
Vol.:(0123456789)1 3

Modeling Earth Systems and Environment (2023) 9:2533–2551 
https://doi.org/10.1007/s40808-022-01637-7

ORIGINAL ARTICLE

State of art soft computing based simulation models for bearing 
capacity of pile foundation: a comparative study of hybrid ANNs 
and conventional models

Manish Kumar1 · Vinay Kumar2 · Balaji Ganesh Rajagopal3 · Pijush Samui4 · Avijit Burman4

Received: 10 October 2022 / Accepted: 7 December 2022 / Published online: 23 December 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Safety has been always challenging in geotechnical engineering owing to the inherently variable nature of the soil. In pile 
foundations, conducting field tests is highly expensive and time-consuming, and thus soft-computing based simulation models 
analysis is a realistic and useful alternative. This study presented a comparative analysis of artificial neural network (ANN)-
based hybrid models and conventional soft computing techniques to estimate the probability of failure of pile foundation. 
With this respect, dynamic pile load test data of pile foundations were used to construct ANN-based models. Five widely used 
meta-heuristic optimization algorithms, namely particle swarm optimization, grasshopper optimization algorithm, artificial 
bee colony, ant colony optimization, and ant lion optimizer, were employed for this purpose. In addition, three widely used 
conventional soft computing techniques; including genetic programming (GP), multivariate adaptive regression splines 
(MARS), and group method of data handling (GMDH) were utilized for comparison purposes. The performances of all the 
developed models were assessed using various statistical performance indices. Experimental results show that the ANN-
PSO (hybrid model of ANN and particle swarm optimization) and GP estimate the probability of failure of pile foundation 
accurately both in training and testing phases. However, a detailed review of results reveals that the ANN-PSO (R2 = 0.9773, 
RMSE = 0.0439) and GP (R2 = 0.9859, RMSE = 0.0353) showed comparatively better performance in the testing phase. The 
result of the ANN-PSO and GP models is significantly better than those obtained from other benchmark methods. Based on 
the results, the developed ANN-PSO and GP models can be used to estimate the probability of failure of pile foundation in 
the design phase of civil engineering projects.

Keywords Pile foundations · Dynamic pile load tests · Meta-heuristic optimization · Rank analysis

Introduction

With the desperate shortage of land and the growing ten-
dency for high-rise structures in recent years, pile foundation 
is attracting massive attention owing to its ability to support 
high loads in weaker soils. Having soft soils underneath 

our foundations will cause high total settlements, differ-
ential settlement, and bearing-capacity problems (Char-
lie et al. 2009; Gabrielaitis et al. 2013; Wang et al. 2016). 
Dynamic pile load test is increasingly used to evaluate the 
load capacity of the pile since it is cheaper, easier to handle 
that allows conducting many tests, compared to static load 
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tests (Rajagopal et al. 2012). More importantly, the results 
obtained by dynamic testing are quite similar to that of static 
tests (Nayak et al. 2000; Rausche et al. 2004; Bradshaw and 
Baxter 2006; Long 2007; Basarkar 2011; Sakr 2013; Liu 
et al. 2020). Therefore, contractors are encouraged to choose 
dynamic pile load tests as an alternative for pile testing if 
the code allows.

Machine learning (ML) is an area of research that allows 
computers to learn from observed data without being specifi-
cally programmed (Asteris et al. 2021a; Bardhan et al. 2021; 
Kardani et al. 2021a; Kumar et al. 2022a). Moreover, geo-
physical design parameters are not always collected directly 
from field or laboratory tests but are often approximated by 
developing regression fitting to datasets. Artificial neural 
network (ANN) as one of the commonly used ML methods 
has been used in estimating the bearing capacity of piles 
(Asteris et al. 2021b; Benali et al. 2017; Che et al. 2003; 
Goh and Goh 2007; Goh 2000; Moayedi 2018; Lee and Lee 
1996; Jiang et al. 2016; Jiang and Zhang 2018; Kiefa 1998; 
Low et al. 2001; Moayedi and Hayati 2019; Pal and Deswal 
2008; Pradeep et al. 2021; Shahin et al. 2009). Kiefa (1998) 
developed general regression neural network (GRNN)-based 
model to predict the bearing capacity of piles in cohesion-
less soils. Che et al. (2003) used the data collected from 
dynamic wave tests to develop a back-propagation neural 
network-based model to predict the bearing capacity of piles, 
where a feed-forward neural network of one layer and 10 
neurons was built. ANN models have become increasingly 
popular and successfully used in various fields of geotechni-
cal engineering (Shahin et al. 2001). Recently, Alzo’ubi and 
Ibrahim (2019) used backpropagation neural network and 
generalized regression neural network to predict accurately 
the pile static load test curves.

The most popular one among the various ANN models 
is the back-propagation (BP) algorithm. However, in the 
BP algorithm, the trial-and-error approach to ascertain the 
optimal number of hidden neurons makes it very time-con-
suming. To improve the simulation performance of ANN, 
integrating ANN with metaheuristic optimization techniques 
becomes preferred (Kumar et al. 2022b). The optimization 
techniques are used to optimize various parameters like 
weight and bias of the neural network to improve its perfor-
mance (Kardani et al. 2021b). Benali et al. (2017) presented 
ANN and Principal component analysis (PCA)-based ANN 
to predict the axial load capacity of piles, and concluded that 
the results obtained by the PCA-based models were in good 
agreement with those of standard penetration test (SPT)-
based analysis. Nguyen et al. (2020) applied hybrid ANN-
based prediction of column deflection exposed to seismic 
conditions. Particle swarm optimization (PSO)-based model 
gives satisfactory results and outperforms the traditional 
ANN model. Murlidhar et al. (2020) applied hybrid ANN 
models: genetic algorithm (GA)-based ANN and particle 

swarm optimization (PSO)-based ANN (ANN-PSO) in pre-
dicting pile bearing capacity. Chen et al. (2020) compared 
the performances of genetic programming (GP) and ANN 
in predicting the load capacity of piles where 50 datasets of 
concrete piles were collected from the literature and found 
that the GP model outperformed ANN, GA-ANN (hybrid 
model of ANN and GA) and ICA-ANN (hybrid model of 
ANN and imperialist competitive algorithms). Liu (2020b) 
compared the performance of ANN, Adaptive neuro-fuzzy 
inference system (ANFIS), and GA-ANN in reliability anal-
ysis of vertical settlement of Pile raft foundation. GA-ANN 
was proved to outperform ANN and ANFIS models.

Over the past three decades, researchers and academics 
have shown a growing interest in meta-heuristic optimiza-
tion, leading to the regular proposal of novel meta-heuris-
tics for the solution of complicated and real-world issues 
in many fields. Single-based algorithms and population-
based algorithms are the two primary categories of meta-
heuristics. The foundation of single-based meta-heuristic 
algorithms, also called trajectory algorithms, is the gen-
eration of a single solution at each iteration. This solution 
is made more efficient by the neighbourhood mechanism. 
Population-based meta-heuristic algorithms, in contrast to 
their single-based counterparts, produce a set of multiple 
solutions (population) on each iteration. Population-based 
meta-heuristics can be broken down into four distinct types: 
those based on evolution, swarm intelligence, events, and the 
physical sciences. Based on the principles of natural evolu-
tion, Evolutionary Algorithms (EA) use the three operators 
of selection, recombination, and mutation to achieve their 
goals. Swarm Intelligence (SI) is one example of the second 
category of techniques, which draws its inspiration from the 
study of collective behaviour in the natural world. Insects, 
birds, mammals, reptiles, fish, etc. The third category, which 
includes activities such as instructing a learning-based algo-
rithm, is inspired less by the wonders of nature than by the 
actions of humans.

The study presents a comparative analysis of five hybrid 
ANN models namely ANN-PSO (hybrid model of ANN and 
particle swarm optimization), ANN-GOA (hybrid model of 
ANN and grasshopper optimization algorithm), ANN-ABC 
(hybrid model of ANN and artificial bee colony), ANN-
ACO (hybrid modes of ANN and ant colony optimization), 
ANN-ALO (hybrid model of ANN and ant lion optimizer) 
and three traditional soft computing models including 
multivariate adaptive regression splines (MARS), GP and 
group method of data handling (GMDH) for estimating the 
probability of failure of piles. These methods have not been 
explored in foundation engineering earlier but found robust 
in literature (Alizadeh et al. 2019; Moayedi et al. 2020; Seifi 
et al. 2020). PSO is a widely used optimization technique of 
swarm intelligence family imitating bird swarm behaviours 
(Armaghani et al. 2020b; Kashani et al. 2020; Ray et al. 
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2021). GOA is based on the herding behaviour of grasshop-
pers. ABC algorithm follows the social cooperation behav-
iour of honey bees in AI (Bui et al. 2020; Huang et al. 2020; 
Wang et al. 2020). ACO is based on ant’s behaviour of for-
age and found to be very reliable in literature (Moayedi et al. 
2019b; Xu et al. 2019; Zhang et al. 2020a). ALO follows the 
way ant lion chases the prey. Moayedi et al. (2019a) dem-
onstrated the robust prediction of ALO-ANN and its supe-
riority over conventional models. MARS, GP and GMDH 
are popular models used successfully in various geotechni-
cal problems (Ardakani and Kordnaeij 2019; Hassanlourad 
et al. 2017; Kardani et al. 2021a; Mola-Abasi and Eslami 
2019; Samui et al. 2019; Yin et al. 2020; Zhang et al. 2020b; 
Zhang and Goh 2013). In this study, based on the results of 
dynamic tests on piles, five hybrid ANN models and three 
traditional models will be thoroughly investigated for the 
prediction of bearing capacity of pile foundations.

Methodology and theoretical background

High strain dynamic testing of piles

Dynamic testing of piles (PDA test) is an innovative method 
to determine the load capacity of piles (Fellenius 1999; 
Rausche et al. 1985, 2004; Smith 2002). One-dimension 
wave propagation theory is feasible to be extended to piles 
in the PDA test since the strike of the hammer leads to the 
downward propagation of waves. The uniform cross-section 
of the piles is postulated to be a slender element enclosed by 

materials of far lesser stiffness (Salgado 2008). Deploying a 
pair of accelerometer and strain transducer on top of the pile 
evaluates the complex monitoring of piles the reported data 
is transmitted through a cable to the PDA which is converted 
and recorded as force and speed. In the next stage, using 
the CAPWAP program, the bearing potential of the pile is 
estimated. To assess soil resistance and its distribution along 
with the pile, CAPWAP integrates the calculated force and 
velocity with wave equation analysis. It uses the iterative 
curve-fitting technique which matches the response of the 
model pile, subjected to wave analysis, to the pile under 
investigation for a single hammer strike (FHWA 2006). 
Susilo (2006) suggested some guidelines for monitoring the 
criteria like impact factor hand hammer weight. Minimum 
hammer weight should be 1% of the required ultimate load 
capacity and enhanced to 2% of the required load capacity 
for piles anticipated to have high-end bearing capacity.

Details of models and meta‑heuristic optimization 
algorithms

Artificial neural network (ANN)

ANN is a popular approximation tool to simulate and predict 
the output and it is developed by emulating the neural system 
of the human body. It comprises three parallel layers con-
nected via weights and biases: input layer, hidden layer, and 
output layer as shown in Fig. 1 (Moayedi and Rezaei 2019). 
Backpropagation (BP) is the most popular learning tool 
applied in feedforward ANN models. It uses the gradient 

Fig. 1  A basic structure of an ANN
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descendent optimization technique. Powered by high neu-
ronal interconnections, the ANN can handle complex and 
non-linear correlations between input and output variables. 
The number of neurons in the hidden layer can be adjusted 
by the users to obtain the best performance. Through the 
harnessing of such a structure, ANNs have been employed 
as effective soft computing techniques for different purposes 
such as function approximation and pattern recognition in 
many engineering disciplines.

Particle swarm optimization (PSO)

PSO is a widely used optimization technique that belongs 
to the swarm intelligence family, proposed by Kennedy and 
Eberhart (1995). The principal origin of impulse for the PSO 
algorithm is to gather and school patterns among birds and 
fish. So that the central goal of this algorithm is to provide 
a universal best resolution in multidimensional space. PSO 
performs the search of the optimal solution through parti-
cles, whose trajectories are adjusted by a stochastic and a 
deterministic component. Each particle is influenced by its 
‘best’ achieved position and the group ‘best’ position but 
tends to move randomly. In PSO, the population P is rep-
resented by:

The velocities of the individual particle are denoted by:

Previously visited best location (lbest) is shown as:

The swarm is updated as follows {for (i = 1, 2, … , n) and 
k being current iteration}:

where n is the total dimension, lg denotes the best particle, 
and superscripts is used for the number of iterations. w is 
weight and d1, d2 are two learning factors called cognitive 
and social parameters, respectively (position constants). The 
best performance of the model requires proper tuning of the 
two position constants. k1 and k2 are uniformly distributed 
random numbers in the range of 0–1. Unlike evolutionary 
algorithms, PSO does not use Darwinian principles of ‘sur-
vival of fittest’ or genetic operators. In POS, the sociometric 
principle of exchange of information between the experience 
of the individual swarm and best performer is adopted as its 
working principle (Gaitonde and Karnik 2012).
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Grasshopper optimization algorithm (GOA)

Based on the harm they cause to agriculture; grasshop-
pers are acknowledged as pests. The grasshopper optimiza-
tion algorithm (GOA) imitates the action of the swarm of 
grasshopper finding a food source in nature. Grasshoppers 
do not act as an individual but form some of the largest 
swarms of all living organisms. Swarm motion is influ-
enced by the interactions of individuals in a swarm, wind, 
gravity, and food sources, etc. Like large rolling cylin-
ders, millions of grasshoppers jump and proceed. Saremi 
et al. (2017) proposed a mathematical model for this action 
given by:

where Pi represents the position of the ith grasshopper, Ri 
represents social interaction,G is the gravity force on ith 
grasshopper and W  is the wind direction. The advanced for-
mulation of the expression can be given by:

where r is a function that simulates the effect of social inter-
actions of N individual grasshopper which can be expressed 
as:

where dij is the distance between two grasshoppers (say at 
points i and j) and given by:

If g is the gravitational constant and êg represents a unit 
vector towards the centre of the earth, gravitational force G 
is given by:

If w′ is the wind drift constant and êw represents a unit 
vector towards the direction of the wind, the wind drift effect 
W is given by:

The effects of wind and gravity are much weaker than 
the relationship between grasshoppers since grasshoppers 
easily find secure zones and show low convergence. Thus, 
the model’s modified version of Eq. (6) can be re-written as:
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(11)W = w
�

êw
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where ub and lb are the upper and lower bound, respectively, 
associated with the variables. c is a decreasing coefficient 
described in Eq. 13. 

⌢

Td is the value of the variable in the 
target (best solution obtained so far).

where cmax and cmin are 1 and 0.00001 respectively in the 
present work. The higher the value of c, the more is the 
swarm exploration.

Artificial bee colony (ABC)

ABC algorithm (Karaboga 2005; Tereshko and Loengarov 
2005) is a metaheuristics optimization approach that shad-
ows the behaviour of honey-swarm bees of social coopera-
tion into machine learning. It divides honey bees into two 
types: employed and unemployed. Unemployed bees are fur-
ther sub-divided into onlooker and scout bees. Employed 
bees first attack the food sources and search for other food 
sources in the neighbourhood, which represents possible 
solutions. There are as many employed bees as the number 
of food sources. The onlooker bees observe the motion of the 
employed bees and based on the information generated about 
the amount of nectar i.e., the fitness value of the solutions, 
and selects the food sources to be exploited. It memorises 
the best solutions and abandons the poor ones. When food 
sources get finished, employed bees become scout bees and 
search for further food sources to replenish the abandoned 
food sources.

Let ui (i = 1; 2; 3; …; m) be the food source. Neighbour-
hood food sources or possible solutions are expressed by:

where µi is a random number between − 1 and 1, xj is cho-
sen randomly, (j = 1, 2,…n; j ≠ i). Based on the information, 
onlooker bee chooses food sources based on the following 
probability:

where t is the total number of sources fi is the amount of 
nectar or fitness value of the ith source and it is calculated 
using an objective function �(xi):
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Scout bees replenish the abandoned food sources with 
new ones by the following expression:

where xmax is the upper bound and xmin is the lower bound 
of xi . The iteration is repeated till the termination condition 
is met.

Ant colony optimization (ACO)

ACO simulates the food-searching behaviours of ants 
(Dorigo et al. n.d.; Dorigo and Blum 2005; Dorigo and 
Socha 2007). Artificial ants search for the best solutions in 
the parameter space. The journey of the ants to the food 
source from the nest and returning to the nest is modelled 
as one iteration in the algorithm. While on the journey, ants 
release pheromones which guides the later ants toward the 
possible solutions instead of a random search. The shorter 
path has the highest pheromones concentration as it is tra-
versed by a maximum number of ants and also since phero-
mones have nature of evaporating with time which reduces 
their concentration towards the minimum traversed paths 
as well as longer paths which takes longer time in reach-
ing and coming forth leading to evaporation of pheromones. 
The algorithm consists of three phases: ant-based solution 
construction, pheromone evaporation, and iteration. In the 
first phase, artificial ants explore possible solutions and build 
paths by recording the positions and quality of the solu-
tions. In the later simulation, more ants follow the path, and 
records of the longer path get evaporated. Simulated ants 
probabilistically pick a trail that is based on the pheromone 
density and objective function value etc. heuristic values.

If i and j be the beginning and end notes of the path, dij 
is the distance between them, tij is the pheromones density 
then the probability of choosing path i to j for n number of 
nodes is:

Pheromone’s concentration decreases exponentially with 
time due to evaporation between time t and t + 1:

where 0 < r < 1 is the constant of evaporation and Δ�ijk(t) is 
the increment of pheromone. For m number of ants, addi-
tional pheromone laid by kth ant at tth iteration is:
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Each ant has individual pheromone contribution of:

where Q is a constant and Lk = length of path traversed by 
kth ant.

Ant lion optimizer (ALO)

ALO is a metaheuristic algorithm based on the hunting behav-
iour of ant lions (Mirjalili 2015). Ant lions catch their prey, 
ants, by digging sharp cone-shaped curves. Ant lions position 
themselves at the bottom of the pit, waiting for the ants to fall. 
No sooner than the ants fall in the trap, ant lions start throwing 
sands to catch the prey which is trying to escape. When the 
ants fall at the bottom, ant lions consume it and further cre-
ate another bigger cone-shaped trap. The matrices Mant and 
Mantlion give the position of ants and ant lions, respectively 
and Moa and Moal are the objective functions for m number of 
both parameters.

The random walk of the ants is modelled as:

where cumsum represents the cumulative sum for the maxi-
mum number of iterations. If rand is the random number 
with uniform distribution in the range [0, 1], the stochastic 
function is defined as:

The normalized ant position is given by the following 
equation:
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the maximum and minimum values of the random walk of the 
ith variable. The lower and upper bounds of ith dimension are 
calculated as follows if Antlionitr

j
 denotes position of jth antlion 

at particular iteration.

To model the phenomenon of ants falling to the bottom of 
the pit, their random walk is reduced by a factor:

K is a constant such that,

Taking itrmax as the maximum number of iterations, µ is 
calculated as follows:

Antlion catches the ant and consumes it by dragging it 
inside the sand and moves to a new position:

Further, in the optimization method, elitism is applied. 
Elitism is the method of choosing the best ant lion as an elite 
which being the fittest impacts the movement of every single 
ant in the iteration. The randomness of ants is given by the 
Roulette wheel approach:

where W itr
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 is the random walk of ant lion and W itr
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 random 
walk of elite ant lion.

Multivariate adaptive regression splines (MARS)

MARS introduced by Friedman (1991) is a non-parametric 
regression method that uses basis functions to define the 
correlation between input parameters and output variable 
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and piecewise linear splines, called basis functions (BFs) to 
establish this correlation. The MARS methodology initially 
advances as a forward stepwise function (constructive phase) 
and then as a backward stepwise function (pruning phase). 
With the initially existing constant BF, the forward stepwise 
function starts. The basic functions are split at each step, 
satisfying the “lack of fit criterion.” The model becomes 
over-fitted and then the pruning stage begins. Finally, the 
optimum model is developed in the third step. More details 
about the method can be studied in the literature (Samui and 
Kim 2013; Zhang et al. 2020c, 2021; Zhang and Goh 2016).

Genetic programming (GP)

GP (Koza 1992) is a symbolic machine learning technique 
that uses the Darwinian concept of natural selection and 
genetic recombination. It evolves from GA (Holland 1975)
and uses tree-structure seeming computer programs instead 
of a string of numbers. The model initializes by the creation 
of a random population and is followed by the reproduc-
tion of individuals and the creation of new by processes of 
mutation and crossover. In traditional GP, symbolic regres-
sion is typically performed to generate a population of trees, 
which in turn encodes a mathematical expression. The gen-
erated expression predicts the desired output ( m × 1 ) using 
the given inputs ( n × m ), where n and m are the number of 
input variables and the number of observations respectively. 
On the other hand, multi-gene GP (MGGP) is a weighted lin-
ear combination of GP trees. For each SR model, the linear 
weights are derived from the training dataset, which is used 
further to predict the new outputs. It is understood from the 
literature that the MGGP regression technique is compu-
tationally more efficient than the traditional GP. However, 
to obtain higher predictive accuracy, the hyper-parameters, 
such as population size, tournament size, the maximum 
number of generations, the maximum number of genes, 
crossover and mutation probability, and functions should 
be designed properly.

Group method of data handling (GMDH)

GMDH is a self-organized neural network. In this feed-for-
ward method, the elementary unit is a quadratic equation 
of two variables. The coefficients of the function are calcu-
lated using regression analysis (Armaghani et al. 2020a). It 
simulates datasets having several inputs (u1,….un) and one 
output (V):

A simplified example of polynomial comprising two vari-
ables, ui and uk:

The GMDH model (shown in Fig. 2) can be described 
by neuron layers, each with several data points related by 
quadratic polynomials to each other, and new neurons are 
created in the process. Here, the filter results are denoted by 
U1,  U2…Un. The best outputs are passed through the selec-
tion layer (U1, U2… Ur). The performance Z1, Z2, Zp is poly-
nomial to a higher degree than the previous one. Selected 
few are transported through the selection layer. The output is 
Z1, Z2, Zq. The process is carried out till the desired outcome 
is achieved.

Hybridization of ANN and metaheuristic algorithms

Shortcomings of ANN involves extensive calculation time 
and trial-and-error approach to discover the appropriate 
number of hidden neurons. There is a growing initiative 
to combine ANN with metaheuristic optimization strate-
gies to boost ANN's simulation performance. Several neu-
ral network parameters, such as weight and bias, are opti-
mised using optimization methods to boost performance. 
Recently, many studies are being conducted in engineering 
applications to augment the capability of ANN models by 

(34)V = f (u1,… un)

(35)Ui = �0 + �1ui + �2uk + �3u
2

i
+ �4u

2

k
+ �5uiuk

Fig. 2  A basic structure of GMDH algorithm
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optimization algorithms (OAs) such as ABC, ACO, ALO, 
PSO, GOA (Adnan et al. 2019; Armaghani et al. 2014; 
Malekpour and Mohammad Rezapour Tabari 2020; Moayedi 
et al. 2019b; Ozturk and Karaboga 2011; Rahgoshay et al. 
2019; Taheri et al. 2017; Umar et al. 2019; Xu et al. 2019). 
ANN models may lead to unwanted outcomes since Back 
Propagation (BP) lacks in finding the exact global minimum. 
Moreover, ANN models are more vulnerable to be caught in 
local minima. OAs have been found to eradicate this prob-
lem of ANN by assigning weights and biases. In the study, 
PSO, GOA, ABC, ACO, and ALO were used to optimize the 
learning parameters (weights and biases) of ANN and five 
hybrid models, namely ANN-PSO, ANN-GOA, ANN-ABC, 
ANN-ACO, and ANN-ALO were constructed to predict the 

bearing capacity of the pile foundation. The steps of devel-
oping hybrid ANN models are shown in Fig. 3 in the form 
of a flow chart.

Data processing and analysis

Descriptive statistics of the datasets

To simulate the soft computing models, 50 PDA datasets 
were collected from the study of Momeni et al. (2015). 
36 PDA tests were conducted at the various project sites 
in Indonesia. Note that, these tests were conducted as per 
the guidelines of ASTM (D4945-08 in cohesion-less soils 

Fig. 3  A flow chart showing the steps of developing hybrid ANN models

Table 1  Descriptive statistics of 
the input and output variables

Particulars w (kN) H (m) A  (cm2) L (m) S (mm) QU (kN)

Minimum 12.00 0.50 226.00 3.40 0.10 410.00
Mean 23.10 1.34 311.64 13.31 3.96 1284.10
Median 13.00 1.00 282.00 10.40 4.00 884.00
Mode 13.00 1.00 282.00 8.00 3.00 1480.00
Maximum 63.00 4.00 500.00 33.60 8.00 3692.00
Standard error 2.57 0.13 11.15 1.17 0.35 129.32
Standard deviation 18.18 0.90 78.83 8.28 2.49 914.40
Sample variance 330.62 0.81 6213.58 68.63 6.22 836,134.34
Kurtosis 0.65 4.44 0.06 1.28 − 0.88 1.04
Skewness 1.56 2.39 1.05 1.54 − 0.17 1.52
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(American Society for Testing and Materials 2010). Table 1 
presents the descriptive statistics of the parameters of the 
collected dataset. The dataset comprises five parameters, 
namely weight of the hammer (w in kN), the height of fall of 
the hammer (H in m), cross-sectional area (A in  cm2), length 
of the pile (L in m), pile set value (S in mm), and ultimate 
bearing capacity (QU) of the pile, among which first five 
parameters were used as the input parameters to predict the 
QU, the output parameter. As can be seen, the sample vari-
ances are scattered in the range of 0.81 to 836,134.34, which 
indicates that the present dataset has a wide range of input 
and output parameters. On the other hand, Fig. 4 represents 
the frequency histogram of the input and output variables. In 
addition, the values of standard error (scattered in the range 
of 0.35–129.32) confirm that the present database consists 
of a wide range of variables, and hence useful for soft com-
puting modelling.

Data processing and computation of models

In soft computing field, to enhance model accuracy, it is 
important to normalize the inputs and output variables with 
a predefined range. The normalization aims to adjust the 
numeric data values to a standard scale, without ambiguous 
variations in the value ranges. The process is not essential 

for all machine learning datasets, but only if the parameters 
have different ranges. All the variables have been normalized 
from 0 to 1 in this dataset using the expression given by:

where xActual is the actual value of the particular parameter, 
xmin is the minimum value of the parameter in the dataset 
and xmax is the maximum value ofthe parameter in the data-
set. Post-normalization, the dataset is randomly divided into 
training (70% of the total dataset) and testing (30% of the 
total dataset) subsets. Amongst them, the training subset was 
used to train the model. In the training phase, the model 
learns the correlation between input and output variables 
and constructs a predictive model. Then, the testing dataset 
was used to test the prediction of the trained model. The 
performance of the models is further ascertained by using 
various statistical parameters, described in detail in later 
sections. The entire methodology is depicted in Fig. 5. The 
results of the employed models are compared with those of 
the traditional FOSM model and the robustness of the model 
was determined

(36)xNormalized =

(
xActual − xmin

)
(
xmax − xmin

)

Fig. 4  Frequency histogram of the input and output variables
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Fig. 5  Research methodology of 
AI-based models Main data

Normaliza�on 
(0 to 1)  

Training data (70%) Tes�ng data (30%) 

Computa�onal Model

ANN-PSO MARS ANN-ACO 

ANN-GOA ANN-ABC ANN-ALO 

Predicted Training 
Output  

Predicted Tes�ng 
Output  

Table 2  Ideal values of 
performance indices

Indices R2 PI NS WI VAF RMSE MAE MAPE RSR WMAPE

Ideal value 1 2 1 1 100 0 0 0 0 0

Fig. 6  Convergence curves of 
the developed hybrid ANN 
models
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Table 3  Configuration of 
optimum hybrid ANN models

Parameters ANN-PSO ANN-GOA ANN-ABC ANN-ACO ANN-ALO

n
s

50 50 50 50 50
N
h

6 7 6 7 7
k 200 200 200 200 200
lb − 1 − 1 − 1 − 1 − 1
ub + 1 + 1 + 1 + 1 + 1
Cost function RMSE RMSE RMSE RMSE RMSE
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Results and discussion

Performance parameters

To estimate the performance of the developed models, several 
widely used statistical indices were determined (Behar et al. 
2015; Despotovic et al. 2015; Kumar et al. 2021; Kumar and 
Samui 2020; Legates and Mccabe 2013; Stone 1993). These 
are coefficient of determination (R2), performance index (PI), 
Nash–Sutcliffe efficiency (NS), Willmott’s index of agreement 
(WI), variance account for (VAF), root mean square error 
(RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), root mean square error to observation`s 
standard deviation ratio (RSR), and weighted mean absolute 
percentage error (WMAPE). The expressions for these param-
eters are given below:

(37)R2 =

∑N

i=1

�
di − dmean

�2
−
∑N

i=1

�
di − yi

�2
∑N

i=1

�
di − dmean

�2

(38)PI = adj.R2 + (0.01 × VAF) − RMSE

(39)NS = 1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − ymean)

2

(40)WI = 1 −

� ∑N

i=1

�
di − yi

�2
∑N

i=1

���yi − dmean
�� + ��di − dmean

��
�2

�

(41)VAF =

(
1 −

var
(
di − yi

)
var(di)

)
× 100

(42)RMSE =

√√√√ 1

N

N∑
i=1

(
di − yi

)2

(43)MAE =
1

N

N∑
i=1

||(yi − di)
||

(44)MAPE =
1

N

N∑
i=1

||||
di − yi

di

|||| × 100

(45)
RSR =

RMSE�
1

N

∑N

i=1
(di − dmean)

2

Table 4  Optimal values of effective parameters of MARS model

Parameters MARS-L

GCV penalty per knot 0
Cubic modelling 0 (no)
Self-interactions 1 (no)
Maximum interactions 1
Prune 1 (true)
No. of F

b
 in the final model 15

Table 5  Equations of the basis 
functions in MARS model

BFs Expression BFs Expression

BF1 max(0, 0.058824 − x1) BF9 max(0, 0.2649 − x4) × max(0, x5 − 0.62025)
BF2 max(0, x2 − 0.14286) BF10 max(0, 0.2649 − x4) × max(0, 0.62025 − x5)
BF3 max(0, 0.14286 − x2) BF11 max(0, x5 − 0.49367)
BF4 BF1 × max(0, x4 − 0.15563) BF12 BF1 × max(0, x5 − 0.74684)
BF5 max(0, x1 − 0.058824) × max (0, x2 − 0.14286) BF13 BF1 × max(0, 0.74684 − x5)
BF6 max(0, x1 − 0.058824) × max (0, 0.14286 − x2) BF14 max(0, x3 − 0.20438)
BF7 max (0,  x4 − 0.2649) BF15 max(0, 0.2649 − x 4) × max (0, x3 − 0.20438)
BF8 max (0, 0.2649 − x4) × max (0,  0.49367 − x5)

Table 6  Parametric configuration and terminating criteria of the opti-
mum GP model

Parameters/terminating criteria Values

Population size 400
Number of generations 200
Tournament size 20
Number of genes 6
Maximum tree depth 4
Mutation probability 0.95
Functions set ×, −, +, 

tanh, sin, 
cos, exp
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where di is the observed  ith value, yi is the predicted ith 
value, dmean is the average of observed value, N is the num-
ber of the data sample. Note that, for an ideal model, the 
values of these indices should be equal to their ideal values, 
the details of which are presented in Table 2.

Configuration of the developed hybrid ANN models

As mentioned earlier, to optimize the learning parameters of 
ANN. five OAs were used. In ANN, these learning param-
eters are the input weights, biases of hidden neurons, output 
weights, and output bias. After the initialization of ANN, 
OAs were used to optimize the learning parameters, i.e., 
the weights and biases of the models. For this purpose, OAs 
were set up before optimizing the learning parameters of 
ANNs, including the population size ( ns ), the maximum 
number of iterations ( k ), lowerbound ( lb ), upper bound 
( ub ), and other parameters besides the number of hidden 
neurons ( Nh ) of ANNs. Then, the weight and biases of ANN 
were optimized by OAs based on the training dataset. The 

(46)WMAPE =

∑N

i=1

���
di−yi

di

��� × di

∑N

i=1
di

optimized values of weight and biases were determined by 
setting RMSE as the cost function. It is pertinent to mention 
here that, although ns , k , lb , and ub were kept the same dur-
ing the optimization process, however, the optimized value 
of learning parameters is different in each case.

Following the above-mentioned procedure and using the 
same training dataset, the Nh was variedin the range of 5–20, 
and the most appropriate value obtained was 6 for ANN-
PSO, 7 for ANN-GOA, 6 for ANN-ABC, 7 for ANN-ACO, 
and 7 for ANN-ALO. The values of other parameters were 
set as ns = 50, k = 200, lb = − 1, and ub= + 1. Therefore, 
the optimum number of optimized weight and biases are 
43 (5 × 6 + 6 + 6 + 1) for ANN-PSO, 50 (5 × 7 + 7 + 7 + 1) 
for ANN-GOA, 43 (5 × 6 + 6 + 6 + 1) for ANN-ABC, 50 
(5 × 7 + 7 + 7 + 1) for ANN-ACO, and 50 (5 × 7 + 7 + 7 + 1) 
for ANN-ALO, and note that values of these optimized 
weights and biases are different from one another. The 
detailed configuration of the developed hybrid ANN mod-
els is presented in Table 3. Furthermore, the convergence 
behaviour of the developed hybrid ANN models is presented 
in Fig. 6, from which the converging ability of the hybrid 
models in finding the global minimum can be assessed.

Table 7  Details of performance 
parameters for the training 
dataset

Indices ANN-PSO ANN-GOA ANN-ABC ANN-ACO ANN-ALO MARS GP GMDH

R2 0.9762 0.9764 0.8300 0.9573 0.9712 0.9967 0.9914 0.9833
PI 1.9066 1.9074 1.5107 1.8511 1.8917 1.9773 1.9563 1.9289
NS 0.9761 0.9764 0.8036 0.9565 0.9712 0.9967 0.9914 0.9833
WI 0.9939 0.9940 0.9462 0.9889 0.9926 0.9992 0.9978 0.9958
VAF 97.6151 97.6408 82.9317 95.7272 97.1186 99.6695 99.1398 98.3302
RMSE 0.0416 0.0414 0.1193 0.0562 0.0457 0.0155 0.0250 0.0348
MAE 0.0312 0.0308 0.0930 0.0415 0.0345 0.0100 0.0186 0.0253
MAPE 24.9522 23.9677 75.7937 31.8801 27.2426 5.9399 15.5431 26.3014
RSR 0.1545 0.1536 0.4431 0.2085 0.1698 0.0575 0.0927 0.1293
WMAPE 0.1217 0.1187 0.3629 0.1612 0.1315 0.0391 0.0716 0.0944

Table 8  Details of performance 
parameters for the testing 
dataset

Indices ANN-PSO ANN-GOA ANN-ABC ANN-ACO ANN-ALO MARS GP GMDH

R2 0.9773 0.9378 0.7735 0.9736 0.9738 0.9406 0.9859 0.7959
PI 1.8981 1.7666 1.2190 1.8828 1.8858 1.7765 1.9283 1.3158
NS 0.9765 0.9325 0.7151 0.9707 0.9731 0.9388 0.9849 0.7495
WI 0.9940 0.9827 0.9325 0.9927 0.9930 0.9845 0.9961 0.9382
VAF 97.7285 93.7722 72.4181 97.2914 97.3514 93.9870 98.5536 77.6615
RMSE 0.0439 0.0744 0.1529 0.0491 0.0470 0.0709 0.0353 0.1433
MAE 0.0307 0.0458 0.1110 0.0363 0.0394 0.0520 0.0289 0.0767
MAPE 17.7220 28.8963 56.4098 17.1733 23.0294 34.4244 22.2236 53.7030
RSR 0.1532 0.2598 0.5337 0.1713 0.1640 0.2474 0.1231 0.5005
WMAPE 0.1001 0.1493 0.3620 0.1183 0.1285 0.1695 0.0943 0.2501
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Configuration of the employed MARS, GP, 
and GMDH models

With the same training dataset, the MARS, GP, and GMDH 
models were constructed and accordingly evaluated. To 
design the MARS model, a piecewise linear regression 
variant of MARS was considered in the present study. The 
hyper-parameters, such as the number of BFs, GCV, self-
interaction, maximum interactions, threshold value, and 
pruning option were designed using trial-and-error runs, the 
details of which of the designed MARS model are presented 
in Table 4. In addition, the details of each BF are presented 
in Table 5, and the expression of the designed MARS model 
in Eq. (47). The expression is given in Eq. (47) can readily 
be used to estimate the bearing capacity of piles.

Analogous to the MARS model, the parameters of GP 
and GMDH models were designed based on trial-and-error 
approaches. The most effective choices of different GP 
parameters and terminating criteria (population size, num-
ber of generations, tournament size, maximum number of 
genes, maximum tree depth, mutation probability, and func-
tions set) are presented in Table 6, and the final GP model 
for predicting the bearing capacity of the pile is given in 
Eq. (48) which can also be used as a readymade formula to 
estimate the probability of failure using relativity index. On 
the other hand, the most suitable structure of GMDH con-
sists of 4 hidden layers with 10 neurons in each layer. The 
best performance was achieved when the number of hidden 
layers was set to 3.

 )c( )b( )a( 
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Fig. 7  Illustration of actual vs. predicted values of the developed models for the training (TR) dataset
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(47)

yMARS = 0.28444 − 1.1447 ∗ BF1 + 12.706 ∗ BF2 − 1.6146 ∗ BF3

+ 8.3353 ∗ BF4 − 12.524 ∗ BF5 + 7.3737 ∗ BF6 + 0.12589 ∗ BF7

+ 12.732 ∗ BF8 − 1.4795 ∗ BF9 − 4.6314 ∗ BF10 − 0.59395 ∗ BF11

+ 14.463 ∗ BF12 − 12.111 ∗ BF13 − 0.32972 ∗ BF14 + 8.811 ∗ BF15

(48)

yGP = 4.488x1 + 1.122x2 − exp(2x1)0.5154 + 1.122 tanh(exp(x1))

+ 0.1091 cos(sin(square(x5 + 4.662))) + tanh(1.533x4)0.28

− 0.28 cos(x5) − 0.28 tanh(x2 − 1.315) +□(cos(2x2 +□(x5)))0.1233

− tanh(square(−2.482x1) + x1x5exp(x5))1.456 − 0.6767

Statistical details of results

This sub-section describes the outcomes of all the perfor-
mance parameters of the models. The output parameter 
values for all nine models are presented in Tables 7 and 8, 
respectively, for the training and testing datasets. Note that, 
only one or two parameters are never enough because every 
parameter has its advantages as well as limitations. There-
fore, to determine the efficiency of the developed models, ten 
performance indices were determined and assessed in detail. 
As can be seen, all models have captured the correlations in 
estimating the pile bearing capacity. However, based on the 
experimental results with the R2 criteria, it can be seen that 
the  R2 values of the top two performing models are 0.9967 
(MARS) and 0.9914 (GP) in the training phase. These facts 
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Fig. 8  Illustration of actual vs. predicted values of the developed models for the testing (TS) dataset
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demonstrate that the conventional soft computing models 
have attained the most accurate prediction in the training 
phase. While based on the R2 and RMSE criteria ANN-GOA 
attained the best prediction performance among the ANN-
based models. On the other hand, in the testing phase, GP 
outperformed all other models by far, with R2 = 0.9859 and 
RMSE = 0.0353, while ANN-PS was found to be the second-
best model (R2 = 0.9773 and RMSE = 0.0439) in estimating 
the bearing capacity of pile foundation. Tables 7 and 8 report 
the prediction performances of all the models using 10 per-
formance metrics, respectively, for the training and testing 
phases. Itis observed that MARS and GP have achieved 
the best outcomes in all metrics in the training and testing 

phases, respectively. However, for the ANN-based hybrid 
models, ANN-PSO has achieved second place, followed by 
ANN-ALO, ANN-ACO, ANN-GOA, and ANN-ABC. Fig-
ures 7 and 8 depict the comparison of the actual values with 
the predicted values of all the employed models for the case 
of training and testing phases, respectively.

Furthermore, to visualise the results, the Taylor diagram 
and accuracy matrix are presented. It may be noted that Tay-
lor diagram (Taylor 2001) is a simple visual representation 
of how well a model performs compared to the other used 
models. It plots correlation, standard deviation, and RMSE 
on a 2-dimensional graph. In Taylor diagrams, the radial dis-
tance from the origin, azimuthal angle on the graph denotes 

Fig. 9  Taylor diagrams: a training phase and b testing phase
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Fig. 10  Accuracy matrix: a for training results and b for testing results



2548 Modeling Earth Systems and Environment (2023) 9:2533–2551

1 3

standard deviation and correlation coefficient, respectively. 
RMSE error is plotted as the distance between observed 
and simulated fields, related in identical units to standard 
deviation. On the other hand, an accuracy matrix, recently 
proposed by Kardani et al. (2021a) was used to analyse the 
accuracy level of the developed models in the form of a 
heat map matrix. One can estimate the overall status of the 
developed models based on the colour variation of perfor-
mance parameters. Figures 9a and b and 10a, b represent the 
Taylor diagram and accuracy matrixes, respectively, for the 
developed models.

Discussion

In the above sub-sections, performance of applied machine 
learning models in terms of bearing capacity of pile foun-
dation are analyzed and presented. For this purpose, 50 
dynamic pile load test data of concrete piles were col-
lected from literature and utilized. Five hybrid ANN mod-
els and three conventional soft computing models were 
employed to estimate the bearing capacity of piles first. 
The employed models are evaluated on the ground of vari-
ous statistical parameters. Based on the experimental pre-
sented in the above sub-sections, it is seen that the MARS 
model attained the highest prediction with R2 = 0.9967, 
RMSE = 0.0155, in the training phase, while ANN-PSO 
(R2 = 0.9773, RMSE = 0.0439) and GP (R2 = 0.9859, 
RMSE = 0.0353) attained the most accurate results in the 
analysis of piles. Note that, all the models were developed 
in MATLAB environment with MATLAB 2015a version 
and version with i3-8130U CPU @ 2.20 GHz, 12.00 GB 
RAM. The computational cost of the top two best-per-
forming models was noted as 69.316796s (ANN-PSO) and 
14.253398s (GP). It is pertinent to mention here that, a 
prediction model with higher prediction accuracy attained 
in the testing phase should be accepted with more con-
viction. Therefore, the ANN-PSO and GP models can be 
considered as robust models in analysis of piles.

Conclusion

Soft computing have transformed all the sectors of engi-
neering and civil engineering is not an exception. Soft-
computing models can potentially be used as an alternative 
to expensive and time-intensive field tests and inefficient 
numerical methods. A comparative assessment of five 
hybrid ANN models and three conventional soft comput-
ing models in estimating bearing capacity of piles are pre-
sented in this study. For this purpose, 50 sets of dynamic 
pile testing data were collected from the available litera-
ture. The values of statistical performance parameters, 
regression curves, Taylor diagrams and accuracy matri-
ces recommends that the piles considered in the analysis 

could be considered safe against bearing capacity failure. 
Experimental results point out that ANN-PSO and GP 
can estimate the bearing capacity of pile accurately both 
in the training and testing phases. However, a detailed 
review of results reveals that the ANN-PSO (R2 = 0.9773, 
RMSE = 0.0439) and GP (R2 = 0.9859, RMSE = 0.0353) 
showed comparatively better performance in the testing 
phase. The unique advantages of the proposed ANN-PSO 
model are higher prediction accuracy, ease of implemen-
tation with the existing datasets, and high generalization 
capability. On the other hand, the predicting expression of 
GP can be used as a user-friendly equation to determine 
the bearing capacity of pile. Furthermore, the ANN-PSO 
and GP models proposed in this study would be used to 
analyze other civil engineering structures once the cor-
responding database is prepared for the purpose.
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