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Abstract
Measles, or rubella, is a contagious respiratory illness that manifests as a fever, runny nose, and cough in addition to a charac-
teristic skin rash. The measles virus spreads easily through the air via infected people’s respiratory secretions. Transmission 
can also occur through mouth-to-mouth contact or the use of infected objects. We create a deterministic mathematical model 
of illness transmission to better understand the dynamics and control of the disease. Both equilibrium points are determined 
in addition to the basic reproduction number, R

0
 , and the boundary of the model solution. The disease-free equilibrium state 

is both globally and locally stable when R
0
< 1 . The endemic equilibrium point occurs and is stable if and only if it satisfies 

the Routh–Hurwitz criteria and R
0
> 1 . Our practical application of the model to the spread of a disease in Pakistan demon-

strates its usefulness. We optimize the suggested model with data from Pakistan collected between January and December 
of 2019. This lets us evaluate how faithfully the suggested model captures the disease as it actually exists. We show how 
single, double, and triple control measures affect the spread of disease. The results show that a population’s measles burden 
can be reduced more quickly using a combined control strategy.

Keywords  Measles · Mathematical model · Stability · Basic reproduction number

Introduction

The measles is a respiratory virus that is very contagious 
and has the potential to cause serious complications, some 
of which might be permanent. These complications can 

include pneumonia, convulsions, brain damage, and even 
death. Measles is caused by a virus that dwells in the mucus 
that is found in an infected person’s nose and throat. This 
virus is easily spread through the air through activities such 
as breathing, coughing, and sneezing. When a patient with 
measles coughs, sneezes, or speaks, infectious droplets are 
released into the air (where other people can inhale them) or 
land on a surface, where they remain active and contagious 
for several hours at a time. Other people can become infected 
by inhaling these droplets. There is currently no specific 
antiviral medicine that is approved for use in the treatment 
of measles.

The goal of medical care is to treat complications like 
bacterial infections and relieve symptoms. Vitamin A may 
be used to treat severe measles cases in children, particu-
larly those who are hospitalized (El Hajji and Albargi 2022; 
James Peter et al. 2022). Since there is no known cure for 
measles, the recommended management techniques for these 
cases center on prevention, supportive care, and the treat-
ment of complications and secondary infections (Goodson 
and Seward 2015). The extremely safe MMR vaccine pro-
tects against measles in both children and adults. A single 
dose of the MMR vaccine is roughly 92 percent effective 
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in preventing measles, whereas two doses are 95% effec-
tive. When the vaccination failed or the vaccine’s effects on 
their immunity wore off, some vaccinated people might still 
be vulnerable. Despite the fact that vaccination drastically 
decreased the global measles death rate between 2000 and 
2018, by 73%. Measles is still a common disease in many 
impoverished nations around the world, particularly in por-
tions of Africa and Asia (Ejima et al. 2012; Bakhtiar et al. 
2020).

Numerous authors have employed mathematical mod-
els to understand how the measles spreads among various 
populations. For instance, authors in Bakare et al. (2012) 
presented a basic SEIR model without any control inter-
vention. Authors (Tessa 2006) addressed the connection 
between herd immunity and mass vaccination, whereas the 
authors in Huang et al. (2018) model vaccine effects on 
measles-related deaths, the seasonality spreading element 
which was also taken into consideration when discussing 
the measles outbreak in China. To prevent a subsequent 
measles outbreak, the authors of Momoh et al. (2013) also 
take into account early testing and treatment for those who 
have been exposed. The authors in Musyoki et al. (2019) 
incorporate passive immune groups in their model, in con-
trast to the sources cited above, to examine the effect of this 
group on the measles eradication plan. The authors address 
the effects of the quarantine compartment in Aldila and 
Asrianti (2019). Additionally, they discover that a quaran-
tine intervention can increase the efficacy of a vaccination 
strategy to lower the prevalence of endemic measles in the 
population.

Due to the occurrence of backward bifurcation, authors 
in Memon et al. (2020) and Peter et al. (2018) explore a 
vaccination model for measles transmission and discover a 
possibility that the fundamental reproduction number less 
than one does not guarantee the extinction of measles in the 
population and a model for the control of measles respec-
tively. Authors in Pang et al. (2015), Adewale et al. (2016), 
Berhe and Makinde (2020), Ojo et al. (2022) and Pokharel 
et al. (2022) used the optimal control approach to find the 
best control for reducing disease spread by incorporating a 
time-dependent intervention into their models. Few authors 
have used fractional derivatives to explore measles transmis-
sion (Farman et al. 2018; Qureshi and Jan 2021; Qureshi 
2020). Numerous researchers have developed mathemati-
cal models in recent years to understand the dynamics of 
measles transmission by taking into account various situa-
tions. However, none of these models examined the impact 
of contact rate in relation to testing and therapy rate. Our 
aim is to investigate different combined control parameters 
to predict and make recommendations for the most effective 
control measures that can be used to mitigate the measles 
burden on the populace.

Here is how the rest of the paper is laid out: Model 
descriptions based on population epidemiology are dis-
cussed in “Methods” section, model analysis is covered 
under analysis of the proposed model, next is the model 
fitting and parameter calibration and numerical simula-
tions and a discussion of the findings are provided. Final, 
we give the conclusion with future directions

Methods

We propose a deterministic model with five compartments 
on the dynamics of measles in a given population based 
on the epidemiological status of individuals. The com-
partments are subdivided into the following epidemiologi-
cal groups. Individuals that are prone or susceptible to 
measles S(t), vaccinated individuals against measles V(t), 
exposed individuals E(t), individuals who are infected with 
measles with signs and symptoms and are infectious I(t) 
and individuals who are infected with measles and have 
recovered due to natural recovery R(t). Those in this cat-
egory cannot re-infect again and are not susceptible to 
measles again because upon recovery, the body system is 
permanently immune against the disease.

The rate of vaccinating the susceptible individuals is � . 
The effective contact rate between the susceptible and the 
infected individuals is denoted as � . It is assume that mea-
sles vaccine is not 100% effective, the vaccine wane at a 
rate � , the recruitment rate into the susceptible population 
is either by immigration or birth at a rate � , the progres-
sion rate from exposed to infected population is at a rate 
� , the rate of exposed individuals who have undergone 
testing and therapy is � , in most cases, infected individuals 
with measles naturally recovered without treatment, we 
represent the recovery rate as � , natural death rate is com-
mon to all the classes at the rate � while measles induced 
death rate is represented by �.

The descriptions above can be illustrated by sets of 
non-linear differential equations in (1) while the pictorial 
representing the model is given in Fig. 1 and Tables 1, 2.

(1)

dS

dt
=� − �SI + �V − (� + �)S,

dV

dt
=�S − (� + �)V ,

dE

dt
=�SI − (� + � + �)E,

dI

dt
=�E − (� + � + �)I,

dR

dt
=�E + �I − �R.
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Analysis of the proposed measles model

The mathematical discussion for the suggested measles 
model is presented in detail throughout four subsections 
of this current piece of work. The fundamental reproduc-
tion number is calculated using a technique called the next 
generation matrix approach, and the boundedness of the 
solution and the existence of both equilibria (disease-free 
and disease-endemic) have both been studied for the mea-
sles model.

Boundedness of the solution

L e t  t h e  t o t a l  h u m a n  p o p u l a t i o n  b e 
N = S(t) + V(t) + E(t) + I(t) + R(t) then

From (2) we have,

Integrating both sides of (3) yields the following:

(2)
dN

dt
=

dS

dt
+

dV

dt
+

dE

dt
+

dI

dt
+

dR

dt

= � − �(S + V + E + I + +R) − �I.

(3)
dN

dt
≤ � − �N.

(4)�
t

0

dN

� − �N
≤ �

t

0

dt,

(5)−
1

�
ln(� − �N) ∣t

0
≤ t.

Fig. 1   Flow chart of the pro-
posed measles model as given 
in (1)

Table 1   Description of the measles model’s variables and parameters

Variable Description

S(t) Susceptible class
V(t) Vaccinated class
E(t) Exposed class
I(t) Infected class
R(t) Recovered class

 Parameter Description

� Recruitment rate into susceptible class
� Vaccine wane rate
� Effective contact rate
� Rate of vaccinating susceptible individuals
� Proportion of individuals who progress 

directly to infected class
� The rate of exposed individuals who have 

undergone testing and therapy
� Natural recovery rate from infection
� Natural death rate
� Measles induced death rate
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From (5), we have

Taking t ⟶ ∞ , we obtain Nt ≤ �

�
 . This implies that the 

model in (1) can be studied in the feasible region as given 
below:

Disease‑free equilibrium

The Disease-free equilibrium (DFE) ΩDFE = (S̃, Ṽ , Ẽ, Ĩ, R̃) 
is defined as the point at which there is no disease in the 
studied population. All infected classes will be equal to zero. 
Thus, the Disease-Free equilibrium satisfies

Measles endemic equilibrium

Let Measles Endemic Equilibrium (MEE) denoted by 
�MEE = (S∗, V∗, E∗, I∗, R∗) be defined as the point when 

(6)Nt ≤ �

�
−

[
� − �N0

�

]
e−�t.

(7)Γ =

{
(S,V ,E, I,R) ∈ R5 ∶ N ≤ �

�

}
.

(8)

ΩMFE = (S̃, Ṽ , Ẽ, Ĩ, R̃)

=

(
𝜙(𝜃 + 𝜇)

(𝜃 + 𝜇)(𝜇 + 𝜎) − 𝜃𝜎
,

𝜙𝜎

(𝜃 + 𝜇)(𝜇 + 𝜎) − 𝜃𝜎
, 0, 0, 0

)
.

the disease still persist in the human population. Consider 
the equations in system (1). Hence, the Measles Endemic 
equilibrium satisfies:

Basic reproduction number

In this section, we compute the basic reproduction number 
R0 using the next generation matrix method. According to the 
principle of next generation matrix, the basic reproduction 
number is the spectral radius of the next generation matrix 
FV−1 (Peter et al. 2022a, b; James Peter et al. 2022; Ojo et al. 
2021; Abboubakar et al. 2022) as shown below:

Therefore, using the Eq. (10), we split the differential 
equations into a new infection matrix f and transfer matrix 

(9)

S∗ =
(� + � + �)(� + � + �)

��
,

V∗ =
�(� + � + �)(� + � + �)

��(� + �)
,

E∗ =
(� + � + �)I∗

�
,

I∗ =
� + �V∗ − (� + �)S∗

�S ∗
,

R∗ =

(
�(� + � + �)

��
+

�

�

)
I∗.

(10)R0 = �

(
FV−1

)
.

Table 2   The description of parameters and their corresponding values

Parameter Value Source

� 7.27892 ×101 Fitted
� 1.81656×10−1 Fitted
� 0.001 Fixed
� 0.169 Fixed
� 2.83562×10−5 Fitted
� 1.45362 Fitted
� 0.096 Fixed
� 1

(57.6×365)
Fixed

� 0.123 Fixed

 State variable Symbol Initial value

S(t) S(0) 60309980
V(t) V(0) 0
E(t) E(0) 0
I(t) I(0) 76
R(t) R(0) 0
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between compartment v, and their Jacobian matrices are F 
and V respectfully which will be calculated at the Disease-
Free Equilibrium.

So that,

Therefore,

To obtain the spectral radius, we need to calculate the 
eigenvalues of FV−1 . Therefore, simplification yields the 
following:

Theorem 0.1  The disease-free equilibrium point is locally 
asymptotically stable if R0 < 1 , and it is unstable if R0 > 1.

Proof  First, we calculate the Jacobian matrix of system (1) 
as follows:

Then,

The eigenvalues of J(ΩDFE) can be found from 
det(J(ΩDFE) − �I) = 0,

(11)f =

[
�SI

0

]
, v =

[
(� + � + �)E

(� + � + �)I − �E

]
.

(12)

F =

⎛
⎜⎜⎝

0
�(�+�)�

(�+�)(�+�)−��

0 0

⎞
⎟⎟⎠
, and V =

⎛
⎜⎜⎝

� + � + � 0

−� � + � + �

⎞
⎟⎟⎠

(13)V−1 =

[
(� + � + �)−1 0

�

(�+�+�)(�+�+�)
(� + � + �)−1

]
.

(14)FV−1 =

[
� S0�

(�+�+�)(�+�+�)

� S0

�+�+�

0 0

]
.

(15)R0 =
��(� + �)�

�(� + � + �)(� + � + �)(� + � + �)
.

J(S,V ,E, I,R)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−�I − � − � � 0 − �S 0
� − � − � 0 0 0
�I 0 − � − � − � �S 0
0 0 � − � − � − � 0
0 0 � � − �

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

J(ΩDFE)

=

⎡⎢⎢⎢⎢⎢⎣

−� − � � 0
−��(�+�)

(�+�)(�+�)−��
0

� − � − � 0 0 0

0 0 − � − � − �
��(�+�)

(�+�)(�+�)−��
0

0 0 � − � − � − � 0

0 0 � � − �

⎤⎥⎥⎥⎥⎥⎦

.

We obtain the first eigenvalue as 𝜆1 = −𝜇 < 0 . And the char-
acteristic equation can be calculated as follows.

Consider the first term as follows:

in the form �2 + a1� + a2 = 0 , we have

and

These match Routh–Hurwitz criteria.
Next, consider the second term in the form 

�2 + b1� + b2 = 0 , we have b1 = 𝛽 + 𝜂 + 𝛿 + 𝛾 + 2𝜇 > 0 , 
and

Therefore, b1 > 0 and b2 > 0 when R0 < 1 . Hence, by 
Routh–Hurwitz criteria we obtain that the disease-free 

|

|

|

|

|

|

|

|

|

|

|

|

|

|

−� − � − � � 0 −��(�+�)
(�+�)(�+�)−�� 0

� −� − � − � 0 0 0
0 0 −� − � − � − � ��(�+�)

(�+�)(�+�)−�� 0

0 0 � −� − � − � − � 0
0 0 � � −� − �

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= 0.

(−� − �)

|

|

|

|

|

|

|

|

|

|

|

−� − � − � � 0 −��(�+�)
(�+�)(�+�)−��

� −� − � − � 0 0
0 0 −� − � − � − � ��(�+�)

(�+�)(�+�)−��
0 0 � −� − � − � − �

|

|

|

|

|

|

|

|

|

|

|

= 0.

(−�)

|

|

|

|

|

|

|

|

|

|

� 0 −��(�+�)
(�+�)(�+�)−��

0 −� − � − � − � ��(�+�)
(�+�)(�+�)−��

0 � −� − � − � − �

|

|

|

|

|

|

|

|

|

|

+ (−� − � − �)

|

|

|

|

|

|

|

|

|

|

−� − � − � 0 −��(�+�)
(�+�)(�+�)−��

0 −� − � − � − � ��(�+�)
(�+�)(�+�)−��

0 � −� − � − � − �

|

|

|

|

|

|

|

|

|

|

= 0,

× [(−��) + (� + � + �)(� + � + �)]
|

|

|

|

|

|

|

−� − � − � − � ��(�+�)
(�+�)(�+�)−��

� −� − � − � − �

|

|

|

|

|

|

|

= 0,

× (�2 + (2� + � + �)� − �� + (� + �)(� + �))

×
[

(� + � + � + �)(� + � + � + �) −
���(� + �)

(� + �)(� + �) − ��

]

= 0,

× (�2 + (2� + � + �)� + (� + �)(� + �) − ��)

×
[

�2 + (� + � + � + � + 2�)� + (� + � + �)(� + � + �) −
���(� + �)

(� + �)(� + �) − ��

]

= 0.

�2 + (2� + � + �)� + (� + �)(� + �) − �� = 0,

a1 = 2𝜇 + 𝜃 + 𝜎 > 0,

a2 = (𝜃 + 𝜇)(𝜇 + 𝜎) − 𝜎𝜃 = 𝜇(𝜇 + 𝜎 + 𝜃) > 0.

(16)

b2 = (� + � + �)(� + � + �) −
���(� + �)

(� + �)(� + �) − ��
,

= (� + � + �)(� + � + �)

×

[
1 −

���(� + �)

(� + � + �)(� + � + �)(� + � + �)�

]
,

= (� + � + �)(� + � + �)[1 − R0].
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equilibrium point is locally asymptotically stable if R0 < 1 
and is unstable if R0 > 1 . This completes the proof. 	�  ◻

Theorem  0.2  The disease-free equilibrium is globally 
asymptotically stable when R0 < 1.

Proof  Let the Lyapunov function be

The derivative of L is as follows:

Since from the boundary condition of solutions that

, we have

Thus, S ≤ S0 . Then, we have

Thus, dL
dt

= 0 when I = 0 and when R0 < 1 , dL
dt

< 0 . Hence, 
the disease-free equilibrium point is globally asymptotically 
stable when R0 < 1 . 	�  ◻

Theorem 0.3  When R0 > 1 , the endemic equilibrium point is 
locally stable if it satisfies Routh–Hurwitz criteria.

Proof  We first consider det(J(SMEE) − �I) = 0 , we have

L = �E + (� + � + �)I.

(17)

dL

dt
= �(�SI − (� + � + �)E) + (� + � + �)

× (�E − (� + � + �)I)

= ��SI − (� + � + �)(� + � + �)I

= (� + � + �)(� + � + �)

×

[
��S

(� + � + �)(� + � + �)
− 1

]
I.

S + V0 ≤ �

�

(18)S ≤ �

�
−

��

�(� + � + �)
=

�(� + �)

�(� + � + �)
= S0.

(19)

dL

dt
≤ (� + � + �)(� + � + �)[

��S0

(� + � + �)(� + � + �)
− 1]I

= (� + � + �)(� + � + �)[R0 − 1]I.

Similarly to the proof in Theorem 1, we obtain 𝜆1 = −𝜇 < 0. 
The rest of the characteristic equation can be found from

It can be written in the form �4 + a1�
3 + a2�

2 + a3� + a4 = 0 , 
where

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

−�I∗ − � − � − � � 0 −�S∗ 0

� −� − � − � 0 0 0

�I∗ 0 −� − � − � − � �S∗ 0

0 0 � −� − � − � − � 0

0 0 � � −� − �

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= 0.

|

|

|

|

|

|

|

|

|

|

|

−�I∗ − � − � − � � 0 −�S∗

� −� − � − � 0 0
�I∗ 0 −� − � − � − � �S∗

0 0 � −� − � − � − �

|

|

|

|

|

|

|

|

|

|

|

= 0.

0 = (−�)

|

|

|

|

|

|

|

|

� 0 −�S∗

0 −� − � − � − � �S∗

0 � −� − � − � − �

|

|

|

|

|

|

|

|

+ (−� − � − �)

|

|

|

|

|

|

|

|

−�I∗ − � − � − � 0 −�S∗

�I∗ −� − � − � − � �S∗

0 � −� − � − � − �

|

|

|

|

|

|

|

|

= (−��)[(� + � + � + �)

× (� + � + � + �) − ��S∗]

+ (−� − � − �)(−�I∗ − � − � − �)[(� + � + � + �)

× (� + � + � + �) − ��S∗] + (� + � + �)�I∗��S∗

= (−��)[�2 + (� + � + � + � + 2�)�

+ (� + � + �)(� + � + �) − ��S∗]

+ (� + � + �)(�I∗ + � + � + �)

× [�2 + (� + � + � + � + 2�)� + (� + � + �)

× (� + � + �) − ��S∗]

+ (� + �)�I∗��S∗ + �(�I∗��S∗).

(20)

a1 = 4𝜇 + 𝜃 + 𝛼I∗ + 𝜎 + 𝛽 + 𝜂 + 𝛿 + 𝛾 > 0,

a2 = (𝜃 + 𝜇)(𝛼I∗ + 𝜇) + 𝜇𝜎 + (𝛽 + 𝜂 + 𝛿 + 𝛾 + 2𝜇)

× (𝜃 + 2𝜇 + 𝛼I∗ + 𝜎)

+ [(𝛽 + 𝜂 + 𝜇)(𝜇 + 𝛿 + 𝛾) − 𝛽𝛼S∗],

a3 = (𝛽 + 𝜂 + 𝛿 + 𝛾 + 2𝜇)[(𝜃 + 𝜇)(𝛼I∗ + 𝜇) + 𝜇𝜎] + 𝛼I∗𝛽𝛼S∗

+ [(𝛽 + 𝜂 + 𝜇)(𝜇 + 𝛿 + 𝛾) − 𝛽𝛼S∗](𝜃 + 2𝜇 + 𝛼I∗ + 𝜎),

Table 3   Values of fitted biological parameters including some important statistical measures obtained via least-squares non-linear curve fitting 
technique

Estimate Standard error t-Statistic P-value Confidence interval

� 2.83562 × 10
−5

1.86633 × 10
−6 1.51935 × 10

1
3.48877 × 10

−7
{
2.40524 × 10

−5
, 3.26599 × 10

−5
}

� 7.27892 × 10
1 4.89708 1.48638 × 10

1
4.13571 × 10

−7
{
6.14965 × 10

1
, 8.40818 × 10

1
}

� 1.45362 9.41786 × 10
−2

1.54347 × 10
1

3.08728 × 10
−7 {1.23644, 1.67079}

� −1.81656 × 10
−1

2.95074 × 10
−2 −6.15628 2.72117 × 10

−4
{
−2.497 × 10

−1
,−1.13611 × 10

−1
}
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and

By using Routh–Hurwitz criteria, the endemic equi-
librium point is locally stable if a3 > 0 , a4 > 0 and 
a1a2a3 > a2

3
+ a2

1
a4 . 	�  ◻

Theorem 0.4  The endemic equilibrium point is globally 
asymptotically stable when R0 > 1.

Proof  The following statement are obtained from equilib-
rium conditions which we need to use later in the proof.

Next, let the Lyapunov function be

The derivative of L is

First, consider

(21)
a4 = [(� + � + �)(� + � + �) − ��S∗]

× [(� + �)(�I∗ + �) + ��] + (� + �)�I∗��S∗.

� = �S∗I∗ − �V∗ + (� + �)S∗

(� + �)V∗ = �S∗

�S∗I∗ = (� + � + �)E∗

�E∗ = (� + � + �)I∗.

L = ∫
S

S∗

(
1 −

S∗

x

)
dx + ∫

V

V∗

(
1 −

V∗

x

)
dx

+ ∫
E

E∗

(
1 −

E∗

x

)
dx +

(
� + � + �

�

)
∫

I

I∗

(
1 −

I∗

x

)
dx

dL

dt
=
(
1 −

S∗

S

)
dS

dt
+
(
1 −

V∗

V

)
dV

dt

+
(
1 −

E∗

E

)
dE

dt
+

(
� + � + �

�

)(
1 −

I∗

I

)
dI

dt
.

(22)

(
1 −

S∗

S

)
dS

dt
=
(
1 −

S∗

S

)

× [� − �SI + �V − (� + �)S]

=
(
1 −

S∗

S

)
[�S∗I∗ − �V∗

+ (� + �)S∗ − �SI + �V − (� + �)S]

=
(
1 −

S∗

S

)
�S∗I∗ − �SI

+ �S∗I − �V∗ +
�V∗S∗

S
+ �V −

�VS∗

S

+ (� + �)S∗ −
(� + �)S∗2

S
− (� + �)S

+ (� + �)S∗
(
1 −

V∗

V

)
dV

dt
=
(
1 −

V∗

V

)

× [�S − (� + �)V]

=
(
1 −

V∗

V

)
�S − (� + �)V + (� + �)V∗

=
(
1 −

V∗

V

)
�S − (� + �)V + �S∗

= �S −
�SV∗

V
− (� + �)V + �S∗

×
(
1 −

E∗

E

)
dE

dt
=
(
1 −

E∗

E

)
[�SI − (� + � + �)E]

= �SI −
�SIE∗

E
− (� + � + �)E + (� + � + �)E∗

= �SI −
�SIE∗

E
− (� + � + �)E + �S∗I∗

(
1 −

I∗

I

)(
� + � + �

�

)
dI

dt

=
(
1 −

I∗

I

)(
� + � + �

�

)
[�E − (� + � + �)I]

=
(
1 −

I∗

I

)
[(� + � + �)E

× −
(� + � + �)(� + � + �)I

�

]

= (� + � + �)E −
(� + � + �)(� + � + �)

× �I − (� + � + �)
EI∗

I

+ (� + � + �)(� + � + �)
I∗

�

= (� + � + �)E −
(� + � + �)(� + � + �)I

�
− (� + � + �)

EI∗

I

+ (� + � + �)E∗

= (� + � + �)E −
�S∗I∗I

�E∗

× (� + � + �) −
�S∗I∗2E

E∗I
+ �S∗I∗.

Table 4   Some statistical 
measures related to actual 
and simulated values from the 
measles model in (1)

Min Q1 Q2 Q3 Mean Max SD  IQR
Real 7.00 1.90 × 10

1
1.51 × 10

2
2.19 × 10

2
1.41 × 10

2
3.11 × 10

2
1.01 × 10

2
1.76 × 10

2

Predicted − 2.69 3.06 × 10
1

1.42 × 10
2

2.48 × 10
2

1.38 × 10
2

2.83 × 10
2

1.06 × 10
2

1.76 × 10
2
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Hence, we have,

Since the arithmetic mean is greater that or equal geometric 
mean, then

and

dL

dt
=(� + �)S∗

[
2 −

S∗

S
−

S

S∗

]

+ �S∗I∗
[
3 −

S∗

S
−

I∗E

IE∗
−

E∗SI

ES∗I∗

]

+
�V∗S∗

S

[
1 −

V

V∗
+

S2

S∗2

(
1 −

V∗

V

)]

+ �V∗
[
1 −

V

V∗
+

S

S∗

(
1 −

V∗

V

)]
.

2 −
S∗

S
−

S

S∗
≤ 0,

3 −
S∗

S
−

I∗E

IE∗
−

E∗SI

ES∗I∗
≤ 0,

1 −
V

V∗
+

S2

S∗2

(
1 −

V∗

V

) ≤ 0,

1 −
V

V∗
+

S

S∗

(
1 −

V∗

V

) ≤ 0.

Therefore, dL
dt

≤ 0 . By Lasalle’s invariance principle, the 
endemic equilibrium point is globally asymptotically stable 
when R0 > 1 . 	�  ◻

Fig. 2   The best curve fitting 
for the real measles cases and 
the compartment of the newly 
infected cases from the pro-
posed model given in (1)

Fig. 3   Different kinds of residuals for the statistical analysis of the model’s simulations

Fig. 4   The BoxWhisker chart for each real surveillance data value 
and those of predicted from the proposed model (1)
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Model fitting with parameter calibration

This section provides a comprehensive breakdown of the 
estimation of the parameters based on the actual data that 
is currently available for the measles epidemic in Pakistan 
from January 2019 to October 2019. Because actual data 
sets are now readily available, it is possible to collect those 
biological parameters of epidemiological models that are 
not readily available from any source, such as demography. 
This presents a significant opportunity for researchers. For 
the mathematical model of an epidemic that is being looked 
at right now to be accurate, it must be checked against real 
medical data.

The nonlinear ordinary differential equations system 
needs to be simulated to the extent of getting all meaningful 
values of the underlying parameters while maintaining the 
smallest possible residuals between the predicted values of 
the infected class of the model and the actual cases from 
the available data. This simulation process keeps repeating 
until the maximum number of data points coincide with the 
simulations of the infected class of individuals.

Estimating the parameters is the most common process 
known as the least-squares process, wherein the residuals 
(errors) have to be minimized until the allowable tolerance. 
Although several methods are available in the literature, this 
one is frequently used due to its credibility and simplic-
ity. It is. Therefore, we have also employed the method of 
least-squares to obtain the estimated (best fitted) values of 

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

6

6

7

7

89

1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

1

2

3

4

5

6

7

8

9

10

(a)

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

6

6

67

78

8

9

9
1011

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

1

2

3

4

5

6

7

8

9

10

11

(b)

0.5

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

2

2

2.
5

3

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10-3

0

0.5

1

1.5

2

2.5

3

3.5

(c)

Fig. 5   A 2-D contour plot of the reproduction number R
0
 of the mea-

sles model (1); a varying the effective contact rate � with respect to 
the testing and therapy rate of exposed individuals � ; b varying effec-

tive contact rate � with respect to the recovery rate from infection � ; 
and c varying progression rate of exposed to infected � with respect 
to the testing and therapy rate of exposed individuals �
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the essential biological parameters of the proposed measles 
model given in (1).

It can be observed in Table 3 that the best-fitted values 
for some important parameters are computed with the above-
stated approach. The estimates are available, but some other 
vital information about the parameters is also presented, 
including standard error, t-statistic value, p-value, and the 
respective confidence interval of each estimate. It may be 
noted that each p-value is smaller than 0.05 with 95% CI. 
With these values of the parameters, the basic reproduction 
number is determined to be R0 = 2.41442.

Moreover, Table 4 shows the calculation of vital descrip-
tive statistical measures about the actual and predicted val-
ues from the proposed measles model. Each calculated sta-
tistical measure is in good agreement and does not deviate 
much from reliable information. From the mean values in 
both actual and simulated cases, we observe that there is 
good agreement in both values, thereby creating confidence 
in the simulations of the model and the model’s validation. 
Finally, it is noticed in Fig. 2 that the simulations of the 
infected class of the proposed measles model (1) very well 
approach the actual data points, which is further confirmed 
with the residuals plotted in Fig. 3. The symmetry among 
the medical data values of the simulations can be observed 
in the BoxWhisker chart in Fig. 4. This chart for the simu-
lated cases is better than the box obtained with actual mea-
sles cases. The statistical analysis carried out in this section 
brings confidence in the reliability and the validation of the 
proposed measles model.

Numerical simulations with results 
and discussion

To further demonstrate and establish our theoretical find-
ings, we ran additional numerical simulations here. In par-
ticular, we first examine how the most sensitive character-
istics affect the reproduction number, a threshold quantity 
that determines the disease’s impact on a given population. 
We further explore the impact of these parameters on the 
prevalence of the infected population to better understand 
the regulation of measles in a specific demographic. To do 
this, the dynamical behaviour of the entire infected popu-
lation under various scenarios of control measures will be 
simulated. We defined the infected population as the sum 
of the exposed and infected populations, so it’s important 
to keep that in mind. This is because, measles can spread 
from a person who has it to someone who is susceptible to it.

A six-stage fifth-order Runge-Kutta method was imple-
mented on MATLAB to simulate the dynamics of the model 
system (1). The parameter values used are as provided in 
Table 2, except otherwise stated. These values were obtained 
from the model fitting with parameter calibration presented 

in Sect. 4. It is imperative to note that, because the fitted 
data are real data from Pakistan, the predictions based on 
the numerical simulation results will be more appropriate for 
describing the measles transmission dynamics in Pakistan.

In Fig. 5, we use a 2-D contour plot to investigate the 
dynamics of the reproduction number R0 , by varying two 
parameters simultaneously. The reproduction number is an 
essential threshold which is a criterion for determining the 
disease’s potential to spread in a population. Epidemiologi-
cally, it measures the average number of secondary infec-
tious cases that a single infected person can produce in a 
completely susceptible population. In other words, the repro-
duction number R0 given in (15) measures the average num-
ber of measles cases that a single measles infected person 
can generate in a population that is completely susceptible. 
Thus, we note that an increase in the reproduction number 
will upsurge the risk of measles occurrence in the populace. 
As a result, reducing R0 will be the goal of all individuals 
to reduce the risk or burden of measles in the population.

In Fig. 5a, we illustrate the dynamics of the reproduction 
number by varying the effective contact rate � with respect 
to the testing and therapy rate of exposed individuals � . The 
result shows that an increase in the testing and therapy rate 
of exposed individuals reduces the abundance of the repro-
duction number. For instance, if we fix the effective contact 
rate at � = 0.06 , a testing and therapy rate at � = 1.5 will 
yield a reproduction number between the range of (4, 5). 
However, increasing the testing and therapy rate of exposed 
individuals to � = 2.5 will reduce the reproduction number 
to the range of (2, 3). From this result, we can infer that, 
by simultaneously reducing the effective contact rate and 
increasing the testing and therapy rate of exposed individu-
als, the reproduction number can be reduced to a minimal 
value. As a result, the disease burden can be mitigated. We 
observe a similar result in Fig. 5b. The figure shows the 
effect of varying the effective contact rate � with respect to 
the recovery rate from infection � on the reproduction num-
ber. Overall, the result shows that by simultaneously reduc-
ing the effective contact rate and increasing the recovery 
rate from infection, the reproduction number can be reduced 
below unity.

In Fig. 5c, we illustrate the impact of varying the progres-
sion rate of exposed to infected � with respect to the testing 
and therapy rate of exposed individuals � on the reproduc-
tion number. The result shows that an increase in the testing 
and therapy rate of exposed individuals decreases the value 
of the reproduction number. Similarly, reducing the progres-
sion rate of exposed individuals to an infected population 
will reduce the reproduction number. Thus, to reduce the 
measles burden in the population, it is important to increase 
testing and therapy for the exposed individuals to enhance 
their recovery. In addition, the effective contact rate must 



1555Modeling Earth Systems and Environment (2023) 9:1545–1558	

1 3

be minimized through preventive measures to reduce the 
transmission of measles from an infected person.

To investigate the effect of each parameter on mitigat-
ing the burden of measles in the populace, we simulate the 
impact of some parameters on the dynamics of the total 
infected human population (E + I) in Fig. 6. Following the 
result from the sensitivity analysis, we regulate the base-
line parameter values by reducing the effective contact rate 
� and the progression rate from exposed to infected � by 
25% , 50% , and 75% such that � = 0.00075, 0.0005, 0.00025 
a n d  � = 2.84e − 5, 2.13e − 5, 1.42e − 5, 7.09e − 6 
respectively. Furthermore, we increase the testing 
and therapy rate for exposed individuals � , vaccina-
tion rate � , and recovery rate from infection � by 25% , 
50% , and 75% such that � = 1.81703, 2.18043, 2.54384 , 
� = 0.21125, 0.25350, 0.29575   ,  a n d 
� = 0.1200, 0.1440, 0.1680 . These values were used to 
investigate the impact of each parameter on the total infected 
population.

In Fig. 6a, b, we show the outcome of the effective con-
tact rate and the progression rate of exposed individuals 
to the infected population on the total infected population. 
The result shows that reducing the effective contact rate 
of measles and the progression rate of exposed humans by 
75% reduces the total infected population faster. In other 
words, to effectively mitigate the burden of measles in 
the community, a need for reducing the effective contact 
rate through preventive measures is inevitable. Also, there 
must be an implementation of facilities and resources to 
diagnose exposed individuals early to reduce their progres-
sion to the infectious stage.

In Fig. 6c, e, we illustrate the effect of testing and ther-
apy rate for exposed individuals � , vaccination rate � , and 
recovery rate from infection � on the total infected popula-
tion. The overall result from these figures shows that an 
increase in � , � , and � will reduce the burden of measles in 
the population. Particularly, reducing the parameter values 
by 75% has a more effective impact on the total infected 
human population. As a result, society’s priority would be 
increasing the vaccination rate against measles, the recov-
ery rate from infection through treatment or enhancement 
of human body immunity, and the facilitation of testing 
and therapy to reduce the progression of exposed individu-
als into the infected population. It is worth noting that even 
though the baseline parameters are regulated similarly to 
the maximum of 75% , it must be noted that the dynamics 
of the total infected population are diverse under differ-
ent parameters. For example, it is obvious in Fig. 6 that 
reducing the effective contact rate by 75% decreases the 
total infected human population faster with a higher mag-
nitude than the others as shown in Fig. 6a. As a result of 
this observation, we investigate the effect of combining 
different control measures on the total infected population 

in Fig. 7. We note that we select the 75% regulated param-
eter values (henceforth referred to as “control”) such that 
� = 0.00025 , � = 7.09e − 6 , � = 2.54384 , � = 0.29575 , and 
� = 0.1680.

Our aim in simulating different combined controlled 
parameters is to predict and make recommendations for the 
most effective control measures that can be used to mitigate 
the measles burden on the populace. In Fig. 7a, we illustrate 
the impact of a single control measure � , double control 
measures (�, �) , and triple control measures (�, �, �) , on the 
abundance of total infected population. In comparison to the 
effect of a single or double controlled parameter, the total 
infected population decreased faster when the three con-
trolled parameters were used. This means that even though 
increasing the vaccination rate (�) by 75% helps in reducing 
disease burden, the implementation of an increase in vacci-
nation rate, testing and therapy rate for exposed individuals, 
and recovery rate from infection simultaneously will aid the 
eradication of measles faster in the population. We see the 
same result in Fig. 7b, c. Overall, we can conclude that by 
using a combined control measure, the measles burden can 
be reduced more rapidly in the population compared to the 
use of a single control measure.

From the results presented in Fig. 7, it is worth mention-
ing that the combined controlled parameter (� , �, �) has the 
greatest impact in reducing the number of the total infected 
population. In Fig. 7d, we simulate the dynamics of the 
infected population without any control and with the pres-
ence of all control measures. We defined the scenario “with 
all-control” as the combination of all the controlled param-
eters, while the scenario “without any-control” is when 
the parameters are in their baseline values as presented in 
Table 2.

Although, the cost of implementing control measures and 
preventive strategies can be very expensive, especially for 
developing countries like Pakistan, thus, it is recommended 
to selectively choose the most cost-effective control strate-
gies that can be used to mitigate the disease burden on the 
population.

Conclusion with future directions

The measles is a very contagious and sometimes fatal illness. 
The number of deaths caused by measles worldwide has 
decreased by 73% between the years 2000 and 2018, thanks 
in large part to vaccination efforts. Nevertheless, the dis-
ease is still common in many developing nations, especially 
those in Africa and Asia. We built a deterministic math-
ematical model of the spread of measles to learn more about 
its dynamics of spread. This research finds two equilibrium 
points: one where the disease is absent and one where it is 
pervasive. To determine whether or not an equilibrium can 
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Fig. 6   Simulations of the measles model (1) with varying effects of 
parameters on the total infected human population; a effective con-
tact rate � ; b progression rate of exposed to infected � ; c testing and 

therapy rate for exposed individuals � ; d vaccination rate � ; and e 
recovery rate from infection � . Parameter values used are as given in 
Table 2 except otherwise stated



1557Modeling Earth Systems and Environment (2023) 9:1545–1558	

1 3

be maintained, the basic reproduction number is used. When 
R0 < 1 , the point of equilibrium where no diseases exist, 
the measles can be eradicated permanently. However, when 
R0 > 1 , the endemic equilibrium point remains constant. 
The study’s findings imply that implementing healthcare 
facilities that will boost diagnosis and therapy for exposed 
people and the recovery rate from infection is necessary to 
successfully lessen the measles burden in a shorter period. 
Also, people should be encouraged to take steps to prevent 
measles from spreading in the population. For future studies, 
the proposed measles model would be investigated to com-
prehend the chaotic dynamics of the disease in the field of 
fractional calculus. In this connection, a few differential and 
integral operators, recently introduced in the literature, such 
as the Atangana-Baleanu and Caputo-Fabrizio, will be used. 

In addition, optimal control theory will assist in identifying 
the control measures most effective to prevent the disease 
from persisting for long periods within a population.
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