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Abstract
Atherosclerosis is a chronic inflammatory disease which occurs due to plaque accumulation in the intima, the innermost layer 
of the artery. In this paper, a simple reaction–diffusion mathematical model of the plaque formation process comprising of 
oxidized LDL and macrophages has been developed. Linear stability analysis of the non-spatial model leads to the existence 
of global stability of the kinetic system. This reveals that the non-spatial system can withstand a substantial change in the 
significant model parameter values which can be taken forward for further clinical investigations. Numerical bifurcation 
analysis of the non-spatial system confirms the existence of Hopf bifurcation with respect to two significant model parameters. 
The biological importance of these bifurcation diagrams is discussed in detail. The significance of the model presented in 
this research paper provides a clear insight into the role of the key constituents, oxidized LDL and macrophages, involved 
in the plaque-forming process.
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Mathematics Subject Classification  92B05 · 92C50

Introduction

Atherosclerosis is the leading cause of death in the United 
States and around the world. The aim of this article is to 
elucidate the risk factors in atherosclerotic plaque formation 
in terms of a mathematical model.

According to the ‘response to injury’ hypothesis athero-
sclerosis starts with an endothelial lesion (Ross et al. 1977). 
Damage to the endothelial layer of the artery wall triggers 
an inflammatory response in which monocytes, T cells, and 
other immune cells are recruited in the affected area. These 
cells enter the intima, along with low-density lipoprotein 
(LDL) and high-density lipoprotein (HDL). In the pres-
ence of free oxygen radicals, LDL and HDL particles get 

oxidized. Monocytes differentiate into macrophages within 
the intima. Then, macrophages phagocytose oxidized LDL 
and produce foam cells. The cyclic procedure from mono-
cyte recruitment to foam cell formation continues and it 
increases the speed of the plaque accumulation process. 
Eventually, the stress created from the inflated plaque vol-
ume crosses the endothelial wall shear stress (WSS) limit. 
Then, plaque bulges into the lumen and causes hindrance 
in the smooth blood flow. It results in thrombosis and often 
leads to serious myocardial infarction (Bulelzai and Dub-
beldam 2012).

To understand the complex biological phenomenon of ath-
erosclerotic plaque formation several clinical investigations 
(Libby et al. 2002; Gijsen et al. 2008; Malek et al. 1999) have 
been carried out. As the atherosclerotic plaque formation pro-
cess involves a large number of factors, it is essential to look 
for computational models to address several queries regarding 
this pernicious disease. Mathematical models and numerical 
simulation play a significant role in obtaining better insight 
into a complex biological phenomenon and subsequently, it 
helps in generating therapeutic strategies for controlling the 
disease dynamics. Mathematical models of atherosclerotic 
plaque formation lead to the ordinary differential equation 
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(ODE) or partial differential equation (PDE) models. The 
mathematical models considered to date are able to describe 
several aspects of the plaque-forming process, for example, 
cell movement, chemical reactions, coagulation, growth pro-
cesses, and understanding the complex dynamics of vessel 
wall (Bulelzai and Dubbeldam 2012; Ougrinovskaia et al. 
2010; Cohen et al. 2014; Friedman and Hao 2015; Hao and 
Friedman 2014; Anlamlert et al. 2017; Alimohammadi 2017; 
Calvez et al. 2009; Chalmers et al. 2015; Crowther 2005; 
Cobbold et al. 2002; Ibragimov et al. 2005; Mel’nyk 2019; 
Abi Younes and El Khatib 2022; Simonetto et al. 2022). An 
extensive list of mathematical models on atherosclerosis evolu-
tion and formation can be found in Parton et al. (2015).

The complexity behind atherosclerotic plaque formation 
requires a more significant computational model. In this paper, 
the foremost reason behind atherosclerotic plaque formation, 
the interaction between oxidized LDL and macrophages has 
been modeled using a reaction–diffusion system of equations. 
The plaque formation begins as early as during childhood, then 
advances in middle age followed by no plaque in the cente-
narians (Homma et al. 2001). To explain the intricacy of this 
phenomenon, a logistic growth model is considered in this 
paper. Michaelis–Menten-type functional response is incor-
porated for describing the interaction between oxidized LDL 
and macrophages.

The present article is organized as follows: in “Formulation 
of the original model”, the original model has been formulated. 
In “Rescaled model” the model has been nondimensionalized. 
Stability analysis for both the non-spatial and spatial models 
are performed in “Kinetic system” and “Stability analysis in 
the presence of diffusion”, respectively. Numerical investiga-
tions are provided in “Numerical simulation”. The discussion 
of the results is given in “Discussions of the result” followed 
by concluding remarks in “Concluding remarks”.

Formulation of the original model

Macrophage phagocytosis is a significant step in atheroscle-
rotic plaque formation. To analyze the macrophage phagocy-
tosis process a simplified reaction–diffusion model comprising 
macrophages and oxidized LDL as the dependent variables is 
presented in this section. An interval Ω̃ = [0, L̃] ⊆ ℝ within 
the intima is considered in the model description. It is assumed 
that oxidized LDL and macrophages are diffusing according to 
Fick’s law in Ω̃ . The model is presented as follows:

(2.1)
𝜕X̃

𝜕t̃
=𝜙1X̃

(
1 −

X̃

K

)
− 𝜋X

M̃X̃

aX̃ + bM̃
− 𝛿XX̃ + 𝛾1∇̃

2X̃,

(2.2)

𝜕M̃

𝜕t̃
=𝜙2M̃

(
1 −

cM̃

X̃

)
− 𝜋M

M̃X̃

aX̃ + bM̃
− 𝛿MM̃ + 𝛾2∇̃

2M̃,

w h e r e  ∇̃2 ≡ 𝜕2

𝜕x̃2
. T h e  i n i t i a l  c o n d i t i o n s  a r e 

X̃(x̃, t̃) > 0, M̃(x̃, t̃) > 0,∀x̃ ∈ Ω̃ . Here, zero-flux boundary 
condition 𝜕X̃

𝜕n
=

𝜕M̃

𝜕n
= 0 is assumed in 𝜕Ω̃ × (0,∞) , where n 

is the outward normal vector of the boundary 𝜕Ω̃ , which is 
considered to be smooth. Biologically, it means that there is 
zero movements of macrophages and oxidized LDL outside 
the region during the numerical observations.

Equations (2.1) and (2.2) represent the respective con-
centration gradient of oxidized LDL and macrophages, 
respectively. The genesis of these equations is explained 
step by step so that we have a complete understanding of 
the model formulation. Logistic models have been used ear-
lier to describe tumor growth (Kozusko and Bourdeau 2007; 
Marušić et al. 1994). Here, the macrophage phagocytosis is 
assumed to follow a logistic growth model. The first terms in 
Eqs. (2.1) and (2.2) are source terms which are depicting the 
logistic growth. Intima has a capacity threshold of holding 
the plaque till it ruptures. The carrying capacity is denoted 
as K in Eq. (2.1). The concentration of macrophages inside 
the intima depends on the presence of oxidized LDL. So the 
source term in Eq. (2.2) is assumed to follow modified logis-
tic growth with carrying capacity directly proportional to the 
concentration of oxidized LDL. The second terms in Eqs. 
(2.1) and (2.2) are representing the phagocytosing process 
of macrophages. The decays of the cellular components are 
provided in the third terms of the Eqs. (2.1) and (2.2). The 
last terms in Eqs. (2.1) and (2.2) are depicting the diffusive 
terms for respective concentration gradients.

Rescaled model

The model in Eqs. (2.1) and (2.2) are rescaled as follows:
The time ( ̃t ) and space ( ̃x ) are changed as:

The concentration of oxidized LDL and macrophages are 
rescaled as the following:

Further, all other model parameters are nondimensionalized 
in the following manner:

t = t̃𝜙1, x =
x̃

L
.

X = X̃∕K, M = M̃∕K.
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The nondimensionalized model is obtained as follows:

where

Kinetic system

To perform the linear stability analysis, first, the kinetic sys-
tem is considered.

with X(0) > 0,M(0) > 0.

Stability analysis of the kinetic model

Positivity and boundedness

Theorem  Let all the parameters of the system of Eqs. 
(4.1), (4.2) be positive and Γ be a region in ℝ2

+
 defined 

as, Γ = {(X,M) ∈ ℝ
2
+
|0 ≤ X ≤ X̄, 0 ≤ M ≤ M̄} . Then Γ is 

positive invariant and all the solutions starting from Γ are 
uniformly bounded, the parameters over the bar being the 
respective upper bounds.

Proof  Clearly, H1(X,M) and H2(X,M) are completely con-
tinuous and locally Lipchitzian on C2(ℝ2

+
) . Hence, the solu-

tion (X(t), M(t)) of (4.1), (4.2) exists and is unique in Γ.

�1 =
�X

�1

, �2 =
�M

�1

�1 =
�X

�1

, �2 =
�M

�1

, � =
�2

�1

,

D1 =
�1

�1L
2
, D2 =

�2

�1L
2
.

(3.1)
�X

�t
=X(1 − X) − �1

MX

aX + bM
− �1X + D1∇

2X,

(3.2)

�M

�t
=�M

(
1 −

cM

X

)
− �2

MX

aX + bM
− �2M + D2∇

2M.

∇2 ≡ 𝜕2

𝜕x2
,

with the initial condition X(x, t) > 0, M(x, t) > 0,∀x ∈ Ω,

and the boundary condition
𝜕X

𝜕n
=

𝜕M

𝜕n
= 0 ∈ 𝜕Ω × (0,∞).

(4.1)
dX

dt
=X(1 − X) − �1

MX

aX + bM
− �1X = H1(X,M),

(4.2)

dM

dt
=�M

(
1 −

cM

X

)
− �2

MX

aX + bM
− �2M = H2(X,M).

Hence, the positive invariant part is concluded.
Next for the boundedness part, one may observe from 

(4.1),

Then limt→∞ supX(t) ≤ 1 , as a result of a standard com-
parison argument. This implies there exists T > 0 such that 
X(t) ≤ N  , for t > T  , where N > 1 . Also from (4.2) , one 
may observe for t > T ,

Thus, limt→∞ supM(t) ≤ N

c
 . This proves the boundedness of 

the system (4.1), (4.2).

Equilibrium points and their stability

The equilibrium points of the system (4.1), (4.2) are (i) 
E1 = (X1,M1) and (ii) E2 = (X2,M2) , where X1 = 1 − �1 , 
M1 = 0   ,  M2 =

−ac�+b�−b�2±B

2 bc�
 w h e r e 

B =

√
a2c2�2 + 2 abc�2 − 2 abc� �

2
+ b2�2 − 2 b2� �

2
+ b2�

2

2 − 4 bc� �
2
 

and X2 is a root of the following differential equation ,

w h e re  w2 = b2�2  ,  w
1
= −a2c� �

1
− ab� �

1
+ ab�

1
�
2

+2 b2�
2
�
1
− 2 b

2�
2
+ 2 b�

2
�
1
 , w

0
= −a2c� �

1
�
1
+ a

2
c� �

1

−ab� �
1
�
1
+ ab�

1
�
2
�
1
+ b

2�
2
�
1

2 + ab� �
1
− ab�

1
�
2

−a� �
1

2 + a�
1

2�
2
− 2 b

2�
2
�
1
+ 2 b�

2
�
1
�
1
+ b

2�
2
− 2 b�

2
�
1

+�
2
�
1

2.
The Jacobian matrix of the system (4.1), (4.2) is

X(t) =X(0) exp

(
�

1

0

[((1 − X(s))

− �1
M(s)

aX(s) + bM(s)
− �1]ds

)

≥0,
M(t) =M(0) exp

(
�

1

0

[�(1 −
cM(s)

X(s)
)

− �2
X(s)

aX(s) + bM(s)
− �2]ds

)

≥0.

dX

dt
≤ X(1 − X).

dM

dt
≤ �M

(
1 − c

M

N

)
.

w2z
2 + w1z + w0 = 0,

(4.3)

J =

⎡⎢⎢⎣
1 − 2X −

�1M
2b

(bM+Xa)2
− �1 −

�1X
2a

(bM+Xa)2

� M2c

X2
−

�2M
2b

(bM+Xa)2
−2� Mc+X�

X
−

�2X
2a

(bM+Xa)2
− �2

⎤⎥⎥⎦
.



3520	 Modeling Earth Systems and Environment (2023) 9:3517–3526

1 3

The Jacobian evaluated at Ei, i = 1, 2 are denoted as as 
Jk, k = 1, 2.

Theorem  The system (4.1), (4.2) is locally asymptotically 
stable at E1 if the following conditions are satisfied

(i) 𝜃1 < 1 and (ii) 𝜓 <
𝜆2

a
− 𝜃2 .

Proof  The Jacobian matrix of the system (4.1), (4.2) at E1 is 
obtained as the following

Now, the eigenvalues of J1 are �1 = −1 + �1 and 
�2 = � −

�2

a
− �2 . Thus whenever 𝜐1 < 0 and 𝜐2 < 0 , the 

system (4.1), (4.2) is locally asymptotically stable at E1 , 
otherwise it is unstable. Then, it is clear that 𝜐1 < 0 when-
ever 𝜃1 < 1 . Also, if 𝜓 <

𝜆2

a
+ 𝜃2 holds, then one may have 

𝜆2 < 0 . Thus, the conditions for the system (4.1), (4.2) 
to be locally asymptotically stable are: (i) 𝜃1 < 1 and (ii) 
𝜓 <

𝜆2

a
+ 𝜃2 . It completes the proof.

Theorem  The system (4.1), (4.2) is locally asymptotically 
stable at E2 if and only if (i) Tr(J2) < 0 and (ii) det(J2) > 0.

Proof  The Jacobian matrix of (4.1), (4.2) at E2 is

The characteristic equation of J2 is z2 + K1z + K2 = 0 , where 
K1 = −(Γ11 + Γ22) and K2 = Γ11Γ22 − Γ12Γ21 . The system 
(4.1), (4.2) is locally asymptotically stable at E2 if and only 
if the Jacobian matrix J2 has negative eigenvalues. Apply-
ing Routh Hurwitz criterion on the second-order polynomial 
z2 + K1z + K2 = 0 , one may conclude that the matrix J2 has 
negative eigenvalues if and only if K1 > 0 and K2 > 0 . This 
implies, the system (4.1), (4.2) is locally asymptotically sta-
ble at E2 if and only if (i) (Γ11 + Γ22)=Tr(J2) < 0 and (ii) 
Γ11Γ22 − Γ12Γ21=det(J2) > 0 . This completes the proof.

Theorem  The model (4.1), (4.2) is globally stable at E2 if 
the following conditions are satisfied:

where Ξij, i, j = 1, 2 are provided in the proof.

J1 =

[
−1 + �1 −

�1

a

0 � −
�2

a
+ �2

]
.

(4.4)

J
2
=

⎡⎢⎢⎣

1 − 2X
2
−

�1M2
2
b

(aX2+bM2)
2
− �

1
−

�1X2
2
a

(aX2+bM2)
2

� M2
2
c

X2
2

−
�2M2

2
b

(aX2+bM2)
2

−2 c� M2+� X2

X2

−
�2X2

2
a

(aX2+bM2)
2
− �

2

⎤⎥⎥⎦

=

�
Γ
11

Γ
12

Γ
21

Γ
22

�
.

max(Ξ12 + Ξ22) ≤ min(Ξ11 + Ξ21),

Proof  Consider

where Ξi =
(
gi − gi2 − gi2 ln

gi

gi2

)
 and gi = X,M for i = 1, 2 , 

respectively.
Now at E2 the right hand sides of Eqs. (4.1), (4.2) is 0 and 

hence we obtain,

Then, a straightforward calculation implies the following:

where

and

Thus, if

then one may conclude that,

Also from Eq. (4.8), it is clear that V̇ = 0 at E2 . Therefore, 
using Lyapunov–Lasalle’s invariance principle (Hale 1969), 
the proof is concluded.

(4.5)

V =

(
X − X2 − X2ln

X

X2

)
+

(
M −M2 −M2ln

M

M2

)

=

2∑
i=1

Ξi,

(4.6)�1 =(1 − X2) − �1
M2

aX2 + bM2

,

(4.7)�2 =�

(
1 −

cM2

X2

)
− �2

X2

aX2 + bM2

.

(4.8)V̇ =

2∑
i=1

Ξ̇i =

2∑
i=1

(
1 −

gi2

gi

)
ġi,

Ξ̇1 ≤ − Ξ11 + Ξ12,

Ξ̇2 ≤ − Ξ21 + Ξ22,

Ξ
11

= (X − X
2
)2,

Ξ
12

= �
1
a(M

2
X
2 + X

2

2
M),

Ξ
21

= −
c�

X
2

(M −M
2
)2

Ξ
22

= c�(M
2
X
2
+MX)M

+ �
2
[aX

2
(M

2
+M)X + b(X

2
M

2 + XM
2

2
)].

(4.9)max(Ξ12 + Ξ22) ≤ min(Ξ11 + Ξ21),

(4.10)V̇ ≤ 0.
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Bifurcation analysis

Theorem  The model (4.1), (4.2) has a Hopf bifurcation 
around E2 at �1 = �1[HB] , where �1[HB] =

T

X2M2
2b

 , and 

T = a
2
X
2

3 + 2 abM
2
X
2

2 − aX
2

3�
2
+ b

2
M

2

2
X
2
− 2 a

2
c� M

2
X
2

2

−4 abc� M
2

2
X
2
− 2 b

2
c� M

2

3 − a
2� X

2

3 − 2 a
2
X
2

4 − a
2
X
2

3�
1

−a2X
2

3�
2
− 2 ab� M

2
X
2

2 − 4 abM
2
X
2

3 − 2 abM
2
X
2

2�
1

−2 abM
2
X
2

2�
2
− b

2� M
2

2
X
2
− 2 b

2
M

2

2
X
2

2 − b
2
M

2

2
X
2
�
1

−b2M
2

2
X
2
�
2
.

Proof  The Hopf bifurcation of the system (4.1), (4.2) occurs 
if and only if there exists a critical value of �1 , i.e, �1 = �1[HB] , 
such that 

	 (i)	 tr(J2) = Γ11 + Γ22 = 0 at �1 = �1[HB];
	 (ii)	 det(J2) = Γ11Γ22 − Γ12Γ21 > 0 at �1 = �1[HB];
	 (iii)	 the characteristic equation is h2 + det(J2) = 0 at 

�1 = �1[HB] , whose eigenvalues are purely imaginary;
	 (iv)	 dh1

d�1
|�1=�1[HB] ≠ 0 , where the eigenvalues of the line-

arized system about the equilibrium point J2 is 
h1 ± ih2.

After replacing h by h = h1 + ih2 in h2 − tr(J2)h + det(J2) = 0 
and separating the real and imaginary parts, one can have

Next differentiating (4.12) with respect to �1 , one gets,

The above condition is called the transversality condition. 
The transversality condition states that in the case of Hopf 
bifurcation the eigenvalues cross the imaginary axis with 
non-zero speed. Therefore, the system (4.1), (4.2) observes 
a Hopf bifurcation around E2 at �1 = �1[HB] , where 

�1[HB] =
T

X2M2
2b

 ,  a n d  T = a
2
X
2

3 + 2 abM
2
X
2

2 − aX
2

3�
2

+b2M
2

2
X
2
− 2 a

2
c� M

2
X
2

2 − 4 abc� M
2

2
X
2
− 2 b

2
c� M

2

3

−a2� X
2

3 − 2 a
2
X
2

4 − a
2
X
2

3�
1
− a

2
X
2

3�
2
− 2 ab� M

2
X
2

2

−4 abM
2
X
2

3 − 2 abM
2
X
2

2�
1
− 2 abM

2
X
2

2�
2
− b

2� M
2

2
X
2

−2 b2M
2

2
X
2

2 − b
2
M

2

2
X
2
�
1
− b

2
M

2

2
X
2
�
2
.

(4.11)(h2
1
− h2

2
) − tr(J2) + det(J2) =0,

(4.12)2h1h2 − tr(J2)h2 =0.

dh1

d�1
|[�1 = �1[HB] ] = −

M2
2b

(
aX2 + bM2

)2 ≠ 0.

Stability analysis in the presence of diffusion

The local stability analysis of the spatial system (3.1), (3.2) 
is analyzed in this section. The self-diffusion coefficients of 
oxidized LDL and macrophages are denoted as D1 and D2 , 
respectively. The linearized system corresponding to (3.1), 
(3.2) about the non-zero equilibrium E2(X2,M2) is:

where X = X2 +X  , M = M2 +M  . The details of Γij can be 
found in (4.4) for i, j = 1, 2 . Here, (X,M) are the small per-
turbations of (X, M) about the equilibrium point E2(X2,M2) 
. One may assume

where 𝜆 > 0 , vi > 0 represent the amplitude (i = 1, 2) and k 
is the wave number of the perturbation in time t. The system 
(5.1), (5.2) becomes,

At E2(X2,M2) the characteristic equation of the linearized 
system (5.3), (5.4) can be written as:

w h e r e  K̂1 = K1 + (D1 + D2)k
2  a n d 

K̂2 = K2 − (D1Γ22 + D2Γ11)k
2 + D1D2k

4.

Theorem  The diffusive system (3.1), (3.2) is stable whenever 
D1Γ22 + D2Γ11 < 0.

Proof  Using Routh–Hurwitz criterion on the second-order 
polynomial 𝜇2 + K̂1𝜇 + K̂2 = 0 , one may observe that the 
spatial system (3.1), (3.2) is stable at the positive equilibrium 
point E2(X2,M2) whenever K̂1 > 0 and K̂2 > 0 . One already 
has obtained K1 > 0 and K2 > 0 as the stability criterion for 
the kinetic system (4.1), (4.2). It is clear from the defini-
tion of K̂1 that K̂1 > 0 . Now suppose K̂2 = K2 − 𝜐1k

2 + 𝜐2k
4 , 

where �1 = D1Γ22 + D2Γ11 and �2 = D1D2 . Then, it is obvi-
ous that 𝜐2 > 0 . Thus if D1Γ22 + D2Γ11 < 0 , then 𝜐1 < 0 . 

(5.1)
�X

�t
= Γ11X + Γ12M + D1∇

2
X,

(5.2)
�M

�t
= Γ21X + Γ22M + D2∇

2
M,

[
X

M

]
=

[
v1
v2

]
e�t+ikx,

(5.3)
�X

�t
= (Γ11 − D1k

2)X + Γ12M,

(5.4)
�M

�t
= Γ21X + (Γ22 − D2k

2)M.

𝜇2 + K̂1𝜇 + K̂2 = 0,
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Then, the required condition K̂2 > 0 follows. Hence, the 
proof is completed.

Theorem  The condition for diffusive-driven instabil-
ity of the system (3.1), (3.2) at E2(X2,M2) is given by, 
K2 + 𝜐2k

4 < 𝜐1k
2 , i.e if K2 + k4D1D2 < (D1Γ22 + D2Γ11)k

2.

Proof  From the above Theorem 5, it is clear that K̂1 > 0 is 
always under the stability condition of the non-spatial sys-
tem. The instability part of the spatial system is depend-
ent on the sign of K̂2 . So if K̂2 < 0 , the diffusive system 
becomes unstable. The condition K̂2 < 0 is implied by 
K2 + 𝜐2k

4 < 𝜐1k
2 or K2 + k4D1D2 < (D1Γ22 + D2Γ11)k

2 . 
So whenever, K2 + k4D1D2 < (D1Γ22 + D2Γ11)k

2 one has 
K̂2 < 0 . This completes the proof.

Numerical simulation

The numerical simulation results for both the spatial (3.1), 
(3.2) and non-spatial (4.1), (4.2) systems with respect 
to the parameter values in Table 1 are discussed in this 
section.

The equilibr ium points of the kinetic model 
(4.1) ,  (4 .2)  are  obtained as  E1 = (0.90,M = 0) , 
E2 = (X = 0.1180,M = 0.1450) , here E1 is the boundary 
equilibrium and E2 is the positive equilibrium point. The 
eigenvalues of the Jacobian matrix J1 are (− 0.9, 0.1650) 
and that of J2 are (− 0.0308 ± i0.1382) . This implies that 
the kinetic system (4.1), (4.2) is unstable at the boundary 
equilibrium point E1 and is stable at the positive equilib-
rium point E2 . The nullclines of the non-spatial system 
(4.1), (4.2) based on the model parameter values provided 
in Table 1 is provided in Fig. 1. The stability attributes of 
the positive equilibrium point E2 for both the non-spatial 
and spatial atherosclerotic models are described in Fig. 2a, 
b, respectively, based on model parameter values provided 
in Table 1.

Figure  3 is representing the Hopf bifurcation in the 
kinetic model with respect to the model parameter �1 . The 
phase portrait of the kinetic model (4.1), (4.2) keeping 
�1 = 0.233 and the rest of the parameter values same as in 
Table 1 is provided in Fig. 3a. In the spatial counterpart 
under the same set of parameter values of Fig. 3a one may 
observe an oscillatory behavior in the oxidized LDL and 
macrophage concentration in Fig. 3b.

Figure 4 is depicting another Hopf bifurcation in the 
kinetic model with respect to the model parameter a. 
The phase portrait with a = 0.06 while keeping all other 

Table 1   List of parameter 
values used in the model

Parameters Non-dimension-
alized numeric 
values

�
1

0.22
a 0.1
b 0.2
�
1

0.1
� 0.2
c 0.7
�
2

0.001
�
2

0.025

7.06.05.04.03.02.01.0

Oxidised LDL (X)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

M
ac

ro
ph

ag
es

 (
M

)

E
2
 = (0.1180,0.1450)

Fig. 1   Nullclines of the non-spatial system (4.1), (4.2) with all the model parameter values are same as provided in Table 1
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parameters the same as in Table 1 is given in Fig. 4a. The 
spatial counterpart of this model is exhibiting oscillatory 
behavior around the positive equilibrium provided in Fig. 4b.

Discussions of the result

Thus, biologically for Fig. 3, one may observe that as the 
rate of ingestion of macrophages phagocytosing oxidized 
LDL increases, the plaque deposition process expedites 

a

b

Fig. 2   Global stability around the positive equilibrium point E
2
 based on the model parameters provided in Table 1 of a the non-spatial system 

(4.1), (4.2) and b the spatial system (3.1), (3.2)
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within the intima. Eventually, the plaque volume increases 
within the intima and it vastly transfigures the vasculature of 
an individual. From the biological point of view the results 
obtained in Fig. 4 can be interpreted as, the decrease in the 
maximum per capita consumption rate of macrophages is 

the primary reason behind the increase in the plaque volume 
within the inflammatory region.

The salient features of contemporary research on inves-
tigating atherosclerosis formation and evolution depend on 
certain integral factors. A thorough analysis of the model 

a

b

Fig. 3   a Phase portrait of the non-spatial model (4.1), (4.2) and b Numerical simulation of the spatial system (3.1), (3.2) around E
2
 with D

1
= 1 

and D
2
= 0.001 based on �

1
= 0.233 and all other model parameter values are same as provided in Table 1
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reveals two significant model parameters, namely �1 and a, 
where �1 is the rate of ingestion of macrophages and a is 
the rate of per capita consumption rate of macrophages. A 
slight perturbation in these model parameter values disturbs 

the stability of the system and hence, bifurcations have been 
observed with respect to these parameters.

The analytic and numerical results of the model can be 
biologically interpreted as a small change in clinical therapy 

a

b

Fig. 4   a Phase portrait of the non-spatial model (4.1), (4.2) and b numerical simulation of the spatial system (3.1), (3.2) around E
2
 with D

1
= 1 

and D
2
= 0.001 based on a = 0.06 and all other model parameter values are same as provided in Table 1
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may lead to a vast change in the inflammation process of 
atherosclerotic plaque formation. The long-term motive of 
this present work is to provide insight into the significant 
factors involved in the plaque formation process and to pro-
vide a computational platform for further investigation of 
the disease dynamics.

Concluding remarks

In the present investigation, macrophage phagocytosis, 
involved in the biochemical process of early stages of ath-
erosclerotic plaque formation, is represented in terms of a 
reaction–diffusion system of equations. A thorough anal-
ysis of both the non-spatial and spatial models shows the 
stability attributes of the systems under certain conditions. 
The numerical findings of the non-spatial model provide 
bifurcation with respect to two significant model parameters 
namely, �1 and a, where �1 is the rate of ingestion of mac-
rophages and a is the rate of per capita consumption rate 
of macrophgaes. The spatial model resembles oscillatory 
behavior around the positive equilibrium under the bifurcat-
ing set of parameter values. The results in this article exhibit 
the fact that a slight change in the treatment of atherosclero-
sis may change the outcome significantly.
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