

t
 (Update biased second raw moment 

estimate)
m̂t ← mt∕(1 − � t

1
) (Compute bias-corrected first moment estimate)

v̂t ← vt∕(1 − � t
2
) Compute bias-corrected second raw moment 

estimate)
�t ← �t−1 − a ∙ m̂t∕(

√
v̂t + �(Update parameters)

end while
return �t (Resulting parameters)

Adaptive moment estimation (Adam)
Pseudocode: Adam algorithm for stochastic optimization
Note:
There are two separate beta coefficients → one for each optimiza-

tion component
We implement bias correction for each gradient

Fig. 19   Mechanism of the 
CNN-BDLSTM model (Nie 
et al. 2021) 
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On iteration t:
Compue dW, db for current mini-batch
# #Momentum
v_db = beta1 * v_db + (1 − beta1) db, v_db_corrected = v_db/(1 − 

beta1 ** t)
v_dW = beta1 * v_dW + (1 − beta1) dW, v_dW_corrected = v_dw/

(1 − beta1 ** t)
# #RMSprop
s_dW = beta * v_dW + (1 − beta2) (dW ** 2), s_dW_corrected = s_

dw/(1 − beta2 ** t)
s_db = beta * v_db + (1 − beta2) (db ** 2), s_db_corrected = s_db/

(1 − beta2 ** t)
# #Combine
W = W − alpha * (v_dW_corrected/(sqrt(s_dW_corrected) + epsi-

lon))
b = b − alpha * (v_db_corrected/(sqrt(s_db_corrected) + epsilon))
Coefficients
alpha: the learning rate. 0.001
beta1: momentum weight. Default to 0.9
beta2: RMSprop weight. Default to 0.999
epsilon: Divide by Zero failsave. Default to 10 ** -8

Overfitting and under fitting

Overfitting and under fitting are a major contributing factor 
to poor performance in deep learning models. In overfitting 
the model (which performs consummately on the training set 
while fitting ineffectively on the testing set) the model begins 
by matching the noise to the estimation data and parameters, 
thus producing predictions with large out-of-sample errors 
that negatively impact the model’s ability to generalize. An 
over fit model shows low bias and high variance (He et al. 
2016). Under fitting refers to the model's inability to capture 
all the data's characteristics and features, resulting in poor 
performance on the training data and an inability to general-
ize the model's results (Zhang et al. 2019).

To avoid and detect overfitting and under fitting, we tested 
the validity of the data by training the model on 80% of the 
data subset and testing the other 20% using the set of per-
formance indicators (Alqahtani et al. 2022; Abotaleb and 
Makarovskikh 2021) detailed in the next section.

Performance indicators:

To compare the prediction performance of the three models 
we:

Calculated mean square error (MSE):

where ŷt the forecast is value; yt is the actual value; and n is 
the number of fitted observed.

Calculated root mean square error (RMSE) between the 
estimated data and actual data:

where ŷt is the predicted value; yt is the actual value; and n 
is number of fitted observed.

Calculated relative root mean square error (RRMSE):

Calculated mean absolute error (MAE):

Calculated mean bias error (MBE):

Calculated optimum loss error:

The model with the lowest values of (RMSE – RRMSE 
– MAE – MBE – loss) is the best.

Results

Table 1 shows that mean > median > mode, which shows 
that the distribution is skewed to the right for all variables. 
Observations with a value larger than mean are more fre-
quent. Kurtosis < 3 for all variables, indicating that there 
are no extreme outliers. The greatest difference between 
the maximum and minimum value for rainfall was noted in 
Hawizeh Marsh (0 mm to 142.7 mm). This lead to a larger 

(15)
∑n

t=1
(ŷt − yt)

2

n

(16)

�∑n

t=1
(ŷt − yt)

2

n

(17)

�����
1

n

∑n

t=1
(ŷt − yt)

2

∑n

t=1

�
ŷt
�2

(18)
1

n

n∑
t=1

||yt − ŷt
||

(19)
∑n

t=1
(yt − ŷt)

n

(20)loss(yt, ŷt) =
1

n

n∑
t=1

||yt − ŷt
||2

Table 1   Descriptive statistics 
of rainfall

Mean S.E. Median Mode S.D. Kurtosis Skewness Mini Max

Hawizeh Marsh 21.37 0.70 7.9 0 26.42 1.57 1.36 0 142.7
Central Marsh 14.91 0.48 6.3 0 18.23 1.69 1.37 0 94.2
Al Hammar Marsh 11.99 0.40 5 0 15.08 2.17 1.48 0 81
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S.D. and S.E (difficulty in prediction) than the rest of the 
variables.

Table 2 shows that CNN-BDLSTMs was the best model 
for predicting rainfall because it has the least values of MSE 
– RMSE – RRMSE – MAE – MBE – Optimum Loss Error 
and, therefore, the least difference between the actual and 
predicted values. This model achieves convergence between 
the training and test data's actual and predicted values, dem-
onstrating their ability to capture data features.

Figures 20, 21 and 22 show the convergence of actual 
monthly rainfall in the Hawizeh Marsh, Central Marsh, and 
Al Hammar Marsh with the values predicted by the CNN-
BDLSTMs model. There is good convergence between the 
actual and predicted data. This model is able to clarify vola-
tility in rainfall and capture structural breaks, and can thus 
be used to predict monthly rainfall in this region.

Conclusion

Climate change has impacted Wetlands due to increased 
annual average maximum temperature and decreased rain-
fall. Since Google Earth Pro data has great potential for 
detecting changes that have already occurred, it can be used 
to monitor the climatic elements of marshes and water bod-
ies. The Mesopotamian marshes are vital to Iraq's ecology 
and economy, so it is crucial to take measures to develop 
them and return them to their original state. We aim to con-
tinue our research in this field by developing a model for 
predicting monthly average rainfall which incorporates data 
on sea-surface temperature, global wind circulation, and a 
variety of other climatic variables. We described deep learn-
ing approaches for monthly average rainfall forecasting and 
proposed a hybrid deep learning CNN-BDLSTMs-based 
model for Hawizeh Marsh, Central Marsh, and Al Hammar 
Marsh. The dataset includes average monthly records for 
meteorological parameters such as maximum and minimum 
temperatures, precipitation, evaporation, and monthly aver-
age rainfall from Google Earth Pro for 1901 to 2020. Our 

Table 2   Comparison of dataset 
evaluation methods(20%)

The bold colour is mean the best model that has the least errors, and the is the output performance model

Model MSE RMSE RRMSE MAE MBE Optimum loss error

Monthly rainfall in the Hawizeh Marsh (80–20%)
 CNN 426.02 20.64 1.10 13.00 0.07 16.90
 LSTM 530.83 23.04 1.21 14.24 3.31 937.52
 LSTMs 549.41 23.44 1.23 13.98 3.42 966.59
 BDLSTM 649.36 25.48 1.34 15.56 2.81 794.68
 BDLSTMs 487.52 22.08 1.16 14.22 6.38 1805.91
 GRU​ 414.67 20.36 1.07 13.50 2.76 781.66
 CNN-LSTMs 407.92 20.20 1.07 14.14 6.44 1654.91
 CNN-BDLSTMs 315.29 17.76 0.94 11.15 3.48 895.18

Monthly rainfall in the Central Marsh (80–20%)
 CNN 239.61 15.48 1.18 9.94 −0.44 −114.18
 LSTM 297.59 17.25 1.30 10.54 2.45 693.57
 LSTMs 231.50 15.22 1.15 9.64 0.92 261.14
 BDLSTM 207.65 14.41 1.09 9.27 0.91 257.05
 BDLSTMs 246.82 15.71 1.18 9.45 0.98 278.71
 GRU​ 201.71 14.20 1.07 9.49 1.46 413.86
 CNN-LSTMs 193.84 13.92 1.06 9.22 4.41 1132.20
CNN-BDLSTMs 166.18 12.89 0.99 8.03 −0.49 −125.15
Monthly rainfall in the Al Hammar Marsh (80–20%)
 CNN 173.45 13.17 1.25 8.75 0.73 187.60
 LSTM 158.57 12.59 1.17 8.59 0.36 101.95
 LSTMs 159.78 12.64 1.18 7.95 −0.28 −77.89
 BDLSTM 180.02 13.42 1.25 9.09 2.61 737.29
 BDLSTMs 171.39 13.09 1.22 8.02 −0.51 −143.87
 GRU​ 156.46 12.51 1.16 8.18 0.63 178.15
 CNN-LSTMs 151.99 12.33 1.17 7.96 1.42 364.60
 CNN-BDLSTMs 133.59 11.56 1.10 7.16 −0.14 −34.86
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Fig. 20   The CNN-BDLSTMs model for forecasting monthly average rainfall in the Hawizeh Marsh

Fig. 21   The CNN-BDLSTMs model for forecasting monthly average rainfall in Central Marsh

Fig. 22   The CNN-BDLSTMs model for forecasting monthly average rainfall in the Al-Hammar Marsh
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tests showed that the proposed prediction model is accurate. 
Smart farming and other applications that require accurate 
rainfall forecasts might benefit from this model.

Data availability  The datasets generated during and analysed during 
the current study are available in the Hybrid deep learning models 
algorithm for modelling and forecasting rainwater in Wetlands in south 
repository, https://​github.​com/​abota​lebmo​stafa​11/​Hybrid-​deep-​learn​
ing-​models-​algor​ithm-​for-​model​ling-​and-​forec​asting-​rainw​ater-​in-​
Wetla​nds-​in-​south-I.
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