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Abstract
Urmia Lake, the largest inland lake in Iran, is facing a severe drying scenario, with dire consequences for the whole region. 
The rapid expansion of agricultural activities in the Urmia Lake basin has predominately led to tremendous pressure on the 
limited water resources, which has accelerated the drying process of this lake. The objective of this study is to analyze the 
spatio-temporal dynamics of land use/land cover (LULC) (2000–2020) and simulate agricultural expansion (2030 and 2040) 
in the Urmia Lake basin. Support Vector Machine (SVM)-based classification approach was used on Landsat satellite imagery 
from 2000, 2010, and 2020 to derive respective LULC layers. Cellular Automata (CA)-Markov and Land Change Modeler 
(LCM) were employed to simulate and assess future agricultural growth and land cover changes. Furthermore, the water 
requirement of agricultural activities was estimated with the NETWAT model. The results showed that the areas covered by 
irrigated agriculture and gardens are projected to experience a significant increase. These findings indicated that the actual 
LULC change during 2000–2020 was 68,802 ha of garden growth (174% change), while the simulated change was expected 
to be 127,613 ha by 2040. Moreover, the statistical result showed an increase of irrigated and rain-fed agricultural lands by 
147,948 ha (55.98%) and 356,372 ha (145.69%), respectively, by 2040. Adopting the NETWAT model, this study suggests 
that the changes in LULC of the region will increase the water requirement of agriculture activities from 1500 billion cubic 
meters in 2000 to more than 4100 billion cubic meters in 2040.

Keywords Land use/land cover change · Markov-cellular automata · Land change modeler · Support vector machine · 
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Introduction

Threats caused by climate change and other global envi-
ronmental changes are among the obstacles to human pro-
gress in achieving sustainable development goals. Rapid 

urbanization, population growth, and other socio-economic 
development activities are the primary drivers in the emer-
gence of such changes that cause deforestation and land 
cover alteration. Deforestation can lead to the loss of bio-
diversity and has destructive effects on the terrestrial and 
aquatic ecosystems of the planet (Wang et al. 2020). Being 
essential parts of environmental changes and the Land Use/
Land Cover (LULC) change have considerable impacts 
on a region’s hydrological cycle and agricultural systems 
(Calanca, 2007). The way the earth’s surface is covered by 
wetlands, forests, agriculture, impermeable surfaces, and 
other types of land and water is expressed by the concept of 
land cover (Prakasam, 2010).

On the other hand, the way humans use the landscape for 
conservation, development, or mixed uses is also defined 
by the concept of land use. Land use consists of agricul-
tural land, recreation areas, built-up areas, and wildlife 
habitats (Reis et al. 2008). The land use/land cover changes 
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significantly affect crop productivity due to the lack of 
freshwater availability (Nyatuame et al. 2020). Therefore, 
assessing the magnitude and pattern of land cover types is 
necessary to project the future of water resources and land 
development, especially for areas where the primary land 
cover is water-dependent (agricultural land). LULC covers 
studies of deforestation, agricultural expansion and intensi-
fication, the energy footprint, and urban growth (Montalván-
Burbano et al. 2021).

There is a large volume of published studies confirm-
ing the critical role of agricultural expansion on the water 
balance of agricultural watersheds (Sahoo et al. (2018); de 
Hipt et al. (2019); Ni et al. (2021); Idrissou et al. (2022); 
Ougahi et al. (2022); Abungba et al. (2022). Among themes, 
Schilling et al. (2008) investigated the potential impacts of 
future LULC change on the annual and seasonal water bal-
ance of the Raccoon River watershed through the SWAT 
(Soil and Water Assessment Tools) model. The results show 
an increase in water yield and nitrate, phosphorus, and sedi-
ment losses with corn production.

Grecchi et al. (2014) assessed the changes in land use pat-
terns of the Brazilian Cerrado and their impacts on the envi-
ronment through a multidisciplinary approach. Their results 
revealed a drastic landscape change from vegetation to an 
integrated agricultural area, which caused a sharp increase 
in the risk of erosion in the region. Kumar et al. (2018), 
in their study on the Tons River Basin of India, found that 
LULC changes had significantly affected the water avail-
ability in this region, leading to a decrease in surface runoff 
and lateral flow from 62.29 and 2.39% to 2.39 to 62.14% and 
0.261%, respectively. Aghsaei et al. (2020) applied SWAT 
to determine the effect of LULC change on the hydrologi-
cal response of the Anzali wetland catchment in Iran. The 
results indicated that the increase in agricultural land use 
resulted in an increase of evapotranspiration, water yield, 
and sediment yield by up to 8.3, 7, and 169%, respectively. 
The study by Samal and Gedam (2021) showed that the 
nature of LULC change has differential impacts at both 
basin and sub-basin scales. At the basin level, the impact of 
LULC change on hydrological parameters is, however, at the 
sub-basin level, the surface runoff and water yield increase 
significantly.

Considerable efforts have been made to develop efficient 
methods for modeling and predicting land use change (Veld-
kamp and Lambin 2001; Overmars 2003). Markov chain 
analysis is one of the common models based on the stochastic 
modeling approach that has been widely used to investigate 
the dynamics of land use change and predict its trend in future 
(Mubea et al. 2011; Kumar et al. 2014). This model works 
based on a series of random values whose probability depends 
on past values. (Dadhich and Hanaoka 2010; Zhang et al. 
2011). Furthermore, as a simple method, the Markov chain is 
a proper tool to predict all multidirectional land-use changes 

and is utilized when the definition of the landscape changes is 
complex (Weng 2002; Pontius and Malanson 2005). Integrated 
modeling approaches such as integrated Markov chain and cel-
lular automata (CA-Markov) are suggested to be more appro-
priate for modeling land use change procedures (Guan 2011). 
Therefore, the CA–Markov model has been used to simulate 
LULC changes in different regions of the world (Nouri et al. 
2014; Mansour et al. 2020; Sibanda and Ahmed 2021; Fu et al. 
2022; Weslati et al. 2022). Land Change Modeler (LCM) is 
another modern and commonly used model that has revolu-
tionized the analysis of land cover conversions and predicting 
land use changes in future. Dynamic projection proficiency, 
proper calibration, and the ability to simulate several types of 
land cover are among the reasons for the expansion of the use 
of the LCM model (Abuelaish and Olmedo 2016; Shooshtar-
ian et al. 2018; Hasan et al. 2020; Qacami et al. 2022; Hussien 
et al. 2022; Tariq et al. 2022).

Based on the above discussions, land use/land cover mod-
els provide social and economic benefits in making decisions 
and understanding the process of changes and future projec-
tions of a watershed. Changes. Iran has faced severe problems 
due to rapid urbanization and extensive land use changes as a 
developing country. Land use changes in Iran have accelerated 
in the last 50 years. Land use and land cover and subsequent 
destruction of water and forest resources are one of the main 
concerns in Iran's environmental issues. Urmia Lake, as one 
of Iran's most important natural ecosystems, the second largest 
saline lake in the world, has an important national and inter-
national position, which has undergone a dramatic decline in 
its water level. Climate change, human activities, and unbal-
anced development of agriculture in the catchment area are 
among the primary factors in decreasing the water level of the 
Urmia Lake, which have been debated in scientific literature. 
The literature review showed that the conducted studies have 
a particular focus on the effects of past land use change, and 
the effects of future land use changes on the catchment area of 
the Urmia Lake have not been investigated.

In most cases, prospective studies of Urmia Lake have 
addressed the effects of climate change. However, there is 
no comprehensive study concerning the effects of land use 
changes (especially agricultural land use) on the water require-
ments of the Urmia Lake basin. Therefore, the main goal of 
the present study is to use the CA–Markov model to simulate 
future land use changes in the Lake Urmia basin and investi-
gate its effects on the agricultural water requirements of the 
region.
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Materials and methods

Study area

Urmia Lake is located in the northwest of Iran, and with an 
area of ~ 5700  km2, it is considered the third largest saline 
lake worldwide. The lake watershed area is ~ 52,000  km2 
and has an elevation range from 1256 to 3720 m.a.s.l. The 
basin of the lake is located between the provinces of West 
Azerbaijan (0.46), East Azerbaijan (0.43), and Kurdistan 
(0.10). The average water intake volume of the lake, which 
is situated at the height of 1274 m above sea level, is 32 
billion  m3. The most important sources of water supply 
in the Urmia Lake are rivers of the catchment basin and 
direct precipitation over its surface. Six rivers from the 
east, five from the west, and four from the south are the 
main rivers providing water to Lake Urmia. The ecosystem 
of the lake is a generally mountainous territory, includ-
ing two of the well-known Iranian volcanic peaks (Saba-
lan, 4810 m, and Sahand, 3707 m), and with numerous 

immense productive plains in the valleys and around the 
lake. The location of the study area is depicted in Fig. 1.

Data and software used

Selecting appropriate classified satellite images is the most 
important process in simulating the future land use map. The 
satellite imagery dataset used in the present study is com-
posed of the Thematic Mapper (TM), Enhanced Thematic 
Mapper Plus (ETM +), and the Operational Land Imager 
(OLI) Landsat sensors on board Landsat 5, Landsat 7, and 
Landsat 8, respectively. Landsat satellite images were col-
lected during different periods (2000–2010-2020) for the 
Urmia Lake basin from the United States Geological Survey 
(USGS) (https:// earth explo rer. usgs. gov). The image infor-
mation is provided in Table 1.

Pre-processing of images in the form of image enhance-
ment, geometric, atmospheric, radiometric, and topographi-
cal corrections was carried out in the Envi software environ-
ment. The land use map was obtained through the Support 
Vector Machine (SVM) classification algorithm in the 

Fig. 1  The location of the study area

https://earthexplorer.usgs.gov
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desired period. The CA-Markov and Land Change Modeler 
(LCM) modules, which are all available within TerrSet, were 
used to predict possible land use changes for the years 2030 
and 2040. Finally, the future water requirements of agricul-
tural activities were calculated through the NETWAT model.

Support vector machine‑based classification

SVM classifier has been developed by Cortes and Vapnik 
(1995) as a robust supervised classification technique for 
handling high-resolution multi-band images and extensive 
segmented satellite data. SVM provides an approach based 
on non-parametric learning, which causes insensitivity to 
data distribution (Fauvel et al. 2009). The SVM algorithm 
is based on creating an optimal hyper-plane in a high or infi-
nite dimensional space by maximizing the spread between 
classes. Less sensitivity to noise, correlated bands, and the 
unbalanced number of training data are among the advan-
tages of SVM compared to other classification algorithms 
(Cawley and Talbot 2010). In the classification process by 
SVM, the acceptable level of misclassification is determined 
by the penalty parameter. The penalty parameter permits 
control of the trade-off between “allowing training errors” 
and “enforcing strict margins. It is possible to achieve a more 
accurate model in the SVM method by increasing the pen-
alty parameter and thus reducing the number of misclassi-
fied pixels. The training sets are projected from the input 
space to another higher dimensional feature space by the 
kernel function so that a linearly separable output dataset is 
obtained. In the present study, Radial Basis Function (RBF) 
kernel is used as a core tool of employed SVM technique in 
the classification process as formulated below (Yang et al. 
2008; Singh et al. 2014):

where xi and xj are vectors in the input space, respectively.

(1)k
�
xi,xj

�
= exp

�
−�‖xi,xj‖2

�

Image classification accuracy

Accuracy assessment of classification for land-use patterns 
can help determine the applicability of selected machine 
learning algorithms in land-use planning. Ground truth data 
was used to evaluate the accuracy of classified maps. For 
2000 and 2010, the reference points were collected from 
Google Earth, and for the 2020 image, the ground truth data 
obtained from the original land-use map and field observa-
tion was used. In this work, the kappa coefficient was used 
to assess the classification accuracy:

where r represents the number of rows in the matrix, x is 
the number of observations in row i and column i (the diag-
onal elements), xi+ and xii are the marginal totals of row 
r and column i, respectively, and N is the total number of 
observations.

CA–MARKOV model

CA–Markov model is a combined Cellular Automata/
Markov chain land prediction model that supposes a compo-
nent of spatial contiguity and knowledge of the likely spatial 
distribution of transitions to Markov chain analysis. In the 
proposed integrated model, the Markov chain model, as a 
discrete-time stochastic model, simulates the LULC change 
probabilities through a transition probability matrix (East-
man 2006; Mishra et al. 2011). In the next step, the transition 
trend between different LULC states is determined using the 
transition probability among two states of t1 and t2 (Wu et al. 
2010; Mosammam et al. 2017). The Markov chain model 
provides an appropriate estimate of the magnitude of LULC 
occurrences but cannot provide the spatial distribution of 
these changes (Yang et al. 2012; Maviza and Ahmed 2020). 
However, Cellular automata (CA), can change and control 
complex spatially distributed processes, with a strong ability 
to simulate the spatio-temporal characteristics of complex 
systems (Guan et al. 2011a, b). The CA model can be for-
mulated as follows (Sang et al. 2011):

where S is the set of limited and discrete cellular states, N 
indicates the Cellular field, t and t + 1 represent the differ-
ent times, and f is the transformation rule of cellular states 
in local space. The Markov model is a theory based on the 
formation process of Markov random process systems for the 
prediction and optimal control theory method. Calculation 
of the land use changes prediction in accordance with the 
conditional probability formula—Bayes can be expressed as 
follows (Memarian et al. 2012; Ma et al. 2012):

(2)
N
∑r

i=1
xii −

∑r

i=1
(xi+)(xi+)

N2 −
∑r

i=1
(xi+)(xi+)

(3)S(t,t + 1) = f (S(t),N)

Table 1  Landsat image information

Satellite Type Path/row Date Reso-
lution 
(m)

Landsat 5 TM 167:034–035 22/08/2000 30
168:033–034-035
169–034-035

Landsat 7 ETM + 167:034–035 22/08/2010 30
168:033–034-035
169–034-035

Landsat 8 OLI/TIRS 167:034–035 16/08/2020 30
168:033–034-035
169–034-035
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where S(t) and S(t + 1) stand as the system status at the time 
of t and t + 1, respectively; Pij stands as the transition prob-
ability matrix in a state, which is calculated as follows:

where P is the Markov transition matrix, Pij is the probabil-
ity from LULC type i to land type j, and n is the number of 
LULC types in the study area. The transition matrix requests 
that each rate is a non-negative quantity and each line fac-
tor 0 to 1. The relative frequency of the transition observed 
during the whole period is considered an estimate of the 
Markov chain. The result of the estimation can be used for 
prediction.

Land change modeler

The LCM (Land Change Modeler) embedded in the TerrSet 
Geospatial Monitoring software was utilized to predict the 
future LULC for a particular year relying on the classified 
historical satellite images. The LCM is a land change pre-
diction tool for land planning that is very popular due to its 
simplicity, graphical illustration, and availability of different 
modeling approaches (Eastman and Toledano 2018). The 
LCM module allows Multi-Layer Perceptron (MLP) neu-
ral network, logistic regression, and Multi-Objective Land 
Allocation (MOLA) to generate maps of transition potential 
based on the individual sub-models and associated explana-
tory variables. LCM uses historical LULC maps to empiri-
cally model the relationship between land cover transitions 
and descriptive variables to map future LULC scenarios. 
The prediction of future land cover in LCM consists of four 
main steps: (1) analyzing historical changes in land cover, 
(2) generating transition matrix maps, (3) validating the 
model, and (4) predicting the future land cover map.

NETWAT model

Known as the national document, the NETWAT model 
determines the demands and needs for farming and horti-
cultural plants. The NETWAT model has been developed for 
the use of agricultural water consumption optimization com-
mittees in the provinces of Iran. This software provides data 
on the transpiration and evaporation of plants grown in 620 
fields in Iran. With a correct estimation of such evaporation 
and transpiration, it is possible to effectively manage these 
farming and horticultural practices (Goodarzi et al. 2022). 
The NETWAT model includes the meteorological data for a 

(4)S(t + 1) = Pij × S(t)

(5)P =
(
Pij

)
=

|||||||||

P11 P12 ⋯

P21 P22 ⋯

⋯ … ⋯

P1n

P2n

⋯

Pn1 Pn2 ⋯ Pnn

|||||||||

,

n∑

j=1

Pij=1

reformed period of 60 years. The Penman–Monteith method 
of FAO is the basis of the calculation model of this soft-
ware (Hosseini Baghanam et al., 2022). The output of the 
NETWAT model as Iran’s national water document is the 
project “Iran’s pure water requirement of crops and garden 
products,” carried out by Iran’s Ministry of Agriculture and 
Iran Meteorological Organization (IMO). The steps of the 
modeling process in the present study is illustrated in Fig. 2.

Results and discussion

LULC variation

The land use land cover maps offer a deeper understanding 
of land use change trends. The results indicate the history of 
land use change and the change quantity in each LULC class. 
Figure 3 illustrates three LULC maps of the whole Urmia 
Lake watershed generated by the SVM for the years 2000, 
2010, and 2020. The overall accuracy of the maps assessed 
with 100 reference points per land-cover class was more 
than 84% and produced kappa indices over 0.84 (Table 2). 
The types of land use/cover were classified into nine cat-
egories, which include water, irrigated agriculture, rain-fed 
agriculture, sandy areas, rocky areas, salty areas, rangeland 

2020 2000

Image pre

Classification:

Support Vector 
Training sample selection

Accuracy 
Land use/Land cover 

classification map

Cross-tab Change 

Investigating the impact of land use/land cover change: NETWAT 

Satellite image 

2010

Predicting future land use/land cover map: CA-Markov and LCM

Fig. 2  An overview of detecting and predicting land-use changes in 
the Urmia Lake basin
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areas, built-up areas, and gardens. In three classification 
maps, the rangeland area is the dominant LULC type of the 
Urmia Lake watershed which covered 78% of the study area 
in 2000, 75% in 2010, and 76% in 2020. The sandy areas, 
which represent the sandy plain, cover most of the southern 
part of Urmia Lake. The remaining LULC classes cover only 
about ~ 17% (2000) to 21% (2020) of the landscape.

The results of land-use changes for the years from 2000 
to 2020 are summarized in Fig. 4. From 2000 to 2020, gar-
dens increased by 174% (108,328 ha), irrigated agricul-
ture by 86% (270,350 ha), and rain-fed agriculture by 38% 
(131,557 ha). Built-up areas including residential areas, 
roads, and other types of built-up areas, occupied only about 
1% of the landscape in the first stage (represented by the 
2000 map). The development of the regional economy and 

the growth of the population in the city has caused an 82% 
increase in built-up areas in the third stage (represented by 
the 2020 map). On the other hand, the reduction of the lake 
water area by 53% (221,347 ha) has caused a significant 
increase in the salty areas by 779% (149,315 ha).

Assessment of future LULC variation 
through the CA–Markov model

In subsequent, CA-Markov was employed for predicting 
the LULC changes according to historical data from 2000, 
2010, and 2020. Furthermore, the LCM model was used for 
comparative purposes. For this purpose, after examining 
the results of the spatial accuracy of the land-use changes 
modeling in the base years, the CA–Markov model was used 

Fig. 3  Land use and land cover change (LULC) change map of the Urmia Lake catchment area in three different stages 2000, 2010 and 2020
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to predict the land-use changes until the years 2030 and 
2040. Figure 5 demonstrates the predicted land-use map 
for 2030 and 2040 through CA-Markov and LCM models. 
The prediction of the potential distribution of the LULC 
classes in 2030 and 2040 demonstrates significant growth 
in gardens. It also shows expansion in irrigated agricul-
ture and rain-fed agriculture. The considerable changes in 
landscape development can be distinguished over the entire 
period from 2000 to 2040 from the CA-Markov and LCM 
models. The results obtained from the CA–Markov model 
show that irrigated agriculture land will increase from 1450 
km2 (2000) to more than 3200 km2 (2030) and 3500 km2 
(2040). Gardens will increase by about 240% in 2030 (1350 
km2) and 323% in 2040 (1671 km2) compared with 2000 
(395 km2). At the same time, the area covered by rain-fed 
agriculture will increase from 498 km2 in 2000 to 1430 km2 

in 2030, and 1470 km2 in 2040. This increase in these areas 
reflects the Iranian government's policy for economic devel-
opment through increasing agricultural production, which 
started at least two decades ago. The deterioration of natural 
land cover is one of the consequences of the current trend 
of land use change.

Most importantly, the pressure on underground water 
resources in these areas will increase, and as a result, 
it will cause subsidence in the plains. Moreover, in the 
absence of legal considerations, these changes cause 
unsustainable water withdrawal, which has caused a 
decrease in the level of the Urmia Lake by influencing the 
inflow. Similar to the CA–Markov model and based on the 
outputs of the LCM model, it is expected that the LULC 
classes in the Urmia Lake catchment area will continue to 
change. The prediction results of the LCM model in the 
year 2030 show a maximum difference of 3% with CA-
Markov. Meanwhile, the difference between the predic-
tions of LCM and CA-Markov will reach 5.7% in 2040.

Summaries of the probability matrix between LULC 
classes during the periods 2020–2030 and 2020–2040 
were listed in Tables 3 and 4. Row categories in Table 3 
describe LULC classes in 2000, and column categories 
describe classes of 2030. The Rangeland areas had a prob-
ability as high as 62.9% to remain as rangeland in 2030. 
Rocky areas also had a probability as high as 67.53% to 
remain as rocky areas in 2030.  Gardens and built-up areas 
were a lesser amount probability of 39.7 and 32.53%, 
respectively, to remain as they are. The most striking con-
clusion to emerge from the results of the Tables 3 and 4 
is that the probability of change in irrigated agriculture 
to gardens is 25.03%, and this coefficient will reach more 
than 36% in 2040.

Table 2  Overall accuracy and kappa index of the agreement for 
LULC classification for 2000, 2010, and 2020

Land use Year

2000 2010 2020

Sandy areas 82.2% 90.2% 92.8%
Rocky areas 81.5% 78.9% 95.4%
Salty areas 80.9% 98.3% 100%
Built-up areas 80% 77.1% 96.1%
Rangeland areas 82.4% 89.1% 91.8%
Rain-fed agriculture 92.9% 73.9% 95.6%
Gardens 87.8% 90.3% 95.2%
Irrigated agriculture 95.4% 90.2% 93.7%
Water 92.1% 94.7% 93.8%
Kappa 0.848 0.872 0.924
Overall accuracy 87.78% 84.39% 94.71%

Fig. 4  Land use and land cover 
change (LULC) change of the 
Urmia Lake catchment area

0 10 20 30 40 50 60 70 80

Sandy areas

Rocky areas

Salty areas

Built-up areas

Pastures

Rain-fed agriculture

Garden

Irrigated agriculture

Water

Percentage

2020 2010 2000
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Fig. 5  The predicted 2030 and 2040 LULC of the Urmia Lake watershed

Table 3  Transition probability matrix of LULC during 2020–2030

Land use and 
cover in 2020

Land use and cover in 2030

Sandy areas Rocky areas Salty areas Built-up areas Rangeland areas Rain-fed agricul-
ture

Gardens Irrigated 
agricul-
ture

Water

Sandy areas 0.0667 0.0158 0.0039 0.0362 0.8549 0.0015 0.0034 0.0176 0
Rocky areas 0.0582 0.4333 0.0117 0.112 0.3805 0.00211 0.0003 0.0017 0.0001
Salty areas 0.0023 0.1848 0.6753 0.028 0.0409 0.0011 0.0004 0.0017 0.0655
Built-up areas 0.0804 0.1189 0.0011 0.3253 0.439 0.0023 0.0085 0.0244 0.0001
Rangeland areas 0.0791 0.0318 0.0029 0.0425 0.629 0.091 0.0172 1.1061 0.0003
Rain-fed agricul-

ture
0.0037 0.0003 0 0.0008 0.8228 0.1375 0.0068 0.0281 0

Gardens 0.022 0.0001 0 0.0024 0.1341 0.0054 0.397 0.4389 0
Irrigated agricul-

ture
0.0589 0.0003 0.0001 0.0081 0.2839 0.0037 0.2503 0.3947 0

Water 0.0017 0.0008 0.2343 0.0034 0.0425 0 0 0.0003 0.717
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Assessment of future water requirements 
through the NETWAT model

Expansion of cropland and gardens in the region requires 
more water withdrawal and affects the water resources. 
Therefore, in the next stage of this research, the amount of 
water requirements for each product in each province and 
plain for the future of the Urmia Lake watershed was calcu-
lated using the NETWAT model. As mentioned previously, 
the NETWAT model, which was developed based on Iran’s 
National Water Resources Development Plan, contains infor-
mation related to a variety of crops produced in 620 plains 
of Iran and has been optimized according to the climatic and 

soil conditions of Iran’s plains. Assessing the outcomes of 
the NETWAT model for the future water resource require-
ments of agriculture in the sub-basin of East Azarbaijan 
province, it showed that the increase in the area covered by 
agriculture activities, especially gardens and irrigated agri-
culture, will also increase the water demands in future. To 
be more precise, based on Fig. 6, the water requirement of 
irrigated agriculture will increase to more than 1180 billion 
cubic meters (BCUM) in 2030 and more than 1300 BCUM 
in 2040. The water requirement of gardens, as the second 
land cover category with the highest water consumption, 
will increase to more than 175 BCUM in 2030 and about 
270 BCUM in 2040. Furthermore, the water requirement of 

Table 4  Transition probability matrix of LULC during 2020–2040

Land use and 
cover in 2020

Land use and cover in 2040

Sandy areas Rocky areas Salty areas Built-up areas Rangeland areas Rain-fed 
agricul-
ture

Gardens Irrigated agricul-
ture

Water

Sandy areas 0.1155 0.0347 0.0005 0.0556 0.7305 0.0097 0.008 0.0443 0.0004
Rocky areas 0.0917 0.1671 0.0022 0.1418 0.5683 0.0084 0.0034 0.017 0
Salty areas 0.017 0.6321 0.0007 0.0633 0.2755 0.0075 0.0001 0.0037 0
Built-up areas 0.0463 0.0226 0.0003 0.1215 0.6621 0.0029 0.0256 0.1185 0.0001
Rangeland areas 0.0466 0.0249 0.0024 0.027 0.7184 0.071 0.0257 0.0838 0.0002
Rain-fed agricul-

ture
0.0097 0.0007 0 0.0073 0.9261 0.0088 0.0103 0.0371 0.0001

Gardens 0.0206 0.0005 0.0001 0.0077 0.1258 0.0011 0.4766 0.03641 0.0036
Irrigated agricul-

ture
0.0517 0.0004 0.0001 0.0147 0.2486 0.0051 0.2199 0.4585 0.001

Water 0.0013 0.1391 0.3169 0.0188 0.0821 0.0007 0.0002 0.001 0.4398

Fig. 6  Water requirement of the 
sub-basin of East Azarbaijan 
Province for agriculture in the 
period of 2030–2040
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rain-fed agriculture will reach more than 140 BCUM in 2030 
and more than 150 BCUM in 2040.

Figures 7 and 8 show that the water requirement of rain-
fed agriculture in the sub-basin of West Azerbaijan and 
Kurdistan will increase to (218 and 100) BCUM and (150 
and 115) BCUM in 2030 and 2040, respectively. The water 
requirement of gardens in the mentioned sub-basins will also 
increase to (600 and 95) BCUM, and (700 and 122) BCUM 
in 2020 and 2040, respectively. Finally, the water require-
ment of irrigated agriculture in these sub-basins will reach 
(1000 and 85) BCUM in 2030 and more than (1115 and 105) 
BCUM in 2040.

Figure 9 illustrates that the West Azerbaijan sub-basin 
will account for the largest share of future water consump-
tion in the agricultural section. The findings show that the 
annual water requirement for agriculture will increase from 
1850 BCUM in 2030 to more than 2100 BCUM in 2040. 
Analyzing the obtained results of the modeling process indi-
cates a total increase of about 100% in the water requirement 
of agriculture in 30 years, so that this amount will increase 
from 1500 BCUM in 2000 to more than 3100 BCUM in 
2030. Furthermore, this growth trend will reach more than 
2.7 times by the year 2040, and the water requirement of 
agriculture in the Urmia Lake basin will reach more than 
4100 BCUM.

Fig. 7  Water requirement of the 
sub-basin of West Azarbaijan 
Province for agriculture in the 
period of 2030–2040
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Fig. 8  Water requirement of the 
sub-basin of Kurdistan Province 
for agriculture in the period of 
2030–2040
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Conclusion

The decrease in saline lakes, which consist of 44% of all 
available lake water, is a serious concern. In many parts 
of the world, lake drying is caused by water management 
failures. The Urmia Lake, the largest inland lake in Iran and 
the second-largest hyper-saline lake in the world, has under-
gone a dramatic decline (by about 8 m) in its water level 
since 1995. Problems associated with unbalanced agricul-
tural development, particularly that of indiscriminate with-
drawal of water resources, remain a pressing challenge for 
the Urmia Lake in the northwest of Iran. According to the 
presented statistics, the volume of renewable water resources 
in the catchment area of Urmia Lake was 7024 BCUM, and 
the volume of water consumption in different sections until 
2013 was 4825 BCUM. However, changing land use and 
cultivation patterns from irrigated agriculture to horticulture 
had increased water consumption in this basin. In this study, 
the impacts of the agricultural land-use change in water 
requirements of crops in the Urmia Lake basin were identi-
fied and quantified. The results showed that the area covered 
by agricultural activities (rain-fed, irrigated agriculture, and 
gardens) has increased rapidly, so that the area covered by 
irrigated agriculture has increased from 0.028% of the total 
basin area in 2000 to more than 0.064% in 2030 and about 
0.070% of the total basin area in 2040. The area covered by 
gardens will also increase from 0.007% of the total basin 
area in 2000 to more than 0.026% and 0.032% in 2030, and 

2040, respectively. Finally, the area covered by rain-fed agri-
culture will reach more than 0.029% of the total area of the 
catchment area of the Urmia Lake, with an increase of about 
0.011% compared to the base year 2000. The CA-Markov 
and LCM models simulation for the potential distribution of 
the LULC classes showed that the changes in the landscape 
that has experienced in the recent past are likely to con-
tinue. According to the outcomes of the NETWAT model, 
the water requirement of agriculture in the period of 40 years 
(2000 to 2040) has increased significantly from 1500 BCUM 
to more than 4500 BCUM. These results denote the high 
priority of establishing proper regulations and policies to 
restrict land-use changes in the Urmia Lake basin.

Funding No funding was received for conducting this study.

Availability of data and materials The data and materials that support 
the findings of this study are available on request from the correspond-
ing author.

Declarations 

Conflict of interests The authors declare that they have no competing 
interests.

Ethical approval Not applicable, because this article does not contain 
any studies with human or animal subjects.

Consent to participate Not applicable.

Consent for publication Not applicable.

Fig. 9  Changing trend of the 
water requirement of agriculture 
in the catchment area of the 
Urmia Lake during the period 
2030–2040

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

W
at

er
 r

eq
u

ir
em

en
t 

(B
C

U
M

)

Year



2580 Modeling Earth Systems and Environment (2023) 9:2569–2581

1 3

References

Abungba JA, Adjei KA, Gyamfi C, Odai SN, Pingale SM, Khare D 
(2022) Implications of Land Use/Land Cover changes and climate 
change on black volta basin future water resources in Ghana. Sus-
tainability 14(19):12383. https:// doi. org/ 10. 3390/ su141 912383

Ackom B, Olmedo MTC (2016) Scenario of land use and land cover 
change in the Gaza Strip using remote sensing and GIS models. 
Arab J Geosci 9:1–14. https:// doi. org/ 10. 1007/ s12517- 015- 2292-7

Calanca P (2007) Climate change and drought occurrence in the Alpine 
region: how severe are becoming the extremes? Glob Planet 
Change 57:151–160. https:// doi. org/ 10. 1016/j. glopl acha. 2006. 
11. 001

Cawley GC, Talbot NL (2010) On over-fitting in model selection and 
subsequent selection bias in performance evaluation. J Mach 
Learn Res 11:2079–2107

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 
20:273–297. https:// doi. org/ 10. 1007/ BF009 94018

Dadhich PN, Hanaoka S (2010) Remote sensing, GIS and Markov’s 
method for land use change detection and prediction of Jaipur 
district. J Geomat 4:9–15

de Hipt FO, Diekkrüger B, Steup G, Yira Y, Hoffmann T, Rode M, 
Näschen K (2019) Modeling the effect of land use and climate 
change on water resources and soil erosion in a tropical West 
African catch-ment (Dano, Burkina Faso) using SHETRAN. Sci 
Total Environ 653:431–445. https:// doi. org/ 10. 1016/j. scito tenv. 
2018. 10. 351

Eastman JR, Toledano J (2018) A short presentation of the Land 
Change Modeler (LCM). Geomatic approaches for modeling land 
change scenarios. Springer, Cham, pp 499–505

Eastman JR (2006) IDRISI andes guide to GIS and Image Processing; 
Clark University: Worcester, MA USA, p 328

Fauvel M, Chanussot J, Benediktsson JA (2009) Kernel principal com-
ponent analysis for the classification of hyperspectral remote sens-
ing data over urban areas. EURASIP J Adv Signal Process. https:// 
doi. org/ 10. 1155/ 2009/ 783194

Fu F, Deng S, Wu D, Liu W, Bai Z (2022) Research on the spati-
otemporal evolution of land use landscape pattern in a county 
area based on CA-Markov model. Sustain Cities Soc 80:103760. 
https:// doi. org/ 10. 1016/j. scs. 2022. 103760

Goodarzi MR, Mohtar RH, Piryaei R, Fatehifar A, Niazkar M (2022) 
Urban WEF nexus: an approach for the use of internal resources 
under climate change. Hydrology 9(10):176. https:// doi. org/ 10. 
3390/ hydro logy9 100176

Grecchi RC, Gwyn QHJ, Bénié GB, Formaggio AR, Fahl FC (2014) 
Land use and land cover changes in the Brazilian Cerrado: a mul-
tidisciplinary approach to assess the impacts of agricultural expan-
sion. Appl Geogr 55:300–312. https:// doi. org/ 10. 1016/j. apgeog. 
2014. 09. 014

Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011a) Modeling 
urban land use change by the integration of cellular automaton 
and Markov model. Ecol Modell 222:3761–3772. https:// doi. org/ 
10. 1016/j. ecolm odel. 2011. 09. 009

Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011b) Modeling 
urban land use change by the integration of cellular automaton 
and Markov model. Ecol Model 222(20–22):3761–3772. https:// 
doi. org/ 10. 1016/j. ecolm odel. 2011. 09. 009

Hasan S, Shi W, Zhu X, Abbas S, Khan HUA (2020) Future simula-
tion of land use changes in rapidly urbanizing South China based 
on land change modeler and remote sensing data. Sustainability 
12:4350. https:// doi. org/ 10. 3390/ su121 14350

Hosseini Baghanam A, Seifi AJ, Sheikhbabaei A, Hassanzadeh Y, 
Besharat M, Asadi E (2022) Policy-making toward integrated 
water resources management of Zarrine River basin via system 

dynamics approach under climate change impact. Sustainability 
14(6):3376. https:// doi. org/ 10. 3390/ su140 63376

Hussien K, Kebede A, Mekuriaw A, Asfaw Beza S, Haile Erena S 
(2022) Modelling spatiotemporal trends of land use land cover 
dynamics in the Abbay River Basin. Ethiopia Model Earth Syst 
Environ. https:// doi. org/ 10. 1007/ s40808- 022- 01487-3

Idrissou M, Diekkrüger B, Tischbein B, Op de Hipt F, Näschen K, 
Poméon T, Ibrahim B (2022) Modeling the Impact of climate and 
Land Use/Land Cover change on water availability in an inland 
valley catchment in Burkina Faso. Hydrology 9(1):12. https:// doi. 
org/ 10. 3390/ hydro logy9 010012

Kumar N, Singh SK, Singh VG, Dzwairo B (2018) Investigation of 
impacts of land use/land cover change on water availability of 
Tons River Basin, Madhya Pradesh India. Model Earth Syst Envi-
ron 4(1):295–310. https:// doi. org/ 10. 1007/ s40808- 018- 0425-1

Kumar S, Radhakrishnan N, Mathew S (2014) Land use change mod-
elling using a Markov model and remote sensing. Geomat Nat 
Hazards Risk 5:145–156. https:// doi. org/ 10. 1080/ 19475 705. 2013. 
795502

Li Z, Liu WZ, Zhang XC, Zheng FL (2009) Impacts of land use change 
and climate variability on hydrology in an agricultural catchment 
on the Loess Plateau of China. J Hydrol 377:35–42. https:// doi. 
org/ 10. 1016/j. jhydr ol. 2009. 08. 007

Ma C, Zhang GY, Zhang XC, Zhao YJ, Li HY (2012) Application 
of markov model in wetland change dynamics in tianjin coastal 
area, China. Procedia Environ Sci 13:252–262. https:// doi. org/ 10. 
1016/j. proenv. 2012. 01. 024

Mansour S, Al-Belushi M, Al-Awadhi T (2020) Monitoring land use 
and land cover changes in the mountainous cities of Oman using 
GIS and CA-Markov modelling techniques. Land Use Policy 
91:104414. https:// doi. org/ 10. 1016/j. landu sepol. 2019. 104414

Maviza A, Ahmed F (2020) Analysis of past and future multi-temporal 
land use and land cover changes in the semi-arid Upper-Mzing-
wane sub-catchment in the Matabeleland south province of Zim-
babwe. Int J Remote Sens 41(14):5206–5227. https:// doi. org/ 10. 
1080/ 01431 161. 2020. 17310 01

Memarian H, Balasundram SK, Talib JB, Sung CTB, Sood AM, Abba-
spour K (2012) Validation of CA-Markov for simulation of land 
use and cover change in the Langat Basin. Malaysia. https:// doi. 
org/ 10. 4236/ jgis. 2012. 46059

M Mishra, KK Mishra, AP Subudhi, M Phil, O Cuttack (2011) Urban 
sprawl mapping and land use change analysis using remote sens-
ing and GIS. In Geospatial World Forum.

Montalván-Burbano N, Velastegui-Montoya A, Gurumendi-Noriega 
M, Morante-Carballo F, Adami M (2021) Worldwide research 
on land use and land cover in the Amazon region. Sustainability 
13(11):6039. https:// doi. org/ 10. 3390/ su131 16039

Mosammam HM, Nia JT, Khani H, Teymouri A, Kazemi M (2017) 
Monitoring land use change and measuring urban sprawl based 
on its spatial forms: the case of Qom city. Egyptian J Remote 
Sensing Space Sci 20(1):103–116. https:// doi. org/ 10. 1016/j. ejrs. 
2016. 08. 002

Mubea KW, Ngigi TG, Mundia CN (2011) Assessing application of 
Markov chain analysis in predicting land cover change: a case 
study of Nakuru municipality. J Agric Sci Technol 12(2):126–144

Ni X, Parajuli PB, Ouyang Y, Dash P, Siegert C (2021) Assessing land 
use change impact on stream discharge and stream water quality 
in an agricultural watershed. CATENA 198:105055. https:// doi. 
org/ 10. 1016/j. catena. 2020. 105055

Nouri J, Gharagozlou A, Arjmandi R, Faryadi S, Adl M (2014) Predict-
ing urban land use changes using a CA–Markov model. Arab J Sci 
Eng 39:5565–5573. https:// doi. org/ 10. 1007/ s13369- 014- 1119-2

Nyatuame M, Amekudzi LK, Agodzo SK (2020) Assessing the land 
use/land cover and climate change impact on water balance on 
Tordzie watershed. Remote Sensing Appl Soc Environ 20:100381. 
https:// doi. org/ 10. 1016/j. rsase. 2020. 100381

https://doi.org/10.3390/su141912383
https://doi.org/10.1007/s12517-015-2292-7
https://doi.org/10.1016/j.gloplacha.2006.11.001
https://doi.org/10.1016/j.gloplacha.2006.11.001
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.scitotenv.2018.10.351
https://doi.org/10.1016/j.scitotenv.2018.10.351
https://doi.org/10.1155/2009/783194
https://doi.org/10.1155/2009/783194
https://doi.org/10.1016/j.scs.2022.103760
https://doi.org/10.3390/hydrology9100176
https://doi.org/10.3390/hydrology9100176
https://doi.org/10.1016/j.apgeog.2014.09.014
https://doi.org/10.1016/j.apgeog.2014.09.014
https://doi.org/10.1016/j.ecolmodel.2011.09.009
https://doi.org/10.1016/j.ecolmodel.2011.09.009
https://doi.org/10.1016/j.ecolmodel.2011.09.009
https://doi.org/10.1016/j.ecolmodel.2011.09.009
https://doi.org/10.3390/su12114350
https://doi.org/10.3390/su14063376
https://doi.org/10.1007/s40808-022-01487-3
https://doi.org/10.3390/hydrology9010012
https://doi.org/10.3390/hydrology9010012
https://doi.org/10.1007/s40808-018-0425-1
https://doi.org/10.1080/19475705.2013.795502
https://doi.org/10.1080/19475705.2013.795502
https://doi.org/10.1016/j.jhydrol.2009.08.007
https://doi.org/10.1016/j.jhydrol.2009.08.007
https://doi.org/10.1016/j.proenv.2012.01.024
https://doi.org/10.1016/j.proenv.2012.01.024
https://doi.org/10.1016/j.landusepol.2019.104414
https://doi.org/10.1080/01431161.2020.1731001
https://doi.org/10.1080/01431161.2020.1731001
https://doi.org/10.4236/jgis.2012.46059
https://doi.org/10.4236/jgis.2012.46059
https://doi.org/10.3390/su13116039
https://doi.org/10.1016/j.ejrs.2016.08.002
https://doi.org/10.1016/j.ejrs.2016.08.002
https://doi.org/10.1016/j.catena.2020.105055
https://doi.org/10.1016/j.catena.2020.105055
https://doi.org/10.1007/s13369-014-1119-2
https://doi.org/10.1016/j.rsase.2020.100381


2581Modeling Earth Systems and Environment (2023) 9:2569–2581 

1 3

Ougahi JH, Karim S, Mahmood SA (2022) Application of the SWAT 
model to assess climate and land use/cover change impacts on 
water balance components of the Kabul River Basin, Afghanistan. 
J Water Climate Change. 13(11):3977. https:// doi. org/ 10. 2166/ 
wcc. 2022. 261

Overmars KD, De Koning GHJ, Veldkamp A (2003) Spatial autocorre-
lation in multi-scale land use models. Ecol Modell 164:257–270. 
https:// doi. org/ 10. 1016/ S0304- 3800(03) 00070-X

Pontius GR, Malanson J (2005) Comparison of the structure and accu-
racy of two land change models. Int J Geogr Inf Sci 19:243–265. 
https:// doi. org/ 10. 1080/ 13658 81041 00017 13434

Prakasam C (2010) Land use and land cover change detection through 
remote sensing approach: a case study of Kodaikanal taluk, Tamil 
nadu. Intern J Geomat Geosci 1(2):150

Qacami M, Khattabi A, Lahssini S, Rifai N, Meliho M (2022) 
Land-cover/land-use change dynamics modeling based on 
land change modeler. Ann Reg Sci. https:// doi. org/ 10. 1007/ 
s00168- 022- 01169-z

Reis S (2008) Analyzing land use/land cover changes using remote 
sensing and GIS in Rize. North-East Turkey Sensors 8(10):6188–
6202. https:// doi. org/ 10. 3390/ s8106 188

Sahoo S, Dhar A, Debsarkar A, Kar A (2018) Impact of water demand 
on hydrological regime under climate and LULC change scenar-
ios. Environment Earth Sci 77(9):1–19. https:// doi. org/ 10. 1007/ 
s12665- 018- 7531-2

Samal DR, Gedam S (2021) Assessing the impacts of land use and 
land cover change on water resources in the Upper Bhima river 
basin India. Environment Challeng 5:100251. https:// doi. org/ 10. 
1016/j. envc. 2021. 100251

Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land 
use spatial pattern of towns and villages based on CA–Markov 
model. Math Comput Model 54(3–4):938–943. https:// doi. org/ 
10. 1016/j. mcm. 2010. 11. 019

Schilling KE, Jha MK, Zhang YK, Gassman PW, Wolter CF (2008) 
Impact of land use and land cover change on the water balance of 
a large agricultural watershed: Historical effects and future direc-
tions. Water Res Res. https:// doi. org/ 10. 1029/ 2007W R0066 44

Shooshtarian MR, Dehghani M, Margherita F, Gea OC, Mortezaza-
deh S (2018) Land use change and conversion effects on ground 
water quality trends: an integration of land change modeler in 
GIS and a new Ground Water Quality Index developed by fuzzy 
multi-criteria group decision-making models. Food Chem Toxicol 
114:204–214. https:// doi. org/ 10. 1016/j. fct. 2018. 02. 025

Sibanda S, Ahmed F (2021) Modelling historic and future land use/
land cover changes and their impact on wetland area in Shashe 
sub-catchment, Zimbabwe. Model Earth Syst Environ 7:57–70. 
https:// doi. org/ 10. 1007/ s40808- 020- 00963-y

Singh SK, Srivastava PK, Gupta M, Thakur JK, Mukherjee S (2014) 
Appraisal of land use/land cover of mangrove forest ecosystem 
using support vector machine. Environ Earth Sci 71:2245–2255. 
https:// doi. org/ 10. 1007/ s12665- 013- 2628-0

Tariq A, Yan J, Mumtaz F (2022) Land change modeler and CA-
Markov chain analysis for land use land cover change using satel-
lite data of Peshawar. Pakistan Phys Chem Earth. https:// doi. org/ 
10. 1016/j. pce. 2022. 103286

Veldkamp A, Lambin EF (2001) Predicting land-use change. Agric 
Ecosyst Environ 85:1–6. https:// doi. org/ 10. 1016/ S0167- 8809(01) 
00199-2

Wang SW, Gebru BM, Lamchin M, Kayastha RB, Lee WK (2020) 
Land use and land cover change detection and prediction in the 
Kathmandu district of Nepal using remote sensing and GIS. Sus-
tainability 12:3925. https:// doi. org/ 10. 3390/ su120 93925

Weng Q (2002) Land use change analysis in the Zhujiang Delta of 
China using satellite remote sensing, GIS and stochastic model-
ling. J Environ Manage 64:273–284. https:// doi. org/ 10. 1006/ jema. 
2001. 0509

Weslati O, Bouaziz S, Sarbeji MM (2022) Modelling and assessing 
the spatiotemporal changes to future land use change scenarios 
using remote sensing and CA-markov model in the mellegue 
catchment. J Indian Soc Remote Sens. https:// doi. org/ 10. 1007/ 
s12524- 022- 01618-4

Wu L, Shi P, Gao H (2010) State estimation and sliding-mode control 
of Markovian jump singular systems. IEEE Trans Autom Control 
55(5):1213–1219. https:// doi. org/ 10. 1109/ TAC. 2010. 20422 34

Yang Q, Li X, Shi X (2008) Cellular automata for simulating land 
use changes based on support vector machines. Comput Geosci 
34:592–602. https:// doi. org/ 10. 1016/j. cageo. 2007. 08. 003

Yang X, Zheng XQ, Lv LN (2012) A spatiotemporal model of land use 
change based on ant colony optimization, Markov chain and cel-
lular automata. Ecol Model 233:11–19. https:// doi. org/ 10. 1016/j. 
ecolm odel. 2012. 03. 011

Zhang R, Tang C, Ma S, Yuan H, Gao L, Fan W (2011) Using Markov 
chains to analyze changes in wetland trends in arid Yinchuan 
Plain, China. Math Comput Model 54:924–930. https:// doi. org/ 
10. 1016/j. mcm. 2010. 11. 017

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.2166/wcc.2022.261
https://doi.org/10.2166/wcc.2022.261
https://doi.org/10.1016/S0304-3800(03)00070-X
https://doi.org/10.1080/13658810410001713434
https://doi.org/10.1007/s00168-022-01169-z
https://doi.org/10.1007/s00168-022-01169-z
https://doi.org/10.3390/s8106188
https://doi.org/10.1007/s12665-018-7531-2
https://doi.org/10.1007/s12665-018-7531-2
https://doi.org/10.1016/j.envc.2021.100251
https://doi.org/10.1016/j.envc.2021.100251
https://doi.org/10.1016/j.mcm.2010.11.019
https://doi.org/10.1016/j.mcm.2010.11.019
https://doi.org/10.1029/2007WR006644
https://doi.org/10.1016/j.fct.2018.02.025
https://doi.org/10.1007/s40808-020-00963-y
https://doi.org/10.1007/s12665-013-2628-0
https://doi.org/10.1016/j.pce.2022.103286
https://doi.org/10.1016/j.pce.2022.103286
https://doi.org/10.1016/S0167-8809(01)00199-2
https://doi.org/10.1016/S0167-8809(01)00199-2
https://doi.org/10.3390/su12093925
https://doi.org/10.1006/jema.2001.0509
https://doi.org/10.1006/jema.2001.0509
https://doi.org/10.1007/s12524-022-01618-4
https://doi.org/10.1007/s12524-022-01618-4
https://doi.org/10.1109/TAC.2010.2042234
https://doi.org/10.1016/j.cageo.2007.08.003
https://doi.org/10.1016/j.ecolmodel.2012.03.011
https://doi.org/10.1016/j.ecolmodel.2012.03.011
https://doi.org/10.1016/j.mcm.2010.11.017
https://doi.org/10.1016/j.mcm.2010.11.017

	Modeling the effects of land useland cover changes on water requirements of Urmia Lake basin using CA-Markov and NETWAT models
	Abstract
	Introduction
	Materials and methods
	Study area
	Data and software used
	Support vector machine-based classification
	Image classification accuracy
	CA–MARKOV model
	Land change modeler
	NETWAT model

	Results and discussion
	LULC variation
	Assessment of future LULC variation through the CA–Markov model
	Assessment of future water requirements through the NETWAT model

	Conclusion
	References




