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Abstract
The imperfect knowledge and inherent randomness in groundwater distribution and movement give rise to uncertainty which 
are mostly influenced by the spatial distribution of hydrogeological or aquifer parameters. Detailed deterministic and stochas-
tic quantification of this uncertainty can aid in robust decision making process on the optimal exploitation and management 
of groundwater resource. Therefore, this study analyses the uncertainties associated with the six groundwater-controlling 
aquifer parameters of depth, thickness, resistivity, coefficient of anisotropy, transmissivity and yield. This is with a focus to 
producing risk-based assessments of their distribution as well as glean their potential influence on exploitation and manage-
ment decision on groundwater resource in a typical basement complex. The analysis involves using variogram-constrained 
ordinary kriging estimates and conditional stochastic simulations algorithm—a Monte Carlo routine that makes use of the 
inverse normal distribution to generate several equally probable outcomes. The outcomes form the basis of the uncertainty 
quantification from cdfs and probability maps at various risk levels. They are expected to influence groundwater exploita-
tion decision in the region as well as serves as a contribution to the application of deterministic and stochastic algorithms 
in groundwater uncertainty study.

Keywords  Uncertainty · Aquifer parameters · Variogram model · Deterministic-stochastic algorithm · Basement complex · 
Nigeria

Introduction

Uncertainty is an integral part of modelling and it is a 
pointer to insufficient knowledge about the reliability of 
measurements (Wang and Chen 2012; Wang et al. 2006; 
Refsgaard et al. 2007; Fu and Rich 1999; Wechsler 1999). 
It arises as a result of spatial and temporal variations in 
measured data as well as the non-uniqueness of parameters 
and processes associated with the resulting models (Brim-
icombe 2010; Refsgaard et al. 2007; Wang and Chen 2012). 

In groundwater study, incomplete knowledge of the random 
and spatial distribution of hydrogeological or aquifer param-
eters give rise to uncertainty (Raaflaub and Collins 2006; 
Wechsler 1999; Şen 1999; Hunter and Goodchild 1997). The 
aquifer parameters may include but not limited to depth to 
the aquifer, thickness, hydraulic conductivity, resistivity, 
transmissivity, anisotropy among others. If this uncertainty 
is quantified, it can aid in robust decision making process 
(Harrison et al. 2010) on the optimal exploitation and man-
agement of groundwater resource. There are several and 
different algorithms that have been developed to quantify 
uncertainties which are more or less based on probability 
distribution.

The aim of this study, therefore, is to quantify the 
uncertainties and assess the risk associated with six aqui-
fer parameters in a basement complex environment using 
variogram-constrained ordinary kriging estimates and a sto-
chastic conditional Gaussian simulations algorithm. This is 
with a view to providing quantifiable risk-based distribution 
of the parameters and their influence on exploitation and 
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management of the groundwater resource. Variogram pro-
vides spatial autocorrelation and geologic continuity model 
whose outputs serve as inputs to constrain the deterministic 
kriging estimates and stochastic models (Ivits-Wasser 2004; 
Deutsch 2002; Gringarten and Deutsch 2001; Isaaks and 
Srivastava 1989). Kriging is usually referred to as a best 
linear unbiased estimate interpolation technique (Deutsch 
2002; Goovaerts 1997; Isaaks and Srivastava 1989). While 
the stochastic conditional Gaussian simulations algorithm is 
a Monte Carlo (probabilistic) procedure that makes use of 
the inverse normal distribution (Karlis 2002; Banks 1998) to 
calculate several equally probable outcomes conditioned to 
the variogram which are then used for uncertainty analysis 
(Vann et al 2002). Uncertainty analysis (Wang and Chen 
2012; Refsgaard et al. 2007) tests the reliability of the out-
comes and provides a measure of risk to be considered in the 
process of exploitation and management decision-making. 
This research therefore, would serve as a contribution to 
groundwater uncertainty study especially in the basement 
complex.

Location characteristics and main aquifer 
types

The study location is in Osun State, southwestern Nigeria 
(Fig. 1), within latitude 7.81°N to 8.05°N (UTM 864,281.40 
mN and 890,385.30 mN) and longitude 4.62°N to 4.91°N 
(UTM 678,806.80 mE and 711,081.40 mE). It is an area 
dissected by the presence of many rivers and streams char-
acteristic of tropical rain forest environment. The topogra-
phy is uneven and characterized by ridges, hills and valleys. 
Regionally, the area is underlain by crystalline basement 
rocks categorized by Rahaman (1988, 1976) as grey/banded 
gneiss, granite gneiss, undifferentiated schist, porphyritic 
granite and pegmatite with evidence of multiple deforma-
tions and metamorphisms (Fig. 1). Typical subsurface layers 
within the basement from bottom to the top are the fresh 
basement, fractured basement, weathered layer and topsoil 
(Olorunfemi and Fasuyi 1993; Olayinka and Olorunfemi 
1992; Olorunfemi et al. 1991). The target aquifers are usu-
ally the weathered and fractured basements but in most 
cases, the weathered basement occurs more frequently than 
the fractured basement (Olorunfemi and Fasuyi 1993). So 
the main consideration in this study, is the weathered base-
ment aquifer.

Methodology

The methodology follows the workflow described in 
Fig. 2. The original data consist of six aquifer param-
eters (Table 1) distributed as regionalized variables over 
39 locations in the study area. The parameters are (1) 
depth to the aquifer, (2) resistivity, (3) thickness, (4) coef-
ficient of anisotropy, (5) transmissivity and (6) yield. 
Each parameter is subjected to semivariogram analysis 
which serves as geologic constraint to produce a deter-
ministic model (ordinary kriging estimate () and standard Fig. 1   The study area (Modified after Nigeria Geological Survey 

Agency 2006)

Fig. 2   Methodology workflow
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deviation ()). The kriging estimate and standard devia-
tion are subjected to stochastic process by the application 
of randomized normal inverse function to produce 100 
equally probable realizations which are used for uncer-
tainty analysis.

Semivariogram analysis

A semivariogram investigates and quantifies the degree of 
spatial variableness of the parameter of interest and serves 
as critical input in geostatistical estimation and simulation 

Table 1   The original regionalized six aquifer parameters

S/N Easting Northing Depth (m) Resistivity ( Ωm) Thickness
(m)

Coefficient
of Anisotropy

Transmissivity (m2/s) Yield
L/s

1 678,806.8 885,466.4 12.7 30.3 11.5 1.0 6.472E-05 1.03
2 682,540.2 885,339.8 49.0 78.7 37.2 1.3 6.550E-04 1.42
3 686,836.4 888,557.7 4.3 37.5 3.4 1.0 2.469E-05 1.32
4 682,583.9 882,404.9 24.4 139.0 23.2 1.0 8.061E-04 1.20
5 697,110.8 890,385.3 1.6 18.0 0.9 1.3 2.718E-06 1.13
6 692,631.3 888,942.6 1.0 3.9 0.5 2.0 2.428E-07 1.30
7 711,081.4 887,263.2 1.7 93.2 1.2 1.2 2.586E-05 1.20
8 709,893.3 887,634.8 9.0 125.7 6.9 1.3 2.126E-04 1.50
9 706,370.9 888,543.3 8.5 40.3 5.3 1.2 4.194E-05 1.30
10 710,026.0 886,600.2 7.2 15.9 6.2 1.0 1.615E-05 1.48
11 709,087.9 885,601.6 12.2 91.5 10.8 1.3 2.277E-04 1.40
12 701,578.5 889,252.7 28.6 201.2 26.0 1.2 1.405E-03 1.17
13 701,660.1 877,581.6 11.9 291.0 11.2 1.0 9.410E-04 1.21
14 699,332.0 878,890.8 50.7 129.6 41.8 1.3 1.336E-03 1.24
15 709,057.8 887,337.9 1.8 42.1 5.9 1.4 4.919E-05 1.20
16 689,953.7 879,156.1 1.2 31.1 0.5 1.3 2.903E-06 1.20
17 701,216.1 873,467.6 4.3 224.0 2.2 1.0 1.352E-04 1.35
18 697,141.7 878,459.9 6.3 62.2 5.4 1.3 7.178E-05 1.50
19 690,470.8 878,115.3 2.4 34.2 1.4 1.0 9.105E-06 1.23
20 693,389.7 878,606.5 3.5 73.7 2.5 1.1 4.070E-05 1.35
21 691,018.0 878,574.4 2.1 69.0 1.1 1.0 1.655E-05 1.30
22 691,026.1 878,732.5 1.5 25.1 0.7 1.1 3.146E-06 1.20
23 690,997.4 878,210.4 1.5 35.7 0.8 1.2 5.477E-06 1.22
24 686,334.2 874,974.1 2.0 62.0 5.5 1.7 7.282E-05 1.50
25 689,126.9 877,239.4 15.6 133.5 13.4 1.0 4.437E-04 1.24
26 689,587.8 877,242.4 2.3 23.9 1.3 1.1 5.510E-06 1.50
27 689,391.3 877,578.9 4.5 37.6 2.7 1.3 1.967E-05 1.30
28 690,622.3 877,745.5 4.5 27.1 3.5 1.2 1.724E-05 1.44
29 690,064.7 870,457.4 1.1 101.9 1.1 1.0 2.637E-05 1.03
30 688,146.3 865,436.5 3.9 66.7 2.9 1.1 4.190E-05 1.20
31 689,638.1 877,353.2 7.9 116.4 6.9 1.1 1.939E-04 1.50
32 688,037.0 877,633.0 1.7 127.6 1.1 1.6 3.451E-05 1.36
33 688,325.0 873,278.0 1.0 28.6 5.9 1.1 3.099E-05 1.26
34 688,114.6 873,211.9 7.4 75.2 5.1 1.4 8.505E-05 1.38
35 687,555.9 873,385.5 1.8 31.8 2.4 1.4 1.431E-05 1.11
36 701,509.9 877,620.7 5.5 55.1 4.4 1.4 5.060E-05 1.20
37 692,124.4 877,690.9 0.6 3.2 0.5 2.1 1.917E-07 1.30
38 701,554.0 877,633.1 0.9 66.7 6.8 1.3 9.825E-05 1.43
39 679,355.9 864,281.4 3.0 35.3 2.6 1.1 1.756E-05 1.27
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algorithms (Gringarten and Deutsch 2001). This is achieved 
by measuring the mean difference between sample points at 
a displacement vector (h) from each other. Its value increases 
as samples become more dissimilar. For a pair of sample 
points, it is simplified as:

where γ(h) = semivariogram; N(h) = the number of sample 
pairs in a lag interval; xα = the vector of spatial coordinates 
of the αth individual; w(xα) and w(xα + h) are values of the 
attribute at two points at an interval displacement vector (h) 
(Ivits-Wasser 2004).

The exponential semivariogram model defined math-
ematically by Eq. 2 was adopted for analysis of the aquifer 
parameters.

where Cov(0) = sill—a measure of maximum variance, 
a = range of correlation, h = lag. The semivariogram analysis 
was done using Surfer™ software package.

Ordinary kriging (ODK)

The ODK is one of the variants of the linear regression 
estimator W*(x) defined by Eq. 3. It estimates the value 
of a random variable at a location from a set of nearby ran-
dom variables W(xα) (Goovaerts 1997; Isaaks and Srivas-
tava 1989). A group of (n(x) + 1) linear equations combine 
with (n(x) + 1) unknowns such that kriging weights can be 
obtained by Eq. 4.

where (x) is the estimation point location vector; n(x) is the 
number of data points used for the estimation of W*(u); xα 
represents one of the neighboring data points; m(x) is the 
mean of W(u); while m(xα) is the mean of W(xα). λα(x) is 
the kriging weight for estimation location (x) assigned to 
datum W(xα).

Equation 4 can be summarized as ODK(x) * T = t; such 
ODK(x) = T−1 * t. Where T, with elements Tα, β = Cov(xα—
xβ) represents covariance matrix between surrounding data 
points, while t, with elements tα = Cov(xα—x), is the covari-
ance vector between point of estimation and the surrounding 
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data points; and ODK (x) is the vector of the location-by-
location ordinary kriging weights for the surrounding data 
points with respect to the estimation location (x) (Goovaerts 
1997; Bohling 2005). The relationship between covariance 
function Cov(h) and the input semivariogram γ(h) model is 
as defined by Eq. 5.

Simulation and uncertainty analysis

Given a value of probability, the NORM.INV function simu-
lates an equally probable random value W specified by a 
random probability generator RAND() for a given average 
(µ) and standard deviation (σ) (Eq. 6). The probability range 
is usually between 0 and 1.

The RAND() will generate a random probability related 
to normal distribution for which the inverse function is to 
be obtained. The average and standard deviation values are 
obtained from the ordinary kriging estimates and kriging 
standard deviation, respectively. The Gaussian function 
(NIST/SEMATECH 2012; Karlis 2002) which represents 
the continuous probability density function of the normal 
distribution relates the standard normal random variable 
(W = (x−)/), mean () and standard deviation () by

This is achieved by picking a random deviate from 
the normal distribution of the estimated location-specific 
kriged and equivalent standard deviation values using the 
randomized inverse-normal distribution function. Several 
random deviates which represent equiprobable realizations 
are simulated by repeating the process one hundred times. 
The uncertainties associated with the realizations are then 
assessed using the cumulative distribution functions (cdfs) 
and probability maps.

Results and discussions

Semivariogram characteristics of the aquifer 
parameters

Figure 3 describes the semivariogram characteristics for the 
six aquifer parameters. They all measure the spatial or the 
geologic continuity of the parameters using the exponential 
variography based on the same number of lags of 25 and lag 
width of 553.46 m. But the sill and range values are mostly 
different and are represented in Table 2. They are the two 

(5)Cov(h) = Cov(0) − γ(h) = Sill − γ(h)
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most important parameters that serve as inputs to the deter-
ministic and stochastic algorithms.

The sill for depth is 150 m and the range is 3000 m; while 
those for thickness are 100 and 5430 m, respectively. Resis-
tivity has a sill of 3000 and a range of 4660 m; while the sill 
and range for anisotropy are 0.065 and 3000 m, respectively. 
The sill of hydraulic conductivity is 3.2 × 10–10 at a range of 
3000 m; while sill of transmissivity is 1.4 × 10–7 at a range 
3000 m. Finally, the yield has a sill of 0.016 at a range of 
1170 m.

Deterministic estimates of aquifer parameters

Figure 4 is the resulting deterministic (kriging) estimate 
distributions which amounted to eight thousand, one hun-
dred (8100) estimated data points for each of the six aqui-
fer parameters. Figure 4a is the map of the depth to the 

top of the aquifer which varies between 0 and 50 m. The 
deepest portions are associated with banded and granite 
gneiss in the northwest and porphyritic granite and peg-
matite towards the northeast. The aquifer depth is mostly 
shallower (less than 20 m) at the southern end of the study 
area. The thickest portion of the aquifer (Fig. 4b) are simi-
larly associated with the banded and granite gneiss in the 
northwest as well as the porphyritic granite and pegmatite 
towards the northeast. The thickness varies between 0 and 
42 m. The aquifer resistivity (Fig. 4c) varies between 0 and 
greater than 270 m. Resistivity values below 150 m are 
concentrated towards the western parts while above 150 m 
are more towards the eastern part. The higher the resistiv-
ity, the less the conductivity, the fresher the groundwa-
ter. The anisotropy distribution (Fig. 4d) varies between 
1 and 21. Most parts have anisotropy values less than 1.6 
while the remaining parts have values of more than 1.6 

Fig. 3   Variogram model for the each parameter

Table 2   Semivariogram 
characteristics of aquifer 
parameters

Aquifer Parameters Depth Thickness Resistivity Anisotropy Transmissivity Yield

Cov(h) Sill 150 100 3000 0.065 1.391 × 10–7 0.0159
Range (a) 3000 5430 4660 3000 3000 1170
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particularly on the porphyritic granite towards the north 
and the granite-gneiss towards west-central parts. Anisot-
ropy indicates degree of heterogeneity that has an index of 
1 for a fresh rock but increases with exposure to weather-
ing and fracturing (Akintorinwa et al. 2020).

The aquifer transmissivity (Fig. 4e) which is a measure 
of the rate of fluid flow varies between 0 and 14 × 10–4 
m2/s in the study area. The presence and movement of 
groundwater would increase with degree of fracturing 
or weathering of the rock. Its distribution is such that 
the higher the transmissivity, the higher the rate of fluid 
flow (Akintorinwa et al. 2020). So parts of the study area 
around the northeast (with porphyritic granite, pegmatite 
and undifferentiated schist) and northwest (granite-gneiss 
and banded gneiss) have higher transmissivity values com-
pared to other areas. The yield map (Fig. 4f) indicates a 
variation between 1.04 and 1.50 L/second which seems 
to be increasing towards the eastern part. It is worthy of 
note, that a relative high or low yield is not necessarily 
associated with any rock units but is most likely related 
to the degree of weathering, fracturing, connected spaces 
and potential recharge available in the study area. Yield 
is of paramount importance in groundwater search and it 
is a reflection of the combination of multiple groundwa-
ter controlling parameters. In all the maps, it appears the 
distribution patterns of the groundwater parameters are 
likely influenced by the NE-SW geological/structural trend 
typical of the basement complex in Nigeria.

Simulated aquifer parameters and associated 
uncertainty

The kriged maps (Fig. 4) are smoothened or average maps 
and so are not sufficient to capture the variabilities, hetero-
geneities or uncertainties associated with the distributions 
of the estimated parameters (Goovaerts 1997). However, 
the conditional stochastic simulation algorithm-based maps 
reveal variabilities, heterogeneities and uncertainties in the 
distribution of the parameters. Figures 5, 6, 7, 8, 9 and 10 
are some six simulations out of the 100 simulations for each 
parameter of depth, thickness, resistivity, anisotropy, trans-
missivity and yield, respectively.

The cumulative distribution functions (cdfs) of the 
realizations used to quantify the risk/uncertainty in the 
distributions of each of the aquifer parameters are sum-
marized into minimum, average and maximum (Figs. 11 
and 12). They display a representative range of useful 
data between 0 and 70% risk/uncertainty for all param-
eters. The upper images are plots of the cdfs that have red 
dot for minimum, blue line for average and black dot for 
maximum while the equivalent tables of the figures are 
displayed below them. For example, 0% risk represents 
maximum available to be exploited at no risk, all things 
being equal while above 70% risk, the expected values 
are extremely low. Values above 70% uncertainty/risk are 
not likely to be useful at all. The varying characteristics 
of the realizations reflect risk which is a function of the 

Fig. 4   Kriged estimates for a depth b thickness c resistivity d coefficient of anisotropy e transmissivity and f yield
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potential uncertainty associated with the distribution of 
these parameters in the subsurface. In Fig. 11a, at 0%, 
depth has a minimum of about 51 m, maximum of about 
66 m and average of about 57 m. However, at 70%, the 
minimum value of depth is 2.6 m, maximum of 3.3 m and 

average of 3.0 m. In Fig. 11b for thickness at 0% risk, it 
has about 45 m at the minimum, 56 m at the maximum 
and 48 m at the average. At 70% risk, it is just 2.4 m at the 
minimum, 3.2 m at the maximum and 2.7 m at the average. 
The resistivity (Fig. 11c) at 0% risk is about 308 m at the 

Fig. 5   Selected six realizations of depth

Fig. 6   Selected six realizations of thickness
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minimum, 378 m at the maximum and 342 m at the aver-
age. However, at 70% risk, it about 55 m at the minimum, 
58 m at the maximum and 56 m at the average. This ani-
sotropy risk distribution values are shown in Fig. 12a. At 
0% risk, It has 2.13 for minimum, 2.61 for maximum and 

2.28 for average. At 70% risk, it has 1.11 for minimum, 
1.13 for maximum and 1.12 for average. Figure 12b, is the 
risk associated with the distribution of transmissivity. The 
values of transmissivity at 0% risk in m2/s are 15 × 10–4 
at the minimum, 22 × 10–4 at the maximum and 18 × 10–4 

Fig. 7   Selected six realizations of resistivity

Fig. 8   Selected six realizations of coefficient of anisotropy
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at the average. At 70% risk, however, it is 0 × 10–4 at the 
minimum, 1 × 10–4 and 1 × 10–4 at the average. Moreover, 
from Fig. 12c, the yield values available at no risk (0%) 
vary between 1.71 L/second for minimum, 1.93 L/second 
for maximum and 1.78 L/second for the average. At 70% 

risk, the yield is 1.21 for minimum, 1.22 for maximum 
and 1.215 for average. In all, it is clear that the higher the 
risk, the higher the uncertainty and the less the expected 
average, minimum, and maximum value for each of the 
parameters. The simulation allows for the quantification 

Fig. 9   Selected six realizations of transmissivity

Fig. 10   Selected six realizations of yield
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of risk/uncertainty to give a more robust outlook of the 
distribution of the parameters than just the original data 
and the kriged estimates.

Implication for groundwater exploitation 
in the study area

The probability maps (Fig. 13) indicate the risk associated 
with distribution of the parameters. They can be divided 
grossly into low risk (< than 30%); mid-risk (between 30 
and 60%) and high risk (> than 60%) areas and are expected 
to have a significant influence on the sustainable exploi-
tation and management of groundwater in the study area. 
For example, it can be deduced from the depth risk map 
(Fig. 13a), that part of the granite-gneiss and banded gneiss 
to the west and the pegmatite and the undifferentiated schist 
to the east are low-risk areas. About the same patterns can be 
observed on the thickness risk map (Fig. 13b) and the trans-
missivity risk map (Fig. 13e). But, it is slightly different for 
the resistivity risk map (Fig. 13c) as well as the anisotropy 
risk map (Fig. 13d). Moreover, the yield risk is not the same 
everywhere (Fig. 13f). It appears that the study area is more 

of a mid-risk yield (30–60% risk) area interspersed by low 
and high risk yield regions. With this assessment and quan-
tification, it is easier to project tolerable risk and uncertainty 
into the search for groundwater and associated decision on 
its exploitation in this area based on prevailing conditions.

Conclusion

The study describes the analysis of the uncertainties asso-
ciated with the six aquifer parameters of depth, thickness, 
resistivity, coefficient of anisotropy, transmissivity and yield 
to produce risk-based assessment of their distribution. The 
focus is to glean their potential influence on exploitation 
and management decision of groundwater resource in the 
region. The analysis was based on the use of variogram-
constrained ordinary kriging estimates and a conditional sto-
chastic simulation algorithm which is a Monte Carlo proce-
dure that makes use of the inverse normal distribution. The 
resulting several equally probable outcomes form the basis 
of the uncertainty analysis in the form of cdfs and prob-
ability maps. There are evident varying uncertainties in the 

Fig. 11   Risk profile -cumulative distribution functions for a depth b thickness and c resistivity
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Fig. 12   Risk profile -cumulative distribution functions for a coefficient of anisotropy b transmissivity and c yield

Fig. 13   Risk maps for a depth b thickness c resistivity d coefficient of anisotropy e transmissivity and f yield
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distribution of the aquifer parameters across rock units and 
the study area has between 30 and 60% groundwater yield 
risk. These results, therefore, provide a basis for risk-based 
decision on groundwater exploitation in the region as well 
as serves as a contribution to the application of deterministic 
and stochastic algorithms in groundwater uncertainty study.
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