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Abstract
An accurate water quality index (WQI) forecast is essential for freshwater resources management due to providing early 
warnings to prevent environmental disasters. This research provides a novel procedure to simulate monthly WQI consider-
ing water quality parameters and rainfall. The methodology includes data pre-processing and an artificial neural network 
(ANN) model integrated with the constraint coefficient-based particle swarm optimization and chaotic gravitational search 
algorithm (CPSOCGSA). The CPSOCGSA technique was compared with the marine predator's optimization algorithm 
(MPA) and particle swarm optimization (PSO) to increase the model's reliability. The Yesilirmak River data from 1995 
to 2014 was considered to build and inspect the suggested strategy. The outcomes show the pre-processing data methods 
enhance the quality of the original dataset and identify the optimal predictors' scenario. The CPSOCGSA-ANN algorithm 
delivers the best performance compared with MPA-ANN and PSO-ANN considering multiple statistical indicators. Overall, 
the methodology shows good performance with R2 = 0.965, MAE = 0.01627, and RMSE = 0.0187.

Keywords  Data preprocessing · Metaheuristic algorithm · Water quality index prediction · Artificial neural network

Introduction

Surface water pollution is a significant concern for com-
munities worldwide and requires more attention from envi-
ronmental researchers (Hameed et al. 2016). In addition, the 
implications of contaminated surface water are deterioration 

of water quality (WQ) (Panaskar et al. 2016), a direct threat 
to human health (Kadam et al. 2019), and disruption of the 
aquatic ecosystem's balance (Koranga et al. 2022). Accord-
ingly, the United Nations (UN) announced that approxi-
mately 1.5 million people die annually from diseases driven 
by polluted water. Moreover, it is reported that 80% of health 
troubles in developing countries are brought on by polluted 
water (Aldhyani et al. 2020a; b). However, surface WQ is 
affected by various factors, including natural components 
such as temperature or precipitation (Gupta and Gupta 2021; 
Michalak 2016; Shanley 2017) and anthropogenic factors 
such as manufacturing practices, urbanization, and agricul-
ture (Asadollah et al. 2021; Ustaoğlu et al. 2020). In view of 
this, managing WQ in diverse climate conditions seems cru-
cial to prevent the population from suffering from diseases 
and health troubles. Hence, various techniques have been 
created and developed to evaluate the WQ, such as the Water 
Quality Index (WQI) technique (Uddin et al. 2021). WQI 
has been commonly utilized "as a classification indicator" 
to evaluate and categorize the water bodies' quality based 
on measuring a wide range of physiochemical and organic 
variables and plays a vital role in water management(Das 
Kangabam et al. 2017; Judran and Kumar 2020).
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Prediction is crucial to WQ monitoring and is part of 
contemporary environmental management. Over the past 
few decades, many traditional WQ prediction methods have 
been used, e.g. auto-regressive integrated moving averages 
(ARIMA) (Araghinejad 2013) and multiple linear regres-
sion (MLR) (Rajaee and Boroumand 2015). However, with 
the expansion in the volume of data, traditional methods 
cannot effectively suit the requirements of researchers due 
to the increase in computing power and the inability to cap-
ture non-stationarity (Chang et al. 2016) and nonlinear (Huo 
et al. 2013) WQ owing to its sophisticated and complicated 
nature(Chen et al. 2020). Hence, artificial intelligence tech-
niques such as artificial neural networks (ANNs) are becom-
ing more popular in recent years because they can surmount 
the limitations or drawbacks of traditional models. In addi-
tion, due to their similarities with the brain's nervous system, 
ANNs are suitable for analyzing nonlinear and unpredict-
able problems and have become a hotspot in environmental 
quality research (Hajirahimi and Khashei 2022). The ANN's 
architecture comprises an input, hidden, and output layers 
(Kadam et al. 2019). artificial neural networks (ANNs) 
(Sakizadeh 2016). For instance, Vijay and Kamaraj (2021) 
employed ANN to predict WQI Drinking Water Distribution 
System. Also, Yilma et al. (2018) confirmed that ANN is 
useful for modelling the WQI.

Moreover, the imperative for raising data-driven tech-
niques' reliability, accuracy, and capability has encouraged 
scientists to develop creative models. The fundamental goal 
of these new models is to maximise the potential of exist-
ing models by combining the benefits of several method-
ologies (Faruk 2010). These combined approaches gener-
ally integrate methods in a process where conventionally, 
one technology is considered the basic method, the others 
functioning as pre-processing or postprocessing techniques 
(Modaresi and Araghinejad 2014). In this context, vari-
ous optimization techniques were utilized to integrate the 
machine learning models by finding their hyperparameters, 

leading to increased accuracy and saving time (Ahmed et al. 
2017). For example, particle swarm optimization (PSO) 
was employed in various fields, such as drought (Nabipour 
et al. 2020) and WQ (Aghel et al. 2018; Azad et al. 2019). 
Also, Faramarzi et al. (2020) proposed the marine predator's 
algorithm (MPA), which is applied in various applications, 
including friction stir welded (Abd Elaziz et al. 2020) and 
photovoltaic systems (Yousri et al. 2020). In addition, the 
slime mould algorithm (CPSOCGSA) has been devised by 
Rather and Bala ( 2019b) to solve optimization problems 
such as engineering design problems (Rather and Bala 
2019a) and water drought forecasting (Alawsi et al. 2022).

Finally, this research aims to predict long-term WQI con-
sidering several WQ parameters and rainfall data. The fol-
lowing objectives will be carried out to accomplish this goal: 
(1) calculating the WQI for the Yesilirmak River. (2) Apply-
ing three stages of data pre-processing to increase data qual-
ity and choice the optimal independent factors. (3) To reduce 
uncertainty, combine the ANN model with the CPSOCGSA 
algorithm and compare the MPA and PSO methods.

Based on the authors' investigation, this is the first time 
utilizing update algorithms (i.e., CPSOCGSA and MPA) to 
predict the WQI.

Methodology

The framework of the proposed methodology comprises five 
stages: study area and data collection, calculating the WQI, 
data pre-processing, CPSOCGSA algorithm, ANN model, 
and evaluation of the model's performance, as shown in 
(Fig. 1).

Area of study and data set

The Yesilirmak River is considered one of the longest riv-
ers in Turkey and located between approximately 29′ and 

Fig. 1   Framework of the archi-
tecture of ANN to predict WQI
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40′ N. 31′ 40′ N and 44′ 71′ E. 44′ 61′ E, with 39,628 km2 
covering's area and discharges into the Black Sea in Samsun. 
The basin has transported partially and fully treated munici-
pal wastewater and pollution from various diffuse sources, 
including farmyards and agricultural areas. Additionally, dif-
ferent delta parts have dried up in recent decades (Dinc et al. 
2021). The station case study was located within the provin-
cial borders of Çorum, Eastern Black Sea Basin. Therefore, 
the coastal sea climate is dominant in this basin zone, with 
annual precipitation of about 443 mm.

In several countries, the essential obstructive faced by 
researchers is the lack of data. Therefore, these stations 
were sufficiently selected for assessing and building pre-
diction models regarding the number of data and availabil-
ity of parameters. Additionally, the National Oceanic and 
Atmospheric Administration (NOAA) (NOAA 2021) was 
adopted for obtaining the climate variables. The dataset was 
collected for twenty years, from 1995 to 2014. It contained 
eleven WQ parameters with one influential climatic factor 
(rainfall), where the values are distributed regularly along 
the monitoring periods. Table 1 presents the WQ parameters 
used to calculate the WQI.

Water quality index calculation

The WQI is an evaluation method that reflects the influ-
ence of individual WQ variables on the overall quality of 
aquatic systems (Ramakrishnaiah et al. 2009). For calcu-
lating the WQI, 11 significant WQ parameters were spec-
ified regarding the World Health Organization standard 
for drinking WQ (Organization et al. 2004). The phys-
icochemical parameters were: biological oxygen demand 
(BOD), pH, electrical conductivity (EC), dissolved oxy-
gen (DO), chlorine (CL−1), calcium(Ca+2), magnesium 
(Mg+2), nitrite (NO2

−1), sodium (Na+1), sulfate (SO4), and 

total dissolved solids (TDS) (Ewaid et al. 2018; Kulisz 
Monika et al. 2021). In this research, the WQI calculation 
can be categorized into three stages:

Firstly, weights (Wi) were assigned to all WQ param-
eters with a scale ranging from 1 to 5, reflecting their sig-
nificance in affecting water bodies. Table 1 shows the WQ 
standards, assigned weights (AW.), and relative weights 
(RW.) of the WQI's equation.

Secondly, calculate the relative weights (Wi) by (Eq. 1):

Wi Is the relative weight, wi is the weight of every 
parameter, and n is the number of parameters.

Thirdly, from (Eq. 2), a quality rating scale (qi) was 
assigned by dividing every parameter concentration in the 
water samples by its respective standard in WHO guide-
lines. In contrast, the quality rating for pH and DO was 
calculated by (Eq. 3).

Where Ci is the measured concentration of parameters 
in each simple, Si is the drinking water standard for each 
parameter, Vi is the ideal value (for pH 7.0 and DO = 14.6), 
and SIi is the subindex of the parameter. Finally, WQI was 
derived from formulas (4) and (5).

Table 2 shows the classification of WQI according to 
the range proposed by previous studies (Aldhyani et al. 
2020a; b; Ewaid et al. 2018).

Data pre‑processing

Three strategies were adopted in this research as pre-pro-
cessing data methods, which are normalization, cleaning, 
and selecting the optimal model's input.

(1)Wi =
wi∑n

i=1
wi

(2)qi = (ci∕si) ∗ 100

(3)qi = ((ci − vi)∕(si − vi)) ∗ 100

(4)SIi = qi ∗ Wi

(5)WQI =
∑

SIi

Table 1   The water standards, assigned weights, and relative weight 
for the WQI's equation (Sharma et  al. 2014; Kulisz Monika et  al. 
2021; Kadam et al. 2019; Şener et al. 2017)

Parameters WQ standard AW RW

BOD5 mg/l 5 4 0.102564
DO mg/l 5 5 0.128205
PH 6.5–8.5 4 0.102564
Ca+2 mg/L 300 2 0.051282
CL−1 mg/l 250 3 0.076923
EC µS/cm 250 5 0.128205
Mg+2 mg/L 30 2 0.051282
Na+1 mg/l 200 2 0.051282
NO2

−1 mg/l 3 4 0.102564
SO4 mg/l 250 4 0.102564
TDS mg/l 1000 4 0.102564

Table 2   water quality classification (WQC)

WQI range 0–25 26–50 51–75 76–100 >100

Classified Excellent Good Poor Very poor Unsuitable for 
drinking
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Normalization

Data normalization is a crucial step for mining datasets in 
soft computing. In various scientific research, techniques 
and assessment criteria mostly have multiple scale sizes and 
units, producing various analysis data results. Therefore, 
normalization will be a fundamental task to achieve compa-
rability among the variables and realize the expectations of 
optimization data. Moreover, it minimizes the dimension's 
impact of different time series and eliminates the influence 
of outliers and multicollinearity of model parameters (Wu 
and Wang 2022). In this work, the SPSS 26 statistics pack-
age was employed to normalize the time series by applying 
the natural logarithm technique.

Cleaning

Data cleaning methods comprise locating outliers and noise 
and then treating outliers and eliminating noise to optimize 
the data analysis outcomes (Tabachnick et al. 2007). So, the 
box whisker technique was adopted in this study to identify 
the outliers were existed outside of the period in the formula 
below (Kossieris and Makropoulos 2018):

Also, the technique of singular spectrum analysis (SSA) 
is used to detect and remove noise from time series. It is an 
efficient method for analyzing the initial time series into 
various components (Golyandina et al. 2018; Karami and 
Dariane 2022). This approach has shown to be effective in 
diverse speciality areas, such as rainfall prediction(Reddy 
et al. 2022), hydrology (Ouyang and Lu 2018), drought 
forecasting (Pham et al. 2021), and groundwater prediction 
(Polomčić et al. 2017).

Identifying the best model input

Determining the appropriate predictors is fundamental in 
establishing a forecast model's structure and enhancing the 
performance of model. Therefore, the tolerance approach 
was applied to identify the optimal scenario for the pre-
dictors to avoid multicollinearity (Calì et al. 2016; Pallant 
2020). It recommended a tolerance coefficient value equal 
to or higher than 0.2 for selecting the model's predictors.

(6)

±1.5 × CQR(CQR = third quartile(Q3)
− f irst quartile(Q1))

Constriction coefficient‑based particle 
swarm optimization and chaotic 
gravitational search algorithm (CCPSOCGSA)

CPSOGSA is a hybrid heuristic optimization that utilizes 
the intensification potential of the CPSO algorithm with 
the diversification capability of GSA's algorithm. The 
components of this hybridization technique will be clari-
fied in the subsections below.

A. Constriction Coefficient based Particle Swarm 
Optimization (CCPSO.)

The PSO algorithm is a popular optimization approach 
inspired by natural swarm behaviour for birds or fish. The 
PSO architecture consists of three principal parameters: 
abest, bbest and inertia weight. Where the abest and bbest 
assist the finding of the search-space region. The inertia 
weight has a significant impact on the process of global 
exploration. In (Eqs. 7,8), the Particle Swarm mathemati-
cal formulation explains the updating of the process for 
the particle's location and velocity during the alteration 
of the particle values.

where the c1, c2 are the learning constants, while rx1 and rx2 
are the numbers range from 0 to 1.

Constriction coefficients were employed to improve 
Particle Swarm Optimisation (PSO) exploitation stage by 
minimizing the impact of particle movements outside the 
solution space and hastening convergence during the opti-
mization stage. The coefficients are described as follows:

Substituting the inertia weight by the notation K, 
(Eq. 7) can be rewritten as in below:

where Kφ1 = c1, Kφ2 = c2.

(7)
vd
x
(t + 1) = w(t)vd

x
(t) + c1rx1

(
abest − xd

x
(t)
)
+ c2rx2

(
bbest − xd

x
(t)
)

(8)xd
x
(t + 1) = xd

x
(t) + vd

x
(t + 1)

(9)�1 = 2.05,�2 = 2.05,� = �1 + �2

(10)K = 2∕

(
� − 2 +

√(
�2 − 4

))

(11)

vdx (t + 1) =Kvdx (t) + K�1rx1
(

abestx(t) − xdx (t)
)

+ K�2rx2
(

bbest − xdx (t)
)
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B. Chaotic Gravitational Search algorithm CGSA

Gravity and motion Newton's law is considered fundamen-
tal to the configuration of the GSA algorithm. Newton's 
law states that "the gravitational force between two masses 
is directly proportional to the product of their masses 
and inversely proportional to the square of the distance 
between them". Accordingly, the gravitational force (F_ij) 
between masses (i.e., searching agents) (x) and (y) at time 
(t) can be represented as in the following (Eq. 12):

where mpxistheattractive mass, andmay is the passive masses. 
While Rxy(t)  is the Euclidian distance between the two 
masses at the time (t), while ∈ is a small coefficient, and 
G is the constant help for controlling the solution space to 
secure a feasible region.

The (G) constant can be represented by (Eq. 13):

where G
(
to
)
&G(t) is the initial and final values of G, respec-

tively. CI is the current iteration, � is the small constant, and 
MI  is the maximum value of iterations. The behaviour of G 
over time is proposed using a chaotic normalization (Rather 
and Bala 2019a, b). Hence, (Eq. 14) descript the final for-
mula of the gravitational constant's:

The aggregate force exerted by the masses (i.e., search-
ing agents) could be found as shown in (Eq. 15):

where � value ranges from 0 to 1, it is essential to calculate 
the position and velocity to find the global optimum, which 
could be represented according to (Eqs. 16, 17):

where ad
x
(t) is the mass acceleration.

C. The Combination algorithm (CPSOCGSA)

Combining the two heuristic techniques (CPSO and 
CGSA) could assist to exceeded each technique's 

(12)Fxy = G(t)
mpx(t)may(t)

Rxy(t)+ ∈

(
xd
x
(t) + xd

y
(t)
)

(13)G(t) = G
(
to
)
e

(
−�

CI

MI

)

(14)Gc(t) = Cnorm
i

(t) + G
(
to
)
e

(
−�

CI

MI

)

(15)Fd
x
(t) =

m∑
y=1,y≠x

�yFxy

(16)vd
x
(t + 1) = �yv

d
x
(t) + ad

x
(t)

(17)xd
x
(t + 1) = xd

x
(t) + vd

x
(t + 1)

imperfections. The hybridization equation formula can be 
described in (Eq. 18):

The particle's location is indicated by (Eq. 19):

Artificial neural network (ANN)

ANNs are an information-processing approach designed to 
simulate the functioning of the human brain by attempting 
the same connectivity and processes as biological neurons 
(Kouadri et al. 2022). In this research, the ANN structure 
was composed of four layers of neurons: an input layer which 
has WQ parameters and rainfall data, two hidden layers to 
address the nonlinearity relationship, and an output layer 
which has the target (WQI)(see Fig. 2). The multilayer per-
ceptron (MLP) is performed with feed-forward backpropaga-
tion (FFBB). The efficiency with a low error rate and speed 
of the learning algorithm (Levenberg–Marquardt, LM) was 
an underlying factor employed with FFBB for training the 
ANN model (Payal et al. 2015). Matlab Toolbox was run-
ning to implement the ANN technique.

The data were separated into three groups: training, test-
ing, and validation, with 70%, 15%, and 15% of values uti-
lised for each set, respectively, such as (Kulisz Monika et al. 
2021; Zubaidi et al. 2018).

However, the traditional method (trial and error) was 
time-consuming and did not always introduce the optimal 
solution. As a result, combining metaheuristic algorithms 
with the ANN model is regarded as a superior technique for 

(18)
vdx (t + 1) =

(

2∕
(

� − 2 +
√

�2 − 4
))

vdx (t) + K�1rx1
(

adx (t) − xdx (t)
)

+ K�2rx2
(

bbest − xdx (t)
)

(19)xd
x
(t + 1) = xd

x
(t) + vd

x
(t + 1)

Fig. 2   ANN structure for CPSOCGSA-ANN
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determining the optimal neurons’ number in the hidden lay-
ers (N1, N2) and selecting the best learning rate coefficient 
(Lr). These hyperparameters are responsible for choosing 
the best predictors and target mapping to avoid underfitting 
or overfitting the model.

Model performance assessment

Three statistical criteria are used in this study to evaluate 
the WQI prediction model's performance. The criteria are 
the root means squared error (RMSE, Eq. 20), mean abso-
lute error (MAE, Eq. 21), and determination coefficient (R2, 
Eq. 22) (Mohammadi et al. 2020; Mohammadi and Mehdi-
zadeh 2020):

where Oi represents observed WQI, Fi is the forecast WQI, 
N is the sample size ,Fi is the mean of forecast WQI, and Oi 
is the mean of observed WQI.

Additionally, the Taylor diagram was utilised to evalu-
ate the outcomes of prediction models by creating a visual 
comprehension of performance by showing diverse points 
on a polar plot for multisets of modelling outcomes (Taylor 
2001).

Results and discussion

Water quality index assessment

The assigned weight index approach was juxtaposed with the 
WHO standards for drinking WQ to calculate the WQI for 
the Yesilrmak river. Table 3 presents the eleven parameters 
that were combined for the WQI prediction and the descrip-
tive statistics values for them. As can be observed, the WQI 
varies from 37.41 to 181.06, and the mean was 51.36; this 
variation reflects the unsuitability for drinking, as shown in 
Table 2. Calcium (Ca+2), Nitrite (NO2

−1), chloride (CL−1), 
and sodium (Na+1) contents did not exceed the acceptable 
range in any tested values. While pH, biological oxygen 
demand (BOD5), electrical conductivity (EC), magnesium 

(20)MAE =

∑N

i=1
��Oi − Fi

��
N

(21)RMSE =

�∑N

i=1

�
Oi − Fi

�2
N

(22)R2 =

⎡⎢⎢⎢⎢⎣

∑N

i=1

�
Oi − Oi

��
Fi − Fi

�
�∑�

Oi − Oi

�2 ∑�
Fi − Fi

�2

⎤⎥⎥⎥⎥⎦

2

(Mg+2), sulfate (SO4), and total dissolved solids (TDS) were 
higher than the specified values in the WHO guidelines. In 
the same context, the dissolved oxygen exceeded the mini-
mum acceptable value in six samples during the monitoring 
periods.

Preparation of predictors and target variables

The input data [i.e., WQ parameters and rainfall) and target 
data (WQI)] were normalized by applying a natural loga-
rithm (Ln) to minimize the adverse impact of extreme values 
and achieve the normal time series distribution. Then, if any 
outliers remained after the normalization, it was adjusted. 
The box plot technique displayed in (Fig. 3) decreased the 
variation scale of normalization data compared to the raw 
data. It also showed how the data had been cleaned from 
outliers.

After that, the SSA was applied to decompose the nor-
malized and cleaned time series into three different compo-
nents to eliminate the noise. Also, the data pre-processing 
technique enhanced the correlation coefficient (R) between 
the dependent and independent factors, such as improving 
the correlation between WQI and chlorine from 0.609 to 
0.7106.

Then, a tolerance approach was applied to locate the 
optimal predictors scenario to simulate the WQI with high 
accuracy and prevent multicollinearity by clearing superflu-
ous parameters. According to (Pallant 2020), the tolerance 
coefficient for the nominated input variables must be higher 
than 0.2. As shown in Table 4 below, five variables were 
chosen; biological oxygen demand, Chlorine, magnesium, 
potassium and Rainfall as the optimal input data model.

In the last step, according to(Gharghan et al. 2016; Kulisz 
and Kujawska 2021), the data were categorized into 70% 
training, 15% testing, and 15% validation to create and eval-
uate the forecasting model.

Table 3   Descriptive statistics for the Yesilrmak river

Variables Mean Min Max Std. error

WQI 51.36 37.41 181.06 1.51
BOD5 (mg/l) 4.06 0.0 40.00 0.46
DO (mg/l) 7.60 0.04 12.70 0.18
PH 8.25 6.90 9.00 0.03
Ca+2 (mg/L) 55.59 19.00 129.00 1.55
CL−1 (mg/l) 22.78 1.28 102.90 1.04
EC (µS/cm) 710.03 399.00 1903.00 14.66
Mg+2 (mg/L) 39.81 17.60 105.20 0.94
Na+1 (mg/l) 37.83 10.16 73.80 1.02
NO2

−1 (mg/l) 0.08 0.0 0.80 0.01
SO4(mg/l) 54.50 16.80 352.00 3.20
TDS (mg/l) 461.16 241.00 1217.90 9.49
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Configuring the hybrid model

The artificial neural network was hybridized with a 
metaheuristic approach to locate the optimum LR, N1, and 
N2. The Matlab program was used for running the hybrid 
models (i.e., MPA-ANN, CPSOCGSA-ANN, and PSO-
ANN) to identify the optimum ANN's hyperparameters (LR, 
N1, and N2). This research utilized swarm sizes (10, 20, 30, 
40, and 50 pop) for every swarm repeated five times with 
( 200 iterations) to achieve the minimum fitness function 
(MSE). For example, Fig. 4 depicts the CPSOCGSA-ANN 
performance and exposes the optimum fitness function for 
all swarms of WQI.

Figure 5A shows that the swarm size (305) was supe-
rior in the CPSOCGSA-ANN algorithm and produced the 
minimum fitness function (MSE = 0.001283, with five Itera-
tions). While, swarm size (405) for the MPA-ANN algo-
rithm offers the best solution within the fitness function 
(MSE = 0.01341, with nine Iterations), as shown in Fig. 5B. 
Finally, the PSO-ANN algorithm within swarm size (404) 
was superior to other PSO-ANN swarms and delivers less 
error (MSE = 0.01479, with 94 Iterations), as shown in 
Fig. 5C.

Based on the best swarms for each metaheuristic method, 
Table 5 shows the hyperparameters for ANN models.

Performance evaluation

After determining the optimal hyperparameters for the 
ANN approach, each ANN method was run several times 

to identify the optimal network that delivers an accurate 
result. Three statistical metrics (RMSE, MAE, and R2) 
were employed to assess the model's effectiveness in pre-
dicting WQI data. The results of the performance criteria 
indices for the CPSOCGSA-ANN, PSO-ANN, and MPA-
ANN strategy in the validation section are depicted in 
Table 6 (Dawson et al. 2007). The CPSOCGSA-ANN was 
superior to other models because it realized the minimum 
values of MAE, RMSE criteria and the highest value of R2.

The Taylor diagram (Fig. 6) was utilized to evaluate 
the hybrid models’ performance in the validation phase. 
The measured WQI time series is constituted by the red 
character (Reference) on the Taylor diagram's X-axis. Tay-
lor's graphical diagram compares three statistics, including 
correlation coefficient (R), standard deviation (SD), and 
root mean square error difference (RMSD). It thus deliv-
ers a dependable evaluation of the relative performance of 
various strategy (Ghorbani et al. 2018; Tao et al. 2021). 
Regarding the Taylor diagram, the CPSOCGSA-ANN 
model was indicated to be the best forecast model com-
pared with the PSO-ANN and MPA-ANN models because 
it is the nearest to the reference point.

Moreover, to increase the reliability of the CPSOCGSA-
ANN strategy, the Kolmogorov_Smirnov (K_S) and Sha-
piro_Wilk (S_W) tests were adopted to test the normality 
of the error data. The results showed that the (p-values) of 
K_S and S_W tests were more than 0.05, indicating that 
the errors have a normal distribution according to Valen-
tini et al. (2021) (see Table 7).

Based on the above results, it is possible to conclude 
that:

•	 The assessment result of Yesilrmak river quality varied 
from good to poor, except for one point (June 2000) that 
was unsuitable for drinking.

•	 The SSA and tolerance approach has high benefits for 
enhancing data quality and picking the optimized sce-
nario for input parameters.

Fig. 3   Box plot drawings of WQI with some of the selected parameters before and after normalized and cleaned data

Table 4   Collinearity statistics 
for the specified predictors

Predictors Tolerance value

BOD5 0.645
CL−1 0.352
Mg+2 0.543
Na+1 0.520
Rainfall 0.729
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•	 Comparing the performance accuracy of the hybrid mod-
els, including CPSOCGSA-ANN, PSO-ANN, and MPA-
ANN, showed that the CPSOCGSA-ANN was a reliable 
and superior model to predict WQI data.

Conclusion

The present research has assessed the WQ during the 
monitoring period (1995–2014) for the Yesilrmak river 
within the provincial borders of Çorum, Turkey. To this 

end, eleven physicochemical parameters were assigned to 
calculate the WQI. The result varied from good to poor, 
except for one point (June 2000) that was unsuitable for 
drinking, as shown in Table 3. Additionally, this study 
employed novel hybridization models combining pre-pro-
cessing data and ANN approach optimized by multiple 
metaheuristic methods (i.e., CPSOCGSA, MPA, and PSO) 
to predict the WQI. Also, to raise the accuracy of models, 
the implications of climate factors cannot be neglected; 
hence, adopting rainfall beside the WQ parameters as pre-
dictors. The results for the models presented two crucial 

Fig. 4   CPSOCGSA-ANN algorithm performance for simulating WQI
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aspects. The first aspect confirms that pre-processing 
methods (i.e., SSA and tolerance) enhanced the dataset 
quality and yielded appropriate scenario of predictors. The 
second aspect, the performance of CPSOCGSA-ANN, was 
superior to other models (MPA-ANN and PSO-ANN) that 
yielded R2 = 0.965, MAE = 0.01627, and RMSE = 0.0187.

For future research, it is recommended to use these 
metaheuristic algorithms to integrate other machine learning 
models. Also, assess the impact of additional predictors such 
as an expansion of urbanization, the volume of wastewater 
discharges, and water consumption.

A B

C

Fig. 5   Best performed of CPSOCGSA-ANN, PSO-ANN and MPA-ANN algorithms for simulating WQI

Table 5   ANN hyperparameters of all models

Model Lr N1 N2

CPSOCGSA-ANN 0.6622 3 3
MPA-ANN 0.013 4 1
PSO-ANN 0.2321 1 4

Table 6   Performance evaluation for validation data phase

Model MAE RMSE R2

CPSOCGSA-ANN 0.01627 0.0187 0.965
MPA-ANN 0.0308 0.0391 0.937
PSO-ANN 0.0324 0.0399 0.924

Fig. 6   Taylor diagrams for different forecasting models

Table 7   Tests of normality

Target Kolmogorov–Smirnova (K–S) Shapiro–Wilk (S–W)

WQI 0.200 0.224
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