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Abstract
Due to climate change and increasing demand for water, effective planning of water resources is a current issue. Reliable 
and accurate streamflow prediction is of great importance in the planning of water resources. This study aimed to predict 
monthly streamflows in Amasya by combining a discrete wavelet transform and a feedforward backpropagation neural 
network (FFBPNN) model. Various meteorological variables were separated into sub signals with mother wavelets com-
monly used in hydrometeorological studies, such as Haar, Daubechies 2, Daubechies 4, Discrete Meyer, Coiflet 3, Coiflet 5, 
Symlet 3, and Symlet 5, and entered into the FFBBNN model to create a hybrid wavelet-based FFBBNN model. Inputs with 
a significant relationship with the output were entered into the model. Precipitation, temperature, and previous streamflow 
values covering 1960–2011 were used to create the model. During the modeling phase, 70% of the data were divided into 
training, 15% into validation, and 15% into testing. The performance of the model was compared using mean square error, 
correlation coefficient, and rank analysis. Coiflet 5 mother wavelet showed the best results. Moreover, it was proven that 
monthly streamflow can be successfully predicted using previous precipitation, temperature, and streamflow values and the 
Coiflet 5 mother wavelet with the FFBBNN hybrid model (MSE: 7.143, R: 0.921). In addition, all built wavelet FFBPNN 
models except the Symlet 3 mother wavelet performed better than the single FFBPNN model. The results of the study will 
assist planners, and decision makers in terms of providing sustainable and effective water resources and drought management.

Keywords  Feed-forward backpropagation neural network · Streamflow prediction · Discrete wavelet transform · Signal 
processing · Machine learning · Amasya

Introduction

High-accuracy modeling of streamflow data is of great 
importance for water resources management, reservoir 
inflow, dam sizing, and hydrograph analysis. In addition, 
the more precisely river flows are modeled, the more effec-
tive will be the management of floods and droughts, which 
are the most important natural disasters of meteorological 
origin and cause great loss of life and property However, 
determination of streamflow values is very complex and 

effortful because many parameters, such as precipitation, 
groundwater, initial moisture content of the soil, tempera-
ture, evapotranspiration, and sunshine duration, affect the 
streamflow. For this reason, streamflow estimation, a non-
linear and costly task, can be easily performed using artifi-
cial intelligence (AI) and signal decomposition processes, 
among the developing technological methods (Kişi 2008a; 
Shiri and Kisi 2010; Wang et al. 2022). In addition, much 
higher prediction accuracy can be obtained with signal sepa-
ration techniques. For this reason, the aim in the present 
study was to estimate streamflow values with the highest 
precision using the feedforward backpropagation neural net-
work (FFBPNN) method, widely used for estimating stream-
flow data, and various mother wavelets.

Studies involving the use of signal decomposition tech-
niques such as wavelet transform (WT) and AI methods and 
determining the effective wavelet type have attracted the 
attention of many researchers in recent years. Daubechies 
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(1992) evaluated the effect of various mother wavelets on 
artificial neural networks (ANNs), from db2-10 and Coif 
1–5. Nourani et al. (2011) employed ANN-wavelet rainfall-
runoff models and assessed the performance of Haar, db2, 
db3, db4, Sym2, Sym3, and Coif1 mother wavelets. The 
results indicate that the Haar and db2 main wavelets are 
superior. Maheswaran and Khosa (2012) stated that the 
db2 function is more successful than the db1, db3, db4, and 
Sym4 mother wavelets in hydrological predictions. found 
that the db2 mother wavelet performed more effectively than 
Haar (db1) did. Deka et al. (2012) evaluated the performance 
of a wavelet–ANN hybrid model to predict daily flow data. 
For this, Daubechies, Haar, and Coiflets were applied to 
mother wavelets. The results showed that the db2 wavelet 
was superior to the value mother wavelets. Wei et al. (2013) 
compared ANN and wavelet-neural network (WNN) models 
for the estimation of river flows in the Weihe River in China. 
It was determined that the WNN hybrid model improved 
the prediction performance of the stand-alone ANN model. 
Shoaib et al. (2014) used in rainfall–runoff modeling a 
hybrid multilayer perceptron neural network (MLPNN) and 
radial basis function neural network (RBFNN) alone and in 
combination with a wavelet transform. Fung et al. (2020) 
used a support vector machine (SVM), fuzzy logic, and a 
WT for drought prediction. Tayyab et al. (2018) used an 
FFBPNN, RBFNN, discrete wavelet transform (DWT) and 

ensemble empirical mode decomposition (EEMD) to pre-
dict streamflow in the Upper Indus Basin, Pakistan. EEMD-
RBF showed the best prediction performance. Freire et al. 
(2019) for daily streamflows prediction in the Sobradinho 
Reservoir in northeastern Brazil combined the Daubechies, 
Symlet, Coiflet, and discrete Meyer mother wavelet types 
with the ANN model. The wavelet-based ANN model sig-
nificantly improved the performance of the ANN model and 
the discrete Meyer mother wavelet showed the highest pre-
diction success. Li et al. (2019) employed EMD, EEMD, 
a DWT, and an ANN in predicting long-term streamflow. 
Tayyab et al. (2019) used FFBPNN and RBFNN models 
with a DWT for modeling the rainfall–runoff relationship 
in the Jinsha River basin in the Yangtze River in China. 
It was found that DWT transformation improved the per-
formance of ANN models. Dalkiliç and Hashimi (2020) 
found that the wavelet-neural network (WNN) model was 
more successful in estimating monthly flow than ANNs 
and an adaptive neuro-fuzzy inference system (ANFIS). 
Kambalimath and Deka (2021) used an SVM with Haar, 
Daubechies, Coiflets, and Symlets wavelets to evaluate the 
improvement of the performance of the SVM model in daily 
flow prediction in the Indian state of Karnataka. Güneş et al. 
(2021) compared the performance of ANN and Daubechies 
wavelet-based W-ANN models to predict the streamflow in 
the Çoruh River Basin. It was determined that the W-ANN 

Fig. 1   Yesilirmak basin location map
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models were superior. Katipoğlu (2022) estimated monthly 
flows in the Karasu river in the Euphrates basin using the 
ANN model. It was suggested that potential evapotranspira-
tion values play an important role in streamflow estimation. 
Yilmaz et al. (2022) integrated ANNs with a WT for stream-
flow data at four stations in the Coruh Basin. An additive 
wavelet transform (AWT) and DWT were used for decom-
position of streamflows. The results of the study showed 
that WT techniques increased the performance of the ANN 
model. In addition, in the prediction of monthly streamflow 
an AWT–ANN model is proposed. Momeneh and Nourani 
(2022) employed an ANN, DWT, and multi-DWT to forecast 
daily and monthly streamflow data in the catchment area of 
Gamasiab River, in western Iran. The results of the study 
showed higher flow prediction accuracy of the M-DWT-
ANN model. The studies in which the optimum mother 
wavelet types are extensively compared for current estima-
tion in the literature are limited. Therefore, in the present 
study, it was aimed to eliminate this deficiency.

In the current study, FFBPNN and DWT models were 
used to estimate monthly average streamflow data in 
Amasya. While precipitation, temperature, and historical 
streamflow data were used as inputs for the model's setup, 
streamflow data were used as output. The primary purpose 
of the study was to reveal the most suitable wavelet family 

for streamflow estimation. Since the WT improves machine 
learning models' performance, it was aimed to obtain more 
precise results in streamflow estimation. To determine the 
best mother wavelet in the study, a hybrid wavelet–FFBPNN 
model was established by separating the input variables 
into sub signals with the widely used Haar, Daubechies 2, 
Daubechies 4, Discrete Meyer, Coiflets 3, Coiflets 5, Sym-
let 3, and Symlet 5 wavelets. Then the hybrid and stand-
alone FFBPNN models were compared using various sta-
tistical indicators and the most suitable mother wavelet was 
determined.

Material and method

Study area and data

The River Yeşilırmak, originating at the foot of Kösedağ 
and merging with various streams, empties into the Black 
Sea at Çarşamba. The Yeşilırmak Basin has a surface area 
of 39,626  km2. The annual precipitation of the basin is 
528 mm/m2. The average yearly flow is 6.10 km3 and the 
average annual temperature is 12 °C (Boustani and Ulke 
2020).

The monthly average streamflow data of the 1412 stations 
used were obtained from the annual flow observations of the 
General Directorate of Electrical Power Resources Survey 
and Development Administration. The monthly average pre-
cipitation and temperature used were obtained from the Tür-
kiye General Directorate of Meteorology. For the establish-
ment of the hybrid wavelet AI model, 623 × 5 = 3115 items 
of data covering the years 1960–2011 were used.

Feed‑forward backpropagation neural network

The ANN, inspired by the working principle of the human 
brain, is based on loading features such as generalization, 
inference, and analysis into machines. It consists of neurons, 
layers, and many non-linear and interconnected processing 
elements. As a result, the ANN can model non-linear rela-
tionships between complex input/output variables such as 
the precipitation flow relationship, sediment transport, and 

Fig. 2   Correlation matrix of the variables

Fig. 3   Structure of the established models a FFBPNN, b W-FFBPNN
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river flow estimation in the field of hydrology (Tayyab et al. 
2019).

The FFBPNN is the artificial neural network algorithm 
used most in hydrological studies. This algorithm consists of 
the input layer, where the data are introduced; an intermedi-
ate layer consisting of n neurons; and an output layer that 
displays the results produced by the inputs. The FFBPNN 
model consists of forward and backward calculation stages. 
In the forward computation, each layer uses the weights 
transferred from the previous layer. Backward calculation 
is done to organize the weights. The weight adjustment 
process performed so that the error between the actual and 
predicted values reaches the minimum value is called the 
training of the network. If the errors are above the desired 
value, the errors are adjusted backwards over the weights 
of the network. This stage represents the backpropagation 
process (Umut 2012). The mathematical expression of the 
network is given in Eq. 1.

where y denotes the output, f is the transfer function, wi 
shows the weight vector, xi is the input vector, and b is the 
bias (Tayyab et al. 2019).

Wavelet transform

WT is a signal processing method proposed as an alterna-
tive to the Fourier transform. It decomposes time series, 
reduces and softens noise, and improves estimations. The 
basic approach in wavelet analysis is based on the decom-
position of a signal’s mother wavelet in shifted and scaled 
shapes (Grossmann and Morlet 1984; Nayak et al. 2013). 
Wavelet analysis is a powerful mathematical transformation 
that helps us to examine in more detail aspects of trends, 

(1)y = f

(

n
∑

i=1

wixi + b

)

Fig. 4   Decomposition of precipitation into sub signals with various mother wavelets: a Haar, b db2, c db4, d dmey, e coif 3, f coif5, g sym3, h 
sym5
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breakpoints, and discontinuities that traditional data analysis 
techniques cannot detect (Adamowski and Sun 2010). This 
method uses long intervals to reveal low-frequency infor-
mation in the time series and short intervals to show high-
frequency details. A wavelet family/base uses two orthogo-
nal functions known as the father/scaling function �(t) and 
the mother/wavelet function (Shoaib et al. 2014). A wavelet 
function �(t) is represented by Eq. 2.

�s,� can be calculated with compressing and expanding �(t).

where s denotes scale or frequency factor, τ is the time fac-
tor, and R is the domain of real numbers (Umut 2012).

(2)∫
∞

−∞

�(t)dt = 0

(3)�s,�(t) = |s|−1∕2�
(

t − �

s

)

� ∈ R, s ∈ R, s ≠ 0

According to the Mallat algorithm, the DWT of the xi 
series is obtained by Eq. 4 is

where i shows integer time steps, j and k indicate integers 
that control, respectively, the scale and time; Wj,k is the 
wavelet coefficient (Umut 2012).

Equation 5 determines the optimum separation level 
(Nourani et al. 2009a; Nourani et al. 2009b).

where L is the level and N is the total data. For the study at 
hand, N = 623, so L = 3.

(4)Wj, k = 2−j∕2
N−1
∑

i=0

xi� (2−j i − k)

(5)L = int[log(N)]

Fig. 4   (continued)
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Determination of the optimum mother wavelet

Various mother wavelets have different properties, such as 
support regions and vanishing moments. The wavelet sup-
port region is used to express the propagation length and the 
vanishing moment to express the polynomial behavior of the 
wavelet or data information. For example, the db3, coif3, and 
sym3 functions represent polynomials with three coefficients 
that encode an operation with constant, linear, and quadratic 
signal components. This study investigated the effect of the 
most widely used Haar, Daubechies, Coiflets, Symlets and 
Meyer wavelets on the prediction performance of the ANN 
(Addison 2002; Shoaib et al. 2014; Umut 2012).

Performance metrics

The performances of the designed models were evaluated 
according to mean square error (MSE), and correlation coef-
ficient (R). Error values show the deviation of the predicted 
and actual values. R values determine the linear relation-
ship between actual and predicted values. The MSE values 
are closer to 0 and the R values closer to 1. The calcula-
tion of MSE and R values are given in Eq. (6) and Eq. (7), 
respectively.

(6)MSE =
1

n

n
∑

i=1

(Qa,i − Qp,i)
2

Fig. 5   Performance spread of the models used a stand-alone FFBPNN b Haar, c db 2, d db 4, e dmey, f coif 3, g coif 5, h sym 3, i sym 5
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where Qa,i : actual values, Qp,i : the predicted values of mod-
els, Qa,i − Qp,i : the value of the error terms, Qa,avg : average 
of Q values, and n: the number of data. The model with a 
higher R-value and lower MSE value was evaluated as a 
relatively better model for streamflow prediction.

Rank analysis

The rank analysis is based on determining which one has 
the highest total rank value by ranking many statistical cri-
teria. The statistical criteria used in this study were listed 
separately and the most optimal model was determined 

(7)R =

�

�

�

�

∑n

i=1
(Qa,i − Qa,avg)

2 −
∑n

i=1
(Qa,i − Qp,i)

2

∑n

i=1
(Qa,i − Qa,avg)

2

according to the total rank value obtained. Rankings were 
arranged from the maximum value equal to the number 
of models, which was three in our study, to the minimum 
value equal to one. Here, the best performing model is 
assigned the third rank, and the lowest performing model 
is set the first rank. The model with the highest total rank 
shows the best, while the model with the lowest shows the 
worst (Zhang et al. 2020) (Fig. 1) (EIE 2020).

Results and discussion

This study combines the FFBPNN model and various 
wavelets to estimate monthly average flow data. In the 
model setup, the data is divided into 70% training, 15% 

Fig. 6   Error propagation of the models used a stand-alone FFBPNN b Haar, c db 2, d db 4, e dmey, f coif 3, g coif 5, h sym 3, i sym 5
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testing and 15% validition. The correlation matrix was 
used to select the model input combination (Fig. 2). In 
creating the model, the precipitation, temperature, and 
relative humidity data at the meteorological station 17,085 
and the flow data at station 1412 were subjected to cor-
relation analysis.

For the estimation of the streamflow values accord-
ing to the correlation coefficients, the average precipita-
tion 1 month ago (P(t − 1)), the average precipitation in t 
months (P(t)), the monthly average temperature 1 month 
ago (T(t − 1)), the 1 month ago. It is aimed to estimate the 
Q(t) values by presenting the monthly average streamflow 
Q(t − 1) values as input to the model.

Established model structure:

In this study, the Levenberg–Marquardt training algo-
rithm, which requires more memory but less time, was 
used in the training phase. Figure 3 shows the structure of 
the established FFBPNN model and W-FFBPNN model. 1 

(8)f (P(t − 1), P(t), T(t − 1), Q(t − 1)) = Q(t)

hidden layer and ten neurons are used in artificial intelli-
gence models.

Various wavelet types decomposing meteorological data 
into sub signals are shown in Fig. 4. For example, the sig-
nals obtained by splitting the precipitation data into three 
levels of subcomponents are shown. Using various mother 
wavelets, the precipitation series is divided into 3 detail and 
one approximate component. To produce the hybrid Wave-
let-FFBPNN model, the input variables were divided into 3 
detail and 1 approximate components and these components 
were entered into the hybrid model separately. Generally, 
Wavelet-FFBPNN model training was completed with 6–8 
iterations. The training, testing and validation performance 
graphs of the established models are shown in Fig. 5. When 
the change in MSE values was examined, the training was 
stopped when the MSE values in the validation phase started 
to increase. Thus, the overfitting problem can be prevented.

The training, validation and test errors of the single 
FFBPNN and W-FFBPNN models established in Fig. 6 are 
shown. When the propagation of the errors is examined, 
it can be selected as the most effective wavelets since the 

Fig. 7   Single model regression 
results
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errors of the hybrid W-FFBPNN models created with db4, 
coif 3, and coif5 wavelets are around the zero error line and 
show small bars in the maximum error region.

Figure 7 shows the training, testing, and validation of 
the FFBPNN model and the scatter plot of the actual and 

estimated values of the whole model. The actual and pre-
dicted values are usually gathered around the 45-degree 
line, which indicates that the model is quite successful. In 
addition, the high correlation coefficient (R) values, which 
show the relationship of the points with each other, indicate 

Fig. 8   Regression analysis results of W-FFBPNN models a Haar, b db 2, c db 4, d dmey
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that the model gives satisfactory results. However, it is seen 
that the single model is weak in estimating peak streamflow 
values.

Figure 8 shows the training, testing, validation and scat-
ter plot of the real and predicted values of the whole model 
of the hybrid W-FFBPNN model constructed by combining 

Haar, db2, db4, and dmey wavelets with the FFBPNN model 
are shown. The fact that the actual and predicted values are 
generally stacked above the 45-degree regression line and 
the high correlation coefficient (R) values prove that the 
model shows high-precision prediction performance. Espe-
cially the scattering of the outputs of db4, dmey wavelets 

Fig. 9   Regression analysis results of W-FFBPNN models a coif 3, b coif5, c sym 3, d sym 5
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around the linear line proves that it delivers high accuracy 
in current estimation.

Figure 9 shows the scatter plot of the actual and predicted 
values of the hybrid W-FFBPNN model constructed by com-
bining the coif 3, coif 5, sym 3, and sym 5 wavelets with 
the FFBPNN model is presented. The fact that the actual 
and predicted values are usually above the 45-degree regres-
sion line and the correlation coefficient (R) values are high 
proves that the model shows high-accuracy prediction per-
formance. Notably, the estimation results of the coif 3 and 

coif 5 models are distributed around the linear line. For these 
reasons, it can be said that the coif wavelet is effective in 
the streamflow estimation. In addition, the Wavelet based 
FFBPNN model produced slightly more realistic estimations 
in estimating peak streamflow values compared to single 
models.

Various statistical indicators of the Stand-alone FFBPNN 
and W-FFBPNN models presented in Table 1. Accordingly, 
rank analysis was performed according to the lowest MSE 
and highest correlation coefficient values. As a result, the 
most successful mother wavelet was Coif 5, while the Sym 3 
wavelet showed unsuccessful results. Also, generally hybrid 
W-FFBPNN models showed superior prediction results than 
Stand-alone FFBPNN models.

Due to the changing climatic conditions, there has been 
an increase in the number and frequency of natural disasters 
such as floods and droughts. For this reason, it is necessary 
to take measures against disasters that may occur by predict-
ing the current values in advance. In the present study, it was 
aimed to determine which mother wavelet is the most effec-
tive in flow estimation. The Coif 5 wavelet was found to be 
the most effective. It is also noteworthy that the estimation 
accuracy of the Db4 wavelet is very high. To increase the 
prediction performance of ANNs, it was determined that 
the hybrid models established by separating the input and 
output data into sub signals with the wavelet decomposition 
technique are superior to the single ANN model (Kişi 2008b; 
Labat 2005; Nourani et al. 2009a; Shoaib et al. 2014; Umut 
2012; Wang et al. 2022; Wei et al. 2013). Many researchers 
have stated that db4 shows optimum prediction results for 
the pre-processing of hydrological data (Kişi 2008b; Nou-
rani et al. 2009a, 2013, 2011). The available literature results 
broadly support the present study. Partal (2009) employed 
a WT and ANNs to predict the streamflows of the Sakarya 
and Fırat basins. The most successful estimation results 
(R: 0.95 MSE: 0.45) were obtained with the wavelet-based 
FFBPNN method at the Kiyik station (station no. 2131) on 
the River Beyderesi in the Fırat basin. The results of our 
study are largely in line with those reported by Partal (2009) 
study. The study of Khazaee Poul et al. (2019), the perfor-
mances of various machine learning models were evaluated 
to predict river flows in the St. Clair River between the US 
and Canada. According to the results, it was revealed that 
the performance of the streamflow estimation increased by 
adding the past flow, temperature and precipitation values 
to the model. The outputs of the study largely overlap with 
the study of Khazaee Poul et al. (2019). Wang et al. (2022) 
used DWT and machine learning models to predict monthly 
stream flows at two hydrological stations in the USA. The 
main wavelet used to create the db4 hybrid Wavelet ML is 
the increased stand-alone ML model. The outputs of Wang 
et al. (2022) support the present study. Freire et al. (2019) 
estimated daily stream flows by combining various mother 

Table 1   Model performance evaluation

Bold characters indicate the best model
*Indicates the smallest model

Training Validation Testing Total rank

Stand-alane 
FFBPNN

MSE 14.652 13.258 22.395 13
Rank 1 4 2
R 0.858 0.808 0.849
Rank 1 2 3

Haar MSE 13.677 17.076 22.226 17
Rank 3 3 3
t 0.868 0.818 0.841
Rank 3 3 2

Db2 MSE 5.265 10.163 9.183 39
Rank 7 5 8
t 0.956 0.873 0.918
Rank 7 5 7

Db4 MSE 3.813 9.28 14.036 44
Rank 9 7 5
t 0.964 0.897 0.931
Rank 9 6 9

dmey MSE 9.705 17.199 10.291 28
Rank 5 2 7
t 0.913 0.839 0.899
Rank 5 4 5

Coif 3 MSE 6.145 6.548 14.752 40
Rank 6 9 4
t 0.941 0.957 0.9
Rank 6 9 6

Coif 5 MSE 4.611 6.901 7.143 49
Rank 8 8 9
t 0.957 0.954 0.921
Rank 8 8 8

Sym 3 MSE 13.574 57.871 26.755 10*
Rank 4 1 1
t 0.864 0.334 0.821
Rank 2 1 1

Sym 5 MSE 14.408 9.356 12.909 29
Rank 2 6 6
t 0.894 0.899 0.873
Rank 4 7 4
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wavelets and ANN approach. As a result of the study, the 
best performance was obtained with the Discrete Meyer 
wavelet in prediction of daily stream flows. The results of 
the current study contradict with Freire et al. (2019). This 
can be explained by the difference in the time period used.

Conclusion

In the present study, the effect of a wavelet-based data 
pre-processing method on the prediction success of the 
FFBPNN method and which mother wavelet shows the 
best performance in river flow estimation were inves-
tigated. To examine the performance of the WT on the 
machine learning model, various meteorological and 
hydrological variables were divided into sub signals with 
the DWT and streamflow values were estimated with the 
FFBPNN. The results of the study will be useful for deci-
sion makers and planners in water-related institutions in 
terms of management of water resources, flood control, 
and drought risk analysis. Model success was evaluated 
according to MSE, t, and rank analysis. The main results 
of the study are listed as follows:

•	 Hybrid W-FFBPNN models often increase the accuracy 
of the stand-alone FFBPNN model.

•	 The performances of the mother wavelets in 
monthly streamflow estimation were as follows: Coif 
5 > Db4 > Coif 3 > Db2 > Sym 5 > dmey > Haar > Sym 
3.

•	 Streamflows can be estimated realistically (MSE: 7.143, 
R: 0.921) using past precipitation, temperature, and 
streamflow values as inputs.

•	 Successful predictions can be made when the Coif 5 
mother wavelet and three levels of decomposition are 
used.

•	 The established hybrid models showed slightly more 
accurate estimations of peak streamflow values than 
the single FFBPNN algorithm.

For future studies, it would be appropriate to compare 
the WTs of different signal decomposition processes, such 
as variational mode decomposition and empirical mode 
decomposition, and to investigate which pre-processing 
method is more effective for estimations in river flow esti-
mation in different time periods. In addition, using these 
three signals processing techniques and evaluating the 
flock estimation performance will be an important contri-
bution to the literature.
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