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Abstract
Landslides are one of the most common and damaging geological hazards that constrain the urban planning and development 
of many cities in northern Algeria. Therefore, landslide susceptibility maps (LSMs) constitute an essential tool for effective 
hazard management and long-term development planning in landslide-prone areas. The aim of this work is to prepare and 
compare the LSMs by applying GIS-based statistical and machine learning models for the new city of Sidi Abdellah and 
surrounding areas (Northern Algeria). We implemented the statistical models of the frequency ratio (FR), statistical index 
(SI), and weights of evidence (WoE) models, and the machine learning models represented by a logistic regression (LR) 
model for landslide susceptibility prediction. An historical landslide inventory map was produced using the interpretation of 
Google Earth satellite images, available historical records, and geological field investigations. The obtained landslides were 
randomly divided into the training (70%) and validation (30%) processes. Furthermore, 12 influencing factors for landslide 
occurrence (including precipitation, slope, elevation, distance to drainage, aspect, land use, density of streams, distance to 
road, lithology, distance to fault, seismicity, and density of roads) were selected to prepare thematic maps and were considered 
for susceptibility analysis. Subsequently, landslide susceptibility assessment and mapping are performed by considering the 
inventoried landslide events and their related predisposing factors using LR, SI, WoE, and FR models in GIS. The accuracy 
of the four models was verified, validated, and compared using the area under curve (AUC) value of the Receiver Operating 
Characteristics Curves (ROC) method. The validation results showed that all the used statistical models provided a good 
accuracy in predicting landslide susceptibility than the machine learning models, with the SI model having a higher AUC 
value of 80.1% than the WoE (78.2%), FR (78.2%), and LR (64.2%) models. Based on these results, we conclude that the 
established maps can be used as useful tools for land use planning and risk reduction in the urban area of Sidi Abdellah.
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Introduction

Landslides are a major concern in northern Algeria due to 
the damage they cause to properties and infrastructure, as 
well as the loss of human lives. They affect many urban 
areas, constituting serious threats to the population and 
presenting a significant constraint to land use planning and 
development. Large casualties and huge economic losses 

from devastating landslides have been reported during 
recent decades in many Algerian cities, such as Constan-
tine, Azazga, Ain El Hammam, Tigzirt, Bejaia, and Algiers 
(Hadji et al. 2013; Guirous et al. 2014; Laribi et al. 2014; 
Bourenane et al. 2016; Djerbal et al. 2017; Hallal et al. 
2017). The impact of these landslides has been significantly 
increased and exacerbated by the following : (i) uncontrolled 
development of the built environment in landslide-prone 
areas; (ii) inappropriate planning and management; (iii) a 
lack of policy instruments; and (iv) insufficient understand-
ing about landslide hazards.

Actually, the natural hazards and risks resulting from 
landslide-prone areas remain unknown throughout the 
Algerian territory. Moreover, there seems to be too little 
consideration given to possible problems arising from bad 
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planning of land use and slope management. There are no 
strategic disaster risk reduction plans serving to manage and 
prevent landslide occurrences. The available urban planning 
instruments represented by both the Master Plan for Urban 
Planning and Development (PDAU) and the Land Use Plans 
(POS) did not consider and integrate natural hazards. As a 
result, many urban settlements grew in naturally hazardous 
areas. Consequently, it is essential to develop an accurate 
landslide susceptibility map (LSM) for disaster prediction 
and management in such a landslide-prone area.

This article attempts to consider the challenges of land-
slide hazards in land use planning to initiate durable policies 
and legislation for mitigation and prevention purposes. The 
LSM contributes to the risk mitigation and management pol-
icy for sustainable urban planning and territory development 
in areas prone to slides. Thus, identifying landslide suscep-
tibility in the urban zone is the first step in any approach 
intended to reduce the landslides risk. The LSM gives an 
essential location of where future mass movements will 
probably occur based on the identification of zones of past 
landslide occurrences and areas where comparable physi-
cal properties exist. This procedure, known as "landslide 
susceptibility zoning" plays a vital role in the regulation, 
management, and measures for the reduction of the risks 
related to identified and potential future landslides.

A number of methods have been developed and applied 
in the literature for the spatial prediction of landslide sus-
ceptibility. Heuristic, deterministic, statistical models, and 
machine learning are the four primary categories of these 
methods (Guzzetti et al. 1999; Lee and Min 2001; Lee and 
Pradhan 2007; Yalcin 2008; Yilmaz 2009; Pradhan and 
Lee 2010a, 2010b; Pradhan and Youssef 2010; Tien Bui 
et al. 2011; Ozdemir and Altural 2012; Pourghasemi et al. 
2013; Bourenane et al. 2016; Xiao et al. 2019; Merghadi 
et al. 2020; Huang et al. 2020; Zhou et al. 2021; Huang et al. 
2022).

Deterministic approaches appropriate at a small scale, 
such as versant or catchment, are specifically used to provide 
early warning of imminent slope failure and deal with math-
ematical modeling (Goetz et al. 2015). The used physical-
based models (such as the infinite slope model) need large 
quantities of detailed data on the slope failure at site-specific 
locations to give reliable results.

The heuristic method is a direct subjective approach 
based on expert knowledge (subjective decision rules) to 
perform a qualitative LSM (Guzzetti et al. 1999; Thiery 
et al. 2007). The Multicriteria, Fuzzy Logic, and Boolean 
Logic evaluation models for landslide mapping correspond 
to this research type (Zhou et al. 2003).

The statistical method is a quantitative method that is 
based on statistical relationships between landslide-con-
trolling factors and the landslide distribution. They have 
been developed to reduce the subjectivity in qualitative 

expert analysis. The central idea underlying the quantita-
tive approaches is that the causative factors of future land-
slides are the same as those imposed in the past (Guzzetti 
et al. 1999). During the past decades, statistical techniques 
have yielded entirely satisfactory results and are, conse-
quently, regarded as more objective and more appropriate 
for landslide susceptibility mapping at medium (1:50,000, 
1:25,000) and large scales (1:10,000) because of their abil-
ity to reduce errors initiated by expert subjectivity (Bon-
ham-Carter et al. 1989; Van Westen et al. 1997; Lee and 
Min 2001; Thiery et al. 2007; Lee and Pradhan 2007; Yal-
cin, 2008; Yilmaz 2009; Pradhan and Lee 2010a, 2010b; 
Pradhan and Youssef 2010; Tien Bui et al. 2011; Park 
et al. 2013; Ozdemir and Altural 2012; Pourghasemi et al. 
2013; Regmi et al. 2014; Nourani et al. 2014; Goetz et al. 
2015; Bourenane et al. 2016; Xiao et al. 2019; Merghadi 
et al. 2020; Huang et al. 2020; Zhou et al. 2021; Huang 
et al. 2022). The statistical methods include bivariate (fre-
quency ratio, statistical index, and weights of evidence) 
and multivariate (logistic regression and discriminant 
analysis) approaches which were developed for landslide 
susceptibility mapping.

Machine learning models have been demonstrated to 
be a distinct elucidation for dealing with large-data spatial 
analysis when statistical rules are unreliable and the variety 
of hypothesized understandings of a problem is incomplete 
(Merghadi et al. 2020). They treat a large range of variable-
scale input data without any obligation to pre-existing data 
structures (e.g., variable transformation or normal distribu-
tion). Several machine learning models, including logistic 
regression, artificial neural networks, fuzzy inference sys-
tems, and decision trees, have been developed for landslide 
susceptibility modeling (Yesilnacar and Topal 2005; Yilmaz 
2009; Pradhan and Lee 2010b; Nourani et al. 2014; Goetz 
et al. 2015; Merghadi et al. 2020; Xiao et al. 2019; Merghadi 
et al. 2020; Huang et al. 2020; Zhou et al. 2021; Huang et al. 
2020).

The spatial prediction of landslide susceptibility using sta-
tistical approaches and machine learning supported by GIS 
has gained popularity and become a major topic of research 
in the last decade, particularly when dealing with the chal-
lenge of landslide susceptibility evaluation at large scales 
(1:10,000), in which sufficient geotechnical input data is 
provided. Most of the progress has been made on producing 
susceptibility maps at the regional- (1:100,000–1:50,000) 
and medium-scale (1:50,000–1:25,000). A limited number 
of studies on the effectiveness of these methods have been 
done at a scale of 1:10,000, which is the scale at which most 
regulatory landslide hazard and risk maps are produced. A 
limited number of studies on the effectiveness of these meth-
ods have been done at a scale of 1:10,000, which is the scale 
at which most regulatory landslide hazard and risk maps are 
produced.
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The statistical index, the artificial neural network, the cer-
tainty factor, the frequency ratio, and the logistic regression 
models are the most efficient and reliable methods around 
the world when compared to physical ones, which require 
multiple simulations to prepare susceptibility outputs by 
finding specific geotechnical parameters (Yilmaz 2009; 
Pradhan and Lee 2010a, 2010b; Park et al. 2013; Nourani 
et al. 2014; Pradhan and Youssef 2010; Tien Bui et al. 2011; 
Ozdemir and Altural 2012; Nourani et al. 2014; Regmi et al. 
2014; Bourenane et al. 2016). These methods, meanwhile, 
are expensive, site-specific, and largely rely on deep knowl-
edge of geology and geomorphology. They do, though, have 
some limitations due to the difficulty in understanding the 
final output of the black box models and their prediction 
accuracy in the presence of limited training data sets.

The abovementioned study revealed numerous tech-
niques for improving landslide susceptibility models, 
including data-related methods and others that focus on the 
model development and training process. This work aims 
to develop a reproducible methodology for validation and 
comparison of LSMs by applying GIS-based statistical and 
machine learning models in the case of the new city of Sidi 
Abdellah (Northern Algeria). This research is part of a larger 
thematic approach that focuses on a better understanding of 
landslide susceptibility as well as a technique for assessing 
and mapping landslide susceptibility at a large scale. This 
work completes prior research on the prediction of landslides 
at a large scale, allowing scientists to get a better knowledge 
of the spatial variation of landslide hazard in the urban area 
of Sidi Abdellah. The results can be used as guidelines for 
land use and development planning and provide useful guid-
ance for reducing landslide hazards. The final objective of 
this work was to verify whether the statistical and machine 
learning approaches produce satisfactory performances that 
could be implemented in the Algerian context for landslide 
susceptibility mapping, and more commonly in other areas 
exposed to the same threat.

Study area characteristics

The new city of Sidi Abdellah, a western extension of 
the city of Algiers, the capital city of Algeria, is the new 
attractive urban pole of Algiers. The study area, defined by 
its geographical coordinates of 36° 37′ 39" N to 36° 42′ 
18" N in latitude and 2° 48′ 49" E to 2° 55′ 53" E in lon-
gitude (WGS 1984 and UTM Zone 31 North), is located 
25 km south-west of the city of Algiers in northern Alge-
ria (Fig. 1a, b). The city is extended over the territories of 
five municipalities (Fig. 1c): Douera, Mahelma, Rahmania, 
Souidania, and Zeralda. It is planned to carry out a very 
large housing program of 30,000 housing units and the crea-
tion of an important concentration of investment as well as 

government institutions (Master Plan 2003). The study area 
corresponds to the urban extent designated by the master 
city plan (PDAU), which covers a surface area of 31 km2 
(Fig. 1c).

The Sidi Abdellah province is susceptible to progressive 
landslides due to its geomorphic, geologic, and climatic 
characteristics and human activities. Landslides, in fact, pose 
a substantial impediment to the city's development and urban 
planning. The national and local governments are aware of 
the gravity of landslide prevention and management.

In terms of geomorphology, the Sidi Abdellah region 
is a part of the Sahel, an active faulted anticline structure 
limiting the quaternary Mitidja basin from the north. It is 
formed by plio-quaternary deposits extending along the 
Algiers coast (Meghraoui 1988). Sidi Abdellah city is a hilly 
area located on the foothills of the Sahel ridge, where the 
altitude ranges between 100 and 400 m. It is crossed by an 
expected branch of the Sahel active fault (Harbi et al. 2004; 
Meghraoui 1988; Moulouel et al. 2020).

Geologically, the Sidi Abdellah region exhibits meta-
morphic rock outcrops surrounded by Neogene and Qua-
ternary deposits of the Sahel anticline and the Mitidja basin 
(Fig. 2a). In terms of structural geology, the Sidi Abdel-
lah region belongs to the internal zones of the Maghrebian 
chain. The lithology consists of two geological formations 
(Fig. 2b) as follows: (i) the Pliocene deposits formed by Plai-
sancian marls, Astien limestone, and sandstone; and (ii) the 
Quaternary deposits formed by the consolidated dunes and 
alluvial terraces. The Plaisancian marl formations, covering 
a large surface of the urban area, are very sensitive to the 
presence of water and have average-to-high plasticity, which 
favors landslide occurrence.

The hydrographic network is dense with high slopes 
(> 20%), represented to the north by the Bou Hayek, Erreba, 
and Sidi Bennour waterways, and Sidi Harrache, Larhat, 
El-Aggar, Eddalia, and Mahelma waterways to the south. 
These main waterways have a semi-permanent flow that are 
associated with affluent waterways having a temporary flow 
(Fig. 1c).

The Sidi Abdellah area belongs to the Mediterranean cli-
mate type, with a dry period from June to September and a 
rainy season from October to April. The intensity and fre-
quency of precipitation are concentrated in a short period 
during the rainy season (November to February), which 
represents about 50–60% of the yearly precipitation. High 
rates of rainfall (600 to 800 mm/yr) and heavy storms dur-
ing the winter and autumn seasons lead to the occurrence 
of landslides.

Sidi Abdellah city is characterized by high human activ-
ity and intense economic, scientific, and social infrastruc-
ture, as well as a high population density. Human activities 
evolved as a result of historical settlement on the Sidi Abdel-
lah slopes, resulting in significant morphological change 
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and modification of soil stability conditions (deforestation, 
extensive clear-cut logging, and vegetation removal) with-
out taking geological and geomorphological constraints into 
account. The continuous development of the urban area in 
the northern and southern parts of the city with inappropri-
ate land-use practices is the main factor contributing to the 
increasing frequency of landslides.

Methodology

For the purpose of this research, the adopted methodology 
includes five steps that can be adapted to work with any 
modeling for landslide susceptibility studies (Fig. 3): (1) 
data collection and development of a spatial database based 
on GIS; (2) landslide inventory mapping (3) identification 
and mapping of landslide conditioning factors; (4) landslide 
susceptibility modeling and mapping using three statistical 
models and one machine learning model based on Geo-
graphic Information System (GIS); and (5) validation and 
comparison of the four used models after verification of the 
obtained LSMs using ROC Curves and statistical rules.

Data acquisition and spatial database construction

The first and main step in landslide susceptibility mapping 
is the data gathering and construction of the spatial database 
where the pertinent landslides and causative factors have 
been considered. The mapping of landslide susceptibility 
depends both on event landslide data and event-controlling 
factor information. The quality of LSM depends on the 
amount and quality of the used data.

In the present work, the data were gathered from various 
sources and have been used to construct thematic layers. 
The type and source of data used in this work are presented 
in detail in Table 1. Initially, the landslide inventory map is 
elaborated based on the exploration of Google Earth satel-
lite images, which are confirmed and completed by field 
investigation. Furthermore, 12 landslide predisposing fac-
tors, including the slope, altitude, distance to drainage, 
aspect, land use, distance to road, lithology, precipitation, 
distance to fault, density of roads, seismicity, and density 
of streams, have been extracted from satellite images, geo-
logic maps, the Digital Elevation Model (DEM), and a pre-
cipitation map. ArcGIS (v10.2) software tools were used 

Fig. 1   Geographical localiza-
tion of Sidi Abdellah city: a 
geographical location in North 
Algeria; b administrative limit 
of the Sidi Abdellah municipal-
ity; c the Sidi Abdellah urban 
zone perimeter
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Fig. 2   Geological setting of the Sidi Abdellah locality: a Geological framework of the Mitidja basin with active faults affecting the Mitidja 
basins (Aymé 1954); b the locations of the Mahelma and Sahel active faults
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to georeference layers, apply coordinate systems and data, 
visualize, extract, and geoprocess raster datasets. The data 
were all georeferenced using Algeria's national projection 
system (UTM Zone 31 North and WGS 1984).

Landslide inventory mapping

The historical landslide inventory constitutes an impera-
tive basic step in landslide susceptibility assessment, prin-
cipally when a probability modeling approach is adopted. 
The landslide inventory map of the Sidi Abdellah urban 
area was elaborated from a combination of the following 
steps (Table 1): (i) the analysis and interpretation of Google 
Earth Pro® satellite images with a spatial resolution of 
15 m from 2003 to 2018; (ii) available historical records 

(landslide reports, newspaper records, thesis, master plans) 
verified, validated, and completed by (iii) geological field-
work investigations (between 2015 and 2020). The verifica-
tion procedure not only provides clear evidence of landslide 
occurrence but also evidence of the landslide characteristics, 
as well as estimates of the triggering mechanism, landslide 
depth, type classification, and identification of conditioning 
factors.

The landslides were defined by the tension fractures, 
headscarf, bulges, grab ends, undrained depressions, and 
lobes. Figure 4 depicts cases of recent observations of vari-
ous types of landslides observed in the Sidi Abdellah urban 
area. Figure 5 shows the spatial distribution of landslides as 
well as their characteristics, such as size (area, perimeter, 
and failure depth), geological discontinuities and tension 

Fig. 3   Methodological flow 
chart for landslide susceptibility 
mapping

Table 1   Database used in the landslide susceptibility assessment

Data layers Map Source

Geomorphology Landslide inventory map Landslide inventory database, satellite images of Google Earth and extensive field surveys
Relief Slope gradient map Digital elevation model DEM (5-m resolution) obtained by interpolation of elevation points of 

topographic map at scale of 1:2000 from VNSA (ville nouvelle de Sidi- Abdelah 2019)Aspect Map
Altitude map

Geology Lithological map Digitization of the published geological map at a scale of 1:50,000 by the National Office of Geo-
logical and Mining Research (ORGM, 1997) and geological field investigationDistance to faults map

Hydrology Precipitation map Precipitation database from local meteorological stations of the National Agency of Meteorology 
and Hydrology (ANRH 2005) located in the vicinity of the study area has been used to create a 
mean annual precipitation map by using Kriging interpolation in Arc-GIS (10.2) software tools

Distance to stream map Published available documents, Google Earth satellite Imagery, topographic map (1:20,000), 
and extensive field surveys. The distance to stream map and stream density were prepared from 
the drainage map using line density and buffer analysis in ArcGIS software environment. The 
distance to road map and road density were prepared from the road map using line density and 
buffer analysis in ArcGIS software environment

Stream density map
Land use Land use map
Anthropy Distance to road map

Road density map
Seism Acceleration map Seismic hazard study from the National Center of Research in Earthquake Engineering (CGS 2009)
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cracks, involved lithology, degree of development, human 
activity, average slope angle, land cover, and geotechnical 
features. The landslide perimeter covers approximately an 
area of 0.5229 km2 (522.9 ha), which represents 2% of the 
total perimeter of the urban area. The mapped landslides 
are defined by different surfaces ranging from 800 m2 to 
approximately 58,800 m2. A diverse variety of failure types, 
movement rates, and triggering factors are observed across 
the locale visits.

According to Varnes (1978), the mapped landslides can 
be divided into rotational and translational slides (99.5%) 
and falls (0.5%). For the purpose of determining landslide 
susceptibility, the landslide inventory map was divided at 
random into the following two portions: 30% for validation 
procedures and 70% for training or testing landslide models. 
It is suggested that the higher of the training and validation 
dataset ratio would improve and increase the accuracy of the 
testing accuracy.

Landslide predisposing factors

Landslides may manifest as a result of a combination of 
a number of factors that can be classified into the follow-
ing two groups: (i) predisposing factors such as lithology, 
hydrology, land use, topography, and human activity (e.g., 
railway or road openings, excavation, etc.); and (ii) trigger-
ing factors such as earthquakes and rainfall. The assessment 
of landslide susceptibility is based on a comparison of the 
landslide-conditioning factor maps and the landslide inven-
tory maps. The results are then extended across the entire 
investigated region, providing a final LSM output. Moreo-
ver, the landslide predisposing factors data must be selected 
based on landslide type, case study area characteristics, and 
dataset availability.

In this case study, 12
landslide predisposing factors (Fig. 6), including aspect, 

slope, landuse, altitude, lithology, seismicity, distance to a 
drainage network, precipitation, distance to a fault, distance 
to a road network, density of roads, and density of streams 
have been identified, analyzed, and considered for establish-
ing LSMs using GIS statistical and machine learning-based 
models. Table 1 indicates the details of the source of the 
obtained and prepared versions of each landslide condition-
ing factor. Because of the non-uniform distribution of factors 
with dependent variables (e.g., altitude, slope angle, etc.), 
an autonomous reclassification method was used to produce 
classified data (i.e., data with class intervals and a number of 
classes). The classification of factors containing categorical 
and nominal data (e.g., lithology, stratigraphy, etc.) is the 
same as that supplied in the source data.

In order to facilitate easy raster calculation, the 
thematic layers have been sampled at a grid size of 
10  m × 10  m using GIS technology. The selection of 

significant landslide conditioning factors is essential to 
evaluating the contributions of all factors to landslide 
occurrence. The feature selection of significant factors is 
performed based on the Spearman rank correlation coeffi-
cient (SRCC) method, which evaluates the contribution of 
factors by measuring Pearson’s correlation between classes 
and factors.

In Spatial Analyst Tools from ArcGIS, a grid was used 
to compute the density in each class for each factor based 
on field data and the relationship of each factor related to 
each type of landslide. Figure 7 depicts the influence and 
density of landslides in each factor class.

The significance of landslide predisposing factors

One of the goal procedures in the landslide susceptibility 
assessment is the evaluation of the importance or influence 
of the predisposing factors as a result of the limitation of 
the mutual influence among those factors in developing the 
state of a landslide. Causal factor selection aims to reduce 
redundancy in predictor variables and save computation time 
when some of them are obtained through statistical analy-
ses or reclassification on the same inputs. The redundancy 
in landslide susceptibility assessment can be caused by the 
existence of a linear correlation between some independent 
factors. This phenomenon, known as multicollinearity, can 
lead to false modeling by analyzing false datasets. Some 
factors that are insignificant to the occurrence of landslides 
should be removed to reduce noise and transition fitting 
issues, thereby improving the model's prediction accuracy. 
The Spearman rank correlation coefficient (SRCC) is fre-
quently used to assess the contribution or influence factors to 
landslide occurrence with strong predictive ability in land-
slide susceptibility assessment to eliminate redundant fea-
tures and reduce noises (Rodgers et al. 1988). Increasing the 
SRCC values indicates that the causal factor has a significant 
impact on the landslide model, and vice versa. In this study, 
we perform a correlation matrix based on SRCC, allowing 
us to quantify and detect multicollinearity in order to reduce 
it and optimize the results. The SRCC is defined as Eq. 1:

where cov(R(X),R(Y)) is the covariance of the two vari-
ables, the�R(X)and�R(Y), the standard deviations of the two 
variables, whereas μR(X) and μR(Y) are the mean values 
of the two variables. The absolute value of SRCC ranges 
from 0 to 1, whereas 0 corresponds to a weak linear correla-
tion (complete absence of multicollinearity (presence of a 
problematic multicollinearity) and 1 corresponds to a strong 
linear correlation (complete absence of multicollinearity).

(1)

SRCCX,Y =
cov(R(X),R(Y))

�R(X)�R(Y)
=

E((R(X) − μR(X))((R(Y) − μR(Y)

�R(X)�R(Y)
,
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Landslide susceptibility modelling and mapping

The landslide susceptibility assessment in the study area 
was carried out using statistical and machine learning 
models such as FR, SI, WoE, and LR with the help of 
GIS techniques for the generation of LSMs. These models 
are usually used in geosciences, particularly in landslide 
susceptibility and hazard assessment, and are based on a 
statistical correlation between the landslide repartition and 
causal factors. The correlation is described by the equa-
tions of the mentioned models to determine the weighting 
factor values (Landslide Susceptibility Index, LSI) of each 
factor in order to produce the final LSMs. The resultant 
maps were categorized by dividing the weight value by 
two (LSI), mainly into five separate classes: very high, 
high, moderate, low, and very low susceptibility. Various 
methods have been developed in the literature for rank-
ing weight values into susceptibility classes, including the 
equal interval method standard, the deviation method, and 
the natural break method.

Frequency ratio (FR) model

The FR model (Lee and Min 2001) analyses the spatial 
probability of landslide occurrence based on the relation-
ship between the distribution of mass movements and their 
landslide conditioning factors. It expresses the relationship 
between the landslides in the class of landslide factors 
and the area in the class. The FR is defined as the ratio 
between the percentage of landslides in a given class and 
the percentage of the area in the same class:

where FR is the frequency ratio, L spix is a landslide pixel in 
a factor class. A pix is the total pixel area of the class in the 
study area. A value of the FR ratio greater than 1 denotes a 
high correlation, whereas a value of the FR ratio less than 1 
denotes a weaker correlation.

After calculating the FR for each factor using Microsoft 
Excel under GIS, the FR value for each class of each fac-
tor was attributed by the joint in the ArcGIS tool. Then, 
by using the Spatial Analysis Search Tool, the weight-
ing landslide factors were rasterized. Afterwards, the 

(2)FR =
(Landslidepixelclass

Areapixelclass

)

=
(%of landslidearea

%of totalearea

)

Landslide Susceptibility Index (LSI) is calculated by 
summation the frequency ratio of all factors as specified 
in Eq. (3):

where LSI is the landslide susceptibility index, FR is the 
frequency ratio of each class i of factor j.

Following the calculation of the LSI, the index values 
were ranked into different landslide susceptibility classes 
in order to establish the final LSM using the standard devi-
ation method in the ArcGIS tool.

Statistical index (SI) model

The statistical index method is a bivariate statistical analy-
sis proposed by Van Westen (1997) based on a statistical 
relationship between the distribution of landslide areas 
and the predisposing factors. A weight value SI for each 
categorical factor is defined as the natural logarithm of the 
landslide density in the categorical class divided by the 
landslide density in the total area of the factor, as shown 
in Eq. (4) (Van Westen 1997):

where SIij is the weight of a class i of factor j; In is the natu-
ral logarithm used to consider the variation of the weights; 
Lij is the landslide density in the class i of factor j and L is 
the landslide density in the entire map of factor. When the 
SI is < 0.1, there is a low relationship between landslide and 
factors indicating a low probability of landslide occurrence. 
When the SI is > 0.1, this implies a high probability of land-
slide occurrence because the correlation between the factor 
and the landslide occurrences is high.

After the calculation and rasterization of the weighted 
SI for each class of each factor using Microsoft Excel and 
the GIS tool, the landslide susceptibility index (LSI) of the 
study area is calculated as in Eq. (5):

where LSI is the landslide susceptibility index, SI is the 
weighted SI of class i of factor j.

Where LSI and SI represent the landslide susceptibility 
index and the statistical index for each factor, respectively. 
A higher value of LSI, defines the higher probability of 
landslide occurrence. Following the calculation of the LSI, 
the index values were divided into different landslide sus-
ceptibility classes in order to establish the final LSM in the 
ArcGIS tool using the standard deviation method.

(3)LSIFR =
∑n

i=1
FRij

(4)SIij = In

(

Densclass

Densmap

)

= In(
Lij

L
)

(5)LSISI =
∑n

i=1
SIij

Fig. 4   Types of observed landslides in the study area include: a, 
b landslides in the marly slopes at the south-west of Mahelma; c, 
d landslides in the marly slopes that caused damage to roads in the 
south of Rahmania; e Rupture of a sandy-clayey slope following a 
recent landslide at Sidi Bennour; f Intense ravine in a sandy-clayey 
slope, western Mahelma entrance

◂
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Weights of evidence (WoE) model

The WoE is a bivariate statistical method (Bonham-Carter 
et al. 1989) based on the log-linear form of the Bayesian 
probability model to estimate the posterior and prior prob-
ability (P) of landslide occurrence. The WoE model evalu-
ates the spatial correlation between the landslide distribution 
(L) and the predisposing factors (B) within the area, based on 
the absence or presence of landslides (L) in the classes of a 
factor and in the form of positive (W +) and negative (W−) 
weights as follows (Bonham-Carter et al. 1989):

where ln is the natural logarithm (logit) used in order to esti-
mate the conditional probability of landslide occurrence. P 
is the probability of the ratio, B is the predictive factor, and L 
is the landslide. The overbar sign "¯" represents the absence 
of the class and/or landslide or predictive factor. The weights 
W+ and W− weights represent the negative and positive rela-
tionships between the occurrence of landslides and the pres-
ence of landslide predisposing factors, respectively.

The weight contrast WC represents the difference 
between the positive and negative weights for each class of 
each parameter analyzed:

The contrast magnitude WC indicates the overall spatial 
relationship between the landslides and predicted variables. 

(6)W+ = In
P(B∕L)

P(B∕L)

(7)W− = In
P(B∕L)

P(B∕L)

(8)WC = W+ −W−

The WC value is generally between 0 and 2. When the WC 
value tends to zero, the presence of the parameter under 
consideration does not affect the occurrence of landslides 
in the area; whereas, when WC is close to two or more, the 
relationship is important.

In this work, after estimation and rasterization of the 
WC for each class of factors through the ArcGIS tool, the 
landslide susceptibility index (LSI) is calculated using the 
lookup tool in the spatial analysis as in Eq. (8):

where WC and LSI represent the contrast magnitude and 
the landslide susceptibility index for class i of factor j 
respectively.

After calculation of the LSI, the index values were hier-
archized into different susceptibility classes to generate the 
final LSM using the standard deviation method in the Arc-
GIS tool.

Binary logistic regression (LR) model

Logistic regression is one of the leading and most popular 
machine learning algorithms emerging in the field of sta-
tistics. The LR model, also known as the generalized linear 
model, is the most commonly used machine learning model 
in LSM due to its simple model design. Since 2000, there 
has been an increase in the number of research projects that 
apply LR in LSM, which coincides with the increased avail-
ability of high-resolution DEMs, developments in GIS plat-
forms, and improved processing capacity.

LR is a specific sort of generalized linear model designed 
to produce a binary form of outcome. It is a parametric 
model that is often used to anticipate answers to classifica-
tion problems using the concept of probability. The abil-
ity to identify an adequate fitting function to represent the 
non-linear relationship between the absence or presence of 
landslides and a collection of landslide conditioning fac-
tor data with essentially no "hyper-parameters" to tune in 
makes LR perfect for creating baseline models in predictive 
analysis. The ability to identify an adequate fitting function 
to represent the non-linear relationship between the absence 
or presence of landslides and a collection of landslide con-
ditioning factor data with essentially no "hyper-parameters" 
to tune in makes LR perfect for creating baseline models in 
predictive analysis.

Moreover, Lani (2007) highlighted that in order to obtain 
precise LSM using an LR model, the following hypotheses 
must be satisfied: (i) The dependent variable must have a 
binary value; (ii) The number of duplicates in the input data-
set should be maintained to a minimum; (iii) There should be 
little or no multicollinearity between the conditioning factors; 

(9)LSIWC =
∑n

i=1
WCij

Fig. 5   The detailed landslide inventory map of the Sidi Abdellah 
zone
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Fig. 6   Landslide predisposing factors in the Sidi Abdallah: a precipi-
tation map; b lithological map; c slope angle map; d aspect map; e 
altitude map f Land use map, g Distance to rivers map; h Distance to 

faults; i Distance to roads map; j Stream density map; k Roads den-
sity map; and l Acceleration map
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(iv) The conditioning factors and odds log should be in linear 
form; and (v) There should be a large sample size available.

The LR allows for the evaluation of a multivariate regres-
sion correlation between a dependent (landslides) and an inde-
pendent (landslide causative factors) variable (Lee and Prad-
han 2007). In the LR model, the dependent variable is a binary 
variable that represents the absence (0) or presence (1) of a 
landslide; however, the independent variables can be continu-
ous, discrete, dichotomous, or any combination of these. The 
LR model evaluates the probability (P) of landslide occurrence 
as a nonlinear dependency between the landslide occurrence 
(dependent) and the causative factor (independent) variables 
as expressed in Eq. (10) (Lee and Pradhan 2007) as follows:

where Pr is the probability of landslide occurrence, within 
the range (0 to 1) on an S-shaped curve; z represents the lin-
ear combination described by Eq. (10) which value ranges 
from—∞ to + ∞:

(10)Pr =
(

1

1 + e−z

)

,

(11)Z = b0 + b1X1 + b2X2 + b3X3 +⋯ + bnXn

where b0 is the intercept of the LR model, b2, b3, and bn, are 
the slope coefficients and, X1, X2, X3, and Xn are the inde-
pendent variables of the logistic regression model.

Model validation

The receiver operating characteristics (ROC) and statistical 
rules for spatially effective LSMs are the most available, 
valuable, and helpful approaches utilized in the literature 
to define the performance and quality of LSMs. The accu-
racy of the produced LSMs and the validity of the models 
were determined by comparing known landslide data with 
the LSMs (Chung and Fabbri, 2003; Yesilnacar and Topal 
2005). The performance or accuracy as well as the validation 
process of the models and the produced LSMs were evalu-
ated by comparing the known landslide location data with 
the obtained LSMs.

Validation of LSMs using ROC curve

The ROC prediction curve is one of the statistical methods 
that can be used to predict performance and accuracy as well 
as compare different models (Yesilnacar and Topal 2005). 

Fig. 6   (continued)
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Fig. 7   Density and percent-
age of landslides in each factor 
class: a Precipitation, b Lithol-
ogy, c Land use, d Aspect, 
e Altitude, f Slope angle, g 
Distance to faults, h Distance 
to roads, i Distance to rivers, j 
Stream density, k Roads density, 
and l Acceleration (g)
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The ROC curve is a graph based on the “1 − specificity” as 
the x-axis and “sensitivity” as the y-axis. These statistical 
parameters of the ROC curve can be estimated using the 
following formulae (Sahana et al. 2020):

The value of area under the curve (AUC) is used to assess 
a forecast system's efficiency by defining the system's ability 
to accurately predict the non-occurrence or occurrence of 
a landslide (Chung and Fabbri 2003; Yesilnacar and Topal 
2005). The AUC value of the ROC and associated perfor-
mance model can be rated as follows (Yesilnacar and Topal 
2005): 0.5–0.6 (poor performance), 0.6–0.7 (moderate per-
formance), 0.7–0.8 (good performance), 0.8–0.9 (very good 
performance), and 0.9–1 (excellent performance).

Validation of LSMs using statistical rules

The accuracy of the LSMs can also be evaluated using two 
statistical rules for spatially effective LSMs (Pradhan and 
Lee 2010a) as follows: (i) percentage of landslides increased 
with the degree of susceptibility, where the smaller num-
ber of landslides were distributed in the low and very low 
susceptibility classes, and the higher number of landslides 
were distributed in the high susceptibility class of the LSMs, 
and (ii) the high susceptibility class should cover only small 
areas.

(12)Sensitivity =
TP

TP + FN

(13)Speicif icity =
TP

TP + FN

(14)AUC =

∑

TP +
∑

TN

P + N

Results

Significant landslide conditioning factors 
assessment

Using training data, the correlation between the 12 predis-
posing factors is performed based on the SRCC. The cor-
relation matrix (Table 2) depicts the results of the average 
SRCC values, which indicated the predictive capability of 
landslide predisposing factors. These results suggest that the 
distance to drainage and the precipitation (SRCC = 0.80), the 
distance to drainage and the elevation (SRCC = 0.70), and 
the distance to drainage and the slope (SRCC = 0.53), were 
highly correlated, with the absolute SRCC values greater 
than 0.5. This indicates that the paired landslide influence 
factors may have included redundant data. To investigate 
whether such highly correlated landslide influence factors 
would affect the performance of the landslide susceptibil-
ity assessment models, these paired influences were first 
removed separately and then simultaneously.

Landslide susceptibility mapping

LSM generated by the FR model

Using the training data, in the study area, the frequency 
ratios of each class of predictive factor were calculated using 
Eq. (2), and the results are indicated in Table 3. Then the 
FR of each factor class was summed to obtain the landslide 
susceptibility index (LSI) using Eq. (3) in the GIS environ-
ment, which varied from 2.444 to 19.080. Due to the normal 
distribution of LSI values, the standard deviation method is 
appropriate and is used for dividing the weight values of LSI 
into classes. In this case, the mean value of LSI is used to 
determine the classes and permits us to divide the result into 

Table 2   Correlation matrix of the independent landslide conditioning factors

PRE SLO ELE DD ASP LAN DS DR LIT DF ACC​ DOR

Precipitation (PRE) 1
Slope (SLO) 0.04 1
Elevation (ELE) − 0.02 0.04 1
Distance to drainage (DD) 0.80 0.53 0.70 1
Aspect (ASP) − 0.01 0.02 0.00 0.02 1
Landuse (LAN) 0.18 0.13 0.05 0.18 − 0.03 1
Density of streams (DS) 0.11 − 0.16 − 0.1 − 0.80 − 0.07 − 0.20 1
Distance to road (DR) − 0.04 0.08 − 0.01 0.15 − 0.01 0.03 − 0.18 1
Lithology (LIT) 0.34 0.23 0.02 − 0.32 − 0.01 0.30 0.32 0.08 1
Distance to fault (DF) 0.31 0.16 − 0.04 0.14 − 0.02 0.22 0.14 − 0.04 0.37 1
Acceleration (ACC) 0.41 0.21 − 0.14 0.21 − 0.12 0.33 0.21 0.02 0.37 0.48 1
Density of roads (DOR) − 0.07 − 0.10 − 0.02 − 0.13 0.01 − 0.02 − 0.13 − 0.50 − 0.05 0.04 − 0.05 1
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five  classes by subtracting or adding one  standard deviation 
at a time. The five susceptibility classes with the LSI val-
ues are as follows: very low susceptibility (2.444 to 5.345), 
low susceptibility (5.345 to 7.790), moderate susceptibility 
(7.790 to 11), high susceptibility (11 to 12.8), and very high 
susceptibility (12.8 to 19.08). Figure 8 displays the obtained 
landslide susceptibility map.

Table 3 shows that the slope angle is highly related to 
the forces involved. The 30–40° slope class has the highest 
value of FR (6,850). The lithological characteristics of the 
urban area represent a significant factor in landslide occur-
rence. The Plaisancian marl and clay units were found to be 
more susceptible and exhibited higher frequency ratio values 
(1,485). The north direction is the most exposed to land-
slides, and the landslide occurrence increased in degraded 
vegetation areas (FR value of 1,859 in bare land). Other 
influencing factors with a high probability of sliding occur-
rence are the distance to rivers (distances between 0 and 
100 m) and the road proximity (high values for distances 
between 200 and 300 m), as well as the proximity to the 
fault. The higher FR values were also distributed in higher 
precipitation zones. This shows that landslide susceptibility 
increases with the quantity of precipitation. For road density, 
FR values indicate high values for moderate densities. How-
ever, for river density, the high values of FR are observed 
at low densities. Table 3 shows that higher FR values were 
distributed in areas of higher acceleration.

LSM generated by the SI model

The landslide density and the statistical index (SI) values of 
each parameter class calculated by using formula (4) of the 
SI model are presented in Table 3. Afterwards, all the results 
of the weighted values of all the layers were combined to 

calculate the landslide susceptibility index (LSI) according 
to Eq. (5).

The results obtained from the SI models are very com-
parable to those obtained from the FR models. The most 
important active factors have the strongest correlation with 
landslides. A slope angle of > 30° is the most susceptible 
area to landslides. Concerning lithology, the more suscep-
tible classes are the Plaisancian marl and clay formations. 
In terms of landuse, bare soil yields a high value of SI and 
is more susceptible to landslides. For the aspect parameter, 
the N, NE, and NW directions are the most susceptible to 
sliding. Landslides are becoming more common near rivers, 
faults, and roads. The earthquake and rainfall constitute the 
main triggering factors. Landslides were more susceptible 
in classes with high acceleration and precipitation than in 
others.

The LSI was ranked into the following five distinct sus-
ceptibility classes using the standard deviation method, 
where the mean value of the LSI was considered as the ref-
erence point, and then the—and + standard deviations of the 
distribution were used as the limits of the classes, which is 
valid for normal distributions (Fig. 9): very low (− 13.017 
to − 9.869), low (− 9.869 to − 6.096), moderate (− 6.096 
to − 1), high (− 1 to 1.6), and very high susceptibility (1.6 
to 4.98).

LSM generated by the WoE model

Thematic maps of the major landslide-causing factors 
were superimposed, integrated with the landslide inven-
tory map, and analyzed. We computed the weight contrast 
WC and the weights of evidence (WoE) probability values 
using Eqs. (6), (7), and (8) (Table 3). The chi-square val-
ues for each factor were calculated at the 95% significance 

Fig. 8   Landslide susceptibility map obtained using FR model

Fig. 9   Landslide susceptibility map obtained using SI model
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level and one degree of freedom in order to evaluate the 
conditional independence between all pairs of binary pat-
terns. Table 3 shows the implication of each factor in the 
occurrence of a landslide. The contrast C is positive for 
favorable factors for the landslide occurrence and negative 
for unfavorable factors for the landslide occurrence.

The results of the WoE susceptibility models show 
close similarity to the FR and SI models. They show that 
the most susceptible classes correspond to slope angles 
greater than 30°, a north slope aspect, Plaisancian geologi-
cal formations, high precipitation, and high acceleration, 
which proves the good correlation with landslide occur-
rence. Finally, we assigned weights to each thematic lay-
er's classes in order to generate weighted thematic maps. 
The thematic maps were then overlapped and numerically 
summed according to Eq. (15) in order to generate a land-
slide susceptibility index (LSI):

Where LSI is the landslide susceptibility index and WC is 
the weight contrast of each landslide factor class.

Consequently, the landslide susceptibility map of Sidi 
Abdellah city (Fig. 10) is prepared from the respective 
LSI values showing the following five categories of land-
slide susceptibility: very low (− 17.043 to − 12.902), low 
(− 12.902 to − 7.482), moderate (− 7.482 to 1), high (1 to 
5.5) and very high (5.5 to 19.02).

(15)

LSIWC =WC Slope + WC Aspect + WC Altitude

+ WC Fault + WC River + WC Precip

+ WC Landuse + WC Road + WC Road Density

+ WC River Density + WC Acceleration.

LSM generated by the LR model

Twelve conditioning factors and the presence or absence 
of landslides were converted into grid format and then 
into Excel data format files for use in the statistical pack-
age Real Statistics. The logistic regression model was run 
based on the percentage area of landslides in each factor to 
obtain the logistic regression coefficients. The coefficient 
of logistic regression for each controlling factor is pre-
sented in Table 3. The Hosmer and Lameshow tests exhib-
ited the accepted and reliable fit of the equation because 
the significance of the chi-square is greater than 0.05 
(17.420). A higher R-square value of Cox (0.75), Snell 
R2 (1), and Nagelkerke R2 (1) showed a better model. The 
ROC (Relative Operating Characteristic) value of 0.803 
indicates a good correlation between the independent and 
dependent variables.

Finally, the binary logistic regression model and their 
respective coefficients are given in the following Eq. (16):

According to Eq. (16), precipitation, acceleration, dis-
tance to roads, and density of streams indicate a negative 
relationship with the landslide occurrence in the study 
region. However, lithology, altitude, slope, land use, dis-
tance to streams, aspect, and distance to fault are posi-
tively related to the occurrence of a landslide. In addition, 
the ‘distance to fault’ parameter is the most effective in 
landslide occurrence.

The prediction of landslide occurrence in the study 
area was evaluated using the above logistic regression 
coefficients and according to Eq. (10). The probability 
ranges from 5.324*10–12 to 1. Based on the cumulative 
percentage of the observed slide occurrences against 
the probability index values, the subsequent LSM was 
obtained. The probability map has been divided into five 
susceptibility classes using the standard deviation method 
(Fig. 11) as follows: very low (1.474E−05–2.696E−05), 
l o w  ( 2 . 6 9 6 E − 0 5 – 6 . 3 5 E − 0 5 ) ,  m o d e r a t e 
(6.35E−05–6.59E−05), high (6.59E−05–6.642E−05) 
and very high (6.642E−05–6.698E−05). Based on the 
standard deviation method, the LSMs were classified into 

(16)

z − 9, 69727 − 0, 22610 ∗ Precipitation − 0, 65013

∗ Acceleration + 1, 04272 ∗ Lithology

+ 0, 32911 ∗ Altitude + 0, 19523 ∗ Slope

+ 1, 28285 ∗ Aspect + 1, 41045 ∗ Distance to Fault

+ 0, 89775 ∗ Land use + 0, 65039 ∗ Distance to streams

− 0, 020136 ∗ Distance to Roads

− 0, 041099 ∗ Density of Roads

− 0, 61289 ∗ Density of streams

Fig. 10   Landslide susceptibility map obtained using WoE model
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five classes because the data values obtained in the LSI 
indicated a normal distribution.

Validation and comparison of the LSMs

To validate the performance of the four used models, the 
landslide area was randomly divided into the following two 
categories: 30% for model validation and 70% for training, 
taking into account spatial allocation and using the random 
division technique. Comparing the landslide training pixels 
(30%) with the four LSMs yielded ROC curves in this study, 
and the area under the curves was calculated using Eqs. (12), 
(13), and (14). The AUC of the ROC curves is presented in 
Fig. 12 for the four applied models. The validation results 
showed that the SI model has a higher accuracy of prediction 
(AUC = 80.1%) than WoE (AUC = 78.2%), FR (AUC = 8%) 
and LR (AUC = 64.2%). According to these results, the 
used models presented almost good accuracy in predict-
ing the landslide susceptibility, except for the LR model, 
which shows a moderate accuracy of prediction. The results 
also offered a theoretical framework for the use of statisti-
cal methods (e.g., SI) in landslide prevention, mitigation, 
and urban planning so as to provide an adequate response 
to the increasing demand for effective and low-cost tools in 
landslide susceptibility assessments.

Fig. 11   Landslide susceptibility map obtained using LR model

Fig. 12   ROC curves and AUC 
for accuracy prediction of the 
used models (FR, SI, WoE and 
LR)
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For spatially effective LSMs, the obtained LSMs were 
also tested and confirmed using two rules (Pradhan and Lee 
2010a). Figure 13 demonstrates that all LSMs' high and very 
high susceptibility classes contain 82 to 88% of the active 
landslide zones, while the moderate zones contain 10 to 16% 
of the active landslide zones. Less than 1% of the active 
landslide zones in all LSMs are in the low and very low 
susceptibility zones. The statistics in Fig. 13 show that the 
percentages of landslides increase from classes with very 
low to very high susceptibility, with the high susceptibil-
ity class comprising only small areas. The acquired results 
showed clearly that the four commonly used statistical and 
machine learning models are very suitable for landslide sus-
ceptibility mapping.

A comparison between the obtained susceptibility maps 
using FR, SI, WoE, and LR models was performed. As 
shown in Fig. 14, the areas of the landslide susceptibility 
zones, ranging from very low to very high, were determined 
for each classifier. The LSM produced with the LR method 
contains 9% and 21% of the total area, which are designated 

to be of very low and low susceptibility, respectively. The 
area that falls into the categories of moderate, high, and 
extremely high susceptibility is divided into 44%, 13%, 
and 12%, respectively. The LSM obtained by using the FR 
model, which included 0.3% of the total area, is classified 
as having very low landslide susceptibility. Areas with low 
to very high vulnerability make up about 18%, 41%, 23%, 
and 17% of the entire area, respectively. The LSM produced 
by applying the SI shows that a significant majority of the 
susceptibility zones are in the high and very high levels, with 
24 and 17%, respectively, while the percentages of moderate, 
very low, and low susceptibility areas are 37%, 18%, and 2%, 
respectively. The LSM created with the WoE model, which 
involved 1% of the total urban area, is identified as hav-
ing very low landslide susceptibility. The low and moderate 
susceptibility classes take up 14% and 38% of the total area, 
respectively. The high and very high zone values are close 
to 28% and 18%, respectively (Fig. 14).

Discussion

Landslides are the most recurrent and progressive geologi-
cal hazards in many districts of Sidi Abdelah city, where the 
geomorphological, climatic, seismotectonic, and anthropo-
genic factors are most favorable. They pose severe threats to 
the planning and development of urban areas, which neces-
sitates conducting local landslide susceptibility mapping for 
effective risk management and long-term development plan-
ning in landslide-prone areas. However, providing a reliable 
spatial prediction of landslides is regarded as one of the most 
challenging aspects of landslide hazard and risk assessment. 
Despite the variety of methods used, their accuracy is still 
debated. In this study, we tackled this issue by assessing 
and comparing the performance of the four statistical and 
machine-learning models, including the SI, WoE, FR, and 
LR, for the spatial prediction of landslide susceptibility in 
the urban areas of Sidi-Abdelah.

The crucial point in landslide susceptibility modeling is 
the evaluation of the correlation between historical landslide 
events and causal factors based on the main concept that 
landslide occurrences in the past and present determine their 
occurrence in the future (Guzzetti et al. 1999). A landslide 
inventory map and many causative factors should be col-
lected in the first step. The statistical and machine learn-
ing models used are then tested and validated using the two 
training and testing datasets. The resulting models are then 
used to calculate the probability of a landslide's occurrence.

The FR and SI models are simple and easy to apply, and 
the obtained results are comprehensible. The results indicate 
the FR and SI models are very comparable and satisfac-
tory. It was found that, the highest values are observed in 
the classes of marl and clay, at (30–40°) of slope, on bare 

Fig. 13   Percentage of active landslide zones in each susceptibility 
classes

Fig. 14   The comparative distribution of different susceptibility 
classes in different landslide susceptibility maps
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land, in (600–700 mm) of precipitation at (0,34–0,36 g) of 
acceleration, at (0–100 m) of distance to streams, and at 
(100–200 m) of altitude (Table 3).

The WoE approach has numerous advantages over other 
statistical methods because it is data-driven and primarily 
employs the Bayesian probability model. It is a quantita-
tive (data-driven) technique used to combine datasets. The 
combination of elements that are associated with landslides 
suggests that the causal factors are conditionally independ-
ent of the landslides.

The LR approach is an alternative and appropriate theory 
that was used for the prediction of landslide susceptibility 
in the study area. The goal is to forecast the likelihood of a 
dichotomous event based on a set of variables that can be 
discrete, continuous, or both in combination. The regression 
coefficients and model statistics are frequently used in the 
model to calculate the accuracy and qualified importance of 
the causal factors. The obtained results from the LR model 
indicate that distance to faults, aspect, lithology, distance to 
roads, land use, and slope are the most important factors. 
The landslide susceptibility analysis performed for a rela-
tively large area (urban area) necessitates a large number of 
landslide pixels. Therefore, the accuracy of the LR model 
can be improved if additional landslide data is included in 
the analysis.

In general, the FR, SI, WoE, and LR models produced 
significantly better results than the other models in terms of 
overall classification accuracy. However, the FR model has 
more regularity in terms of negative and positive predictive 
values (Table 3). The choice of conditioning factors, which 
is an important aspect influencing the quality of landslide 
susceptibility models, is carried out based on the analysis 
of the landslide types and the characteristics of the study 
area. As a result, lithology, land use, and stream density 
are considered the most important factors that influence the 
landslide occurrences in this study. This seems reasonable 
because most of the landslides in the study area occurred 
on bare land in altered Plaisancian marls and near streams.

Our results from the used models show good agreement 
with other case studies throughout the world. Yalcin (2008) 
showed that the FR model gave a more accurate representa-
tion of landslide susceptibility than the LR. Yilmaz (2009) 
specified that the prediction accuracy of LSMs produced 
by the FR and LR was 82.60% and 84.20%, respectively. 
According to Pradhan and Lee (2010b), the accuracy 
observed for the FR, LR regression, and ANN models was 
86.41, 89.59, and 83.55 percent, respectively. Pradhan and 
Youssef (2010) showed that the accuracy of the FR model 
(89.25%) was better in predicting landslides than that of the 
LR model (85.73%). Tien Bui et al. (2011) indicated almost 
equal predicting accuracy for the Si (94,6%) and the LR 
(95,0%) models. Park et al. (2013) showed generally similar 
overall accuracies of 65.27% and 65.51% for the FR and 

LR models, respectively. According to Mohammady et al. 
(2012), the FR and WoE models have an accuracy of 80.1% 
and 74.6%, respectively. For mapping landslide susceptibil-
ity in the Sultan Mountains in NE Turkey (Ozdemir and 
Altural 2012), the accurate predictions of the FR, LR, and 
WoE models are 97.6%, 95.2%, and 93.7%, respectively. 
The findings of mapping landslide susceptibility at Zonouz 
Plain (Iran) obtained by Nourani et al. (2014) showed that 
the prediction accuracy of LSMs, produced by the FR and 
LR, was 87.57% and 89.42%, respectively. According to 
Bourenane et al. (2016), the FR approach is more accurate 
(86.59%) than the WoE (82.38%), Wf (77.58%), and LR 
(70.45%) methods. Regmi et al. (2014) stated that the FR 
and WoE models have a success rate of 76.8% and 75.6%, 
respectively. The results of validated landslide susceptibility 
prediction in the Setif Region (NE Algeria) specified that the 
FR model provides a more accurate prediction (86%) than 
the LR (84%) and WoE (79%) models, according to Karim 
et al. (2019).

The obtained results may serve as a first tool for landslide 
risk prevention and land use planning in the city of Sidi 
Abdellah, ensuring long-term development in this area. The 
results validated previous observations, demonstrating the 
effectiveness of statistical approaches. The following miti-
gating strategies may be suggested based on the derived 
LSMS to reduce the consequences of current landslides and 
to control urban growth: (i) restricting development in land-
slide-prone areas, based on the LSMS, (ii) controlling, by 
means of codes and urban rules, human activity (i.e., excava-
tion, construction, vegetation clearance, cutting slopes, land-
scaping, etc.) in the landslide-prone areas; (iii) protecting 
existing developments and the population through physical 
mitigation measures (drainage, counterfort, and protective 
barriers); (iv) developing and implementing monitoring 
and warning systems; (v) prohibit all new construction in 
the high landslide susceptibility area, and (vi) protecting 
the existing developments by physical mitigation measures 
(such as drainage, down counterfort berms) that serve as 
buttresses, and protective barriers, river bed widening and 
cleaning to allow easy drainage of flood waters during heavy 
rains.

Conclusion

Landslides constitute a serious constraint to the development 
and urban planning of the new city of Sidi Abdellah (North-
ern Algeria). Consequently, landslide susceptibility mapping 
is seen as a vital undertaking that can help authorities reduce 
landslide disaster losses by serving as a guideline for dura-
ble landuse planning, such as the restriction of urban exten-
sion in hazardous zones. In this framework, many scientific 
methods have been developed and applied for landslide 
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susceptibility and hazard mapping. The bivariate and mul-
tivariate statistical approaches are considered most suited 
and more objective for large-scale landslide susceptibility 
and hazard mapping, which integrates GIS techniques and 
remote sensing for spatial data acquisition, processing, man-
agement, and analysis in order to assess and predict landslide 
susceptible areas.

In the present work, we applied and compared the world-
wide developed statistical (represented by FR, SI, and WoE) 
and machine learning models methods (represented by LR) 
to investigate the LSMs performance of frequently used 
data-based models and and generate more satisfactory land-
slide susceptibility mapping. The first step consisted of iden-
tifying landslide locations based on satellite image analysis 
supported by field survey investigations. The unstable urban 
perimeter covers a total area of approximately 522.9 hec-
tares, which represents about 1.62% of the urban area. Then, 
twelve landslide causative factors, including slope, altitude, 
aspect, land use, lithology, precipitation, seism, distance to 
a drainage network, distance to a fault, distance to a road 
network, the density of roads, and the density of streams, 
have been derived from high-resolution satellite images, 
geologic maps, DEM, and precipitation data. The LSMs 
were produced using each of the four methods and classified 
into the following five classes: very low, low, medium, high, 
and very high. Subsequently, the results have been validated 
using the receiver operating characteristic technique (ROC) 
by comparing the obtained susceptibility maps with known 
landslide event sites. According to the obtained AUC val-
ues of the ROC curve, the SI model has a higher prediction 
performance (80.10%) than the WoE (78.2%), FR (78.2%), 
and LR (64.20%) models. This signifies that the statistical 
models provide a high accuracy for landslide susceptibil-
ity prediction in the study region than the machine learning 
model, which has a moderate accuracy. Moreover, for both 
statistical and machine learning models the statistical rules 
show that landslide density increased from the low to very 
high susceptibility zone, with the highest percentage of land-
slides being observed in the high susceptibility zone. These 
clearly demonstrated that the four commonly used statistical 
and machine learning models provided satisfactory results 
and depicted a high accuracy level for landslide susceptibil-
ity mapping.

The established LSMS is considered a necessary tool 
for sustainable urban planning and development in land-
slide prone areas by identifying the expected landslide 
occurrence zones. They serve as a useful tool for planners, 
engineers, and decision-makers in slope management and 
future expansion planning in the urban area. As our results 
are specified on a large-scale map, the precise extent of the 
landslide areas and the details of high susceptibility areas are 
defined. This will be helpful for further site-specific studies. 

The development of urbanization in landslide-prone areas 
can be avoided if a landslide susceptibility map is available.
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