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Abstract
Prosopis juliflora, one of the most invasive species in arid and semi-arid environments, can sequester considerable amounts 
of carbon and provide fuel wood for domestic consumption. However, the lack of species-specific allometric models limits 
efforts to estimate forest biomass and its potential to store carbon. We conducted this study to determine the rate of expan-
sion of this Prosopis in arid environments and develop robust allometric models to precisely predict tree-level biomass and 
its carbon storage potential. The satellite image analysis showed that Prosopis continues to expand rapidly along riverbanks 
and accounted for 69% of the available vegetation cover in the study area. The spatial coverage of Prosopis increased by 40% 
within 5 years from 2016 to 2021 and has been expanding at a rate of 8% per year. The rate of Prosopis expansion calls for 
the application of new utilization systems like massive charcoal production which may be a great blessing to the region. For 
such purpose, quantification of the biomass of Prosopis from easily measured variables is essential. Hence, after destructive 
sampling of 45 individual trees, the relationships between three variables (diameter at stump height, DSH; height, H; and 
wood density, ρ) and their total biomass of the aboveground parts were used to fit regression models in R software. These 
models were developed using DSH alone, DSH and height or in a combination of DSH, H and ρ. Although DSH alone 
explained most of the variations (91%), adding H and ρ as additional independent variables resulted in a much better predic-
tion of biomass estimation with the lowest values of bias. Therefore, the best-selected model for the above-ground biomass 
(AGB) estimation of the species Prosopis is M9 ( AGB = exp(−3.053 + 0.919 × ln(DSH2 × H × �)) which presented the 
highest adj. R2 value (0.985) and the lowest values of Akaike information criteria. Given narrow diameter ranges, the model 
can be applied beyond their valid data ranges and to other similar growth forms across the arid regions of Ethiopia.
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Introduction

Prosopis juliflora (hereafter Prosopis) is a drought-tolerant, 
fast-growing, evergreen and very thorny invasive species in 
arid and semi-arid areas (Ilukor et al. 2016; Gianvenuti et al. 
2018; Rapinel et al. 2019). Prosopis was introduced to Ethio-
pia in the late 1970s as part of the green campaign affor-
estation program to curb land degradation (Mehari 2015; 
Birhane et al. 2017). However, this species has become natu-
ralized, continuously invading pastoral areas by displacing 
native plants and forming a dominant vegetation type in the 
Afar region (Shiferaw et al. 2019a; Ravhuhali et al. 2021). 
Prosopis has been expanding at a rate of 50,000 ha  year− 1 
in the Afar region for a decade (Tilahun and Asfaw 2012; 
Wakie et al. 2014) and it invaded 1.17 million hectares (ha) 
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of the landmass of the region within 35 years of its introduc-
tion (Shiferaw et al. 2019b).

Prosopis has been widely expanding in the tropical parts 
of the world (Oduor and Githiomi 2013; Abdulahi et al. 
2017; Patnaik et al. 2017). This is because Prosopis can 
grow under different environmental conditions (Abdulahi 
et al. 2017) such as in any soil type (Patnaik et al. 2017), in 
areas that lie between 200 and 1500 m above sea level (a.s.l.) 
with a mean annual rainfall of 50–1500 mm and the air tem-
perature below 50 °C (Pasiecznik et al. 2007). In addition, 
Prosopis has extensive root systems capable of tapping into 
the groundwater table up to 50 m depth (Ng et al. 2016, 
2017; Askar et al. 2018), and it has large numbers of seeds 
which are dispersed through cattle wastes (Kyuma 2016). 
Moreover, rivers and water canals play a significant role in 
the dissemination of seeds to different areas (Abdulahi et al. 
2017). The aforementioned belongings of Prosopis foster its 
adaptability and support the invasion of the species across 
various agro-ecosystems (Tilahun and Asfaw 2012; Mehari 
2015). At present, Prosopis is found in 103 countries (Edrisi 
et al. 2020).

Prosopis forms a thick thorny structure and a canopy that 
ranges 20–95% (Berhanu and Tesfaye 2006) and expands 
at the expense of different land-use types. The major argu-
ment has been that Prosopis possesses allelopathic and 
allelochemical effects on other tropical plant species (Asrat 
and Seid 2017; Linders et al. 2019; Wakie et al. 2021) that 
affects biodiversity and ecosystem services, and removes a 
large amount of water resource through evapotranspiration 
(Shiferaw et al. 2021). The structural arrangements and bio-
logical characteristics of Prosopis limit the area coverage of 
multipurpose woody vegetation and grasslands (Wakie et al. 
2014) which would, in turn, affect the livelihoods of agro-
pastoralist (Meroni et al. 2017; Edrisi et al. 2020; Shackleton 
et al. 2014; Ilukor et al. 2016) reported that Prosopis nega-
tively affects the native flora by invading grasslands, shrub-
lands and woodlands. These researchers blamed Prosopis as 
an invasive species that has adverse impacts on the ecology, 
economy and society.

On the other hand, many researchers argued that Prosopis 
is a gift to the arid and semi-arid parts of the world because 
of its ability to grow in a harsh environment. This species 
offers direct tangible benefits, e.g., construction, fencing and 
craft materials (Abdulahi et al. 2017), and fodder for animals 
(Ravhuhali et al. 2021). It has high quality for firewood and 
charcoal (Oduor and Githiomi 2013) and becomes the main 
source of household energy (Patnaik et al. 2017; Gianvenuti 
et al. 2018). Prosopis also offers indirect benefits such as 
making the desert area more habitable by regulating the 
local temperature (Patnaik et al. 2017) and environmental 
services including carbon sequestration.

Assessing the benefits of Prosopis for carbon sequestra-
tion as well as biomass for domestic energy depends very 

much on accurate methods developed to estimate the bio-
mass and carbon stock of a specific tree species. Technically, 
quantification of amounts of carbon stored in trees requires 
estimates of the dry weight of biomass, and then, the bio-
mass estimates are converted to carbon and carbon dioxide 
equivalents (Mugasha et al. 2013; Chave et al. 2014). The 
biomass can be estimated either using stem volume infor-
mation (Andreas et al. 2011) and biomass expansion factors 
(Guo et al. 2010; Bohdan et al. 2015) or based on allomet-
ric biomass models (Diédhiou et al. 2017; Kusmana et al. 
2018). Biomass models comprise easily measurable tree 
variables, e.g., diameter at breast height (DBH), height, and 
wood density that are correlated to the biomass. Numerous 
allometric biomass models have been developed in recent 
years (Diédhiou et al. 2017; Dimobe et al. 2018; Sillett et al. 
2019). However, due to differences in allometry and wood 
density, tree species-specific biomass models are often pre-
ferred (Mugasha et al. 2013).

Despite many studies carried out on Prosopis, there is no 
allometric biomass model for this species as to the research-
ers’ knowledge. In addition, quantitative information about 
the rate of spatial extent and trends of Prosopis is limited. 
These situations demand scientific evidence to provide a bal-
anced view for decision-makers, environmentalists, farmers, 
and land-use planners. Therefore, the objectives of this study 
were to map the spatial extent and rate of invasiveness of 
Prosopis using remote sensing and GIS techniques and to 
develop allometric biomass models for the Prosopis species 
in the Afar region that can be used in the dry land of other 
tropical areas.

Materials and methods

Description of the study area

The study was carried out in the Afar region (eastern parts 
of Ethiopia) where Prosopis is vastly distributed. Geographi-
cally, the study area is located between 8.96° to 10.80° N 
and 39.79° to 40.83° E (Fig. 1) and covers an area of 13,420 
 km2. The topography of the area is relatively flat with an alti-
tude varying between 551 and 1863 m a.s.l. According to the 
world reference base for soil resources (WRB 2014), the soil 
of the Afar region is classified as Lithic and Eutric Fluvi-
sols. Acacia nilotica (L.) Delile. and Tamarix aphylla (L.) H. 
Karst. dominate the riverine forest along the Awash River. 
Other tree species such as Prosopis, Acacia senegal (L.) 
Willd., Dobera glabra (Forssk.) Poir., and Cadaba routun-
difolia Forssk. are common in the rangeland, particularly in 
areas with high saline soil. Sorghum, sugarcane, cotton and 
vegetables are the major crops in the study area. This area 
is mainly irrigated by the Awash River. The most important 
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domestic animals are camels and goats which are considered 
the main sources of household income.

Mapping spatial extent of Prosopis

A satellite dataset of Sentinel-2 imageries taken during the 
dry season (March 2016 and 2021) was used to map the 
spatial extent and trends of Prosopis, because its spatial and 
spectral properties are suitable to detect and map this woody 

vegetation. The dry season is the optimum time to spectrally 
differentiate the evergreen Prosopis from other leaf-shedding 
vegetation. Rapinel et al. (2019) valued Sentinel-2 data for 
the identification of evergreen invasive species.

Spatial information on Prosopis coverage was produced 
using supervised classification technique, maximum-like-
lihood classifier and the normalized difference vegeta-
tion index (NDVI). The supervised classification method 
requires spatially explicit training sites—collected from each 

Fig. 1  Location map of the 
study area
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land-cover type—to train the machine. In the study area, five 
major land-cover types, namely woody vegetation, grazing 
area, cropland, water body and settlement were identified 
based on Ethiopian LULC classification standard (EMA 
2018). A total of 100 training sites, specifically 55, 15, 12, 
5, 6 and 7 training sites from Prosopis vegetation, non-Pros-
opis woody vegetation, cropland, water body, settlement and 
grazing area, respectively, were collected from the study area 
using a handheld Global Positioning System (GPS) with an 
accuracy of ± 3 m. The training sites were collected from the 
field where each land-cover type was not changed between 
2016 and 2021. This was done through observation and by 
asking the elderly people about the coverage of each land-
cover category in 2016. Moreover, the land-cover types of 
each training sites were validated using high spatial resolu-
tion Google Earth pictures. Based on these training data, 
the 2016 and 2021 imageries were classified into vegetative 
and non-vegetative areas using Sentinel Application Plat-
form, ArcGIS 10.8 and ERDAS IMAGINE 2016 software 
and maximum-likelihood classifier. Furthermore, areas cov-
ered by Prosopis and non-Prosopis woody vegetation were 
identified using biomass indicators, expert knowledge and 
environmental variables including rivers, roads and settle-
ment. The inclusion of expert knowledge is key, because the 
Prosopis expansion is influenced by different environmental 
variables. Biomass indicators help to detect and map Pros-
opis (Vidhya et al. 2017). Finally, areas covered by Prosopis 
and non-Prosopis woody vegetation were extracted using 
ArcGIS 10.8.

To discriminate the evergreen Prosopis from other leaf-
shedding vegetation, a threshold value was determined 
using the NDVI, because Prosopis is evergreen and NDVI 
is a ration-based index. In the study area, the NDVI value 
between 0.3 and 0.8 represents Prosopis vegetation. Before 
analysing the produced Prosopis and non-Prosopis woody 
vegetation maps, its accuracy should be assessed. Therefore, 
43 and 38 referenced data from Prosopis and non-Prosopis 
woody vegetation, respectively, were collected to assess the 
accuracy of the maps.

Allometric modelling

Selection of sample trees and measurements

Biomass data were collected from 45 plots of 5.64 m 
radius which were well spread over the Prosopis forest 
area. Within these plots, one tree is purposely selected 
for destructive sampling to match the target distribution 
across different diameters ranging from 2.5 to 8.3 cen-
timeters (cm). In total, we selected 45 sample trees for 
measurements of biomass and subsequent development of 
allometric equations. Prior to the destructive procedure, 
all sample tree diameters at stump height (DSH) were 

measured with a diameter tape which is seemingly more 
consistent for repeated measures and total tree height (H) 
was measured with meter tape after felling. Both DSH 
(cm) and H (m) measurements were taken to the nearest 
0.1. The reference level for diameter measurement was 
30 cm, because the majority of the diameter of the trees 
are below 5 cm (Djomo and Chimi 2017). Trees selected 
for sampling were cut at the base using a saw.

The aboveground part was considered as all biomass 
above a stump height of approximately 30 cm and it was fur-
ther divided into stems, branches and leaves. The branches 
were removed from the stem and trimmed into manageable 
billets for weighing using a mechanical hanging balance 
(0–100 kg) with an accuracy of 0.01 kg. All foliar mate-
rial was separated from branches and collected into bags 
to facilitate weighing. Stems were cross cut into 1 m length 
and upper and lower diameters of each segment were meas-
ured using a diameter tape. The fresh weights of branches 
and leaves for each individual tree were separately deter-
mined in the field using an electronic balance (model YH-T3 
multi-function weighing indicator) with a 600 kg capacity 
(precision 0.05 g). Depending on the stem length, two-to-
four small disc samples (a disc of about 5 cm thick) were 
cut from each segment at 0.3, 0.6, 1.3 m, and thereafter, 
every 1 m along the stem and the fresh weight and volume 
of each disc was recorded directly in the field for the deter-
mination of basic wood density (Eq. 1). All collected above-
ground samples (discs, sample branches and leaves) were 
transported to the laboratory where they were oven-dried 
at 105 °C (samples of branches and stems) or 75 °C (sam-
ples of leaves) to constant weight by monitoring changes 
in weight with intervals of 6 h until there was no change in 
weight. The dry weight of the samples was recorded imme-
diately after removal from the oven. Wood basic density (g 
 cm− 3) for each disc (and tree) was determined as the ratio 
of dry mass to green volume

where ρ = wood basic density (g  cm− 3), Dry Mss = subsam-
ple oven-dried mass (g), and Green Vss = subsample fresh 
volume of wood  (cm3).

For the stems and sample discs, diameters of the lower 
and upper levels of each segment were used to calculate 
the volume (V) using the Smalian formula (Dimobe et al. 
2018; Sillett et al. 2019; Vinh et al. 2019)

where V represents the volume, L the length, and D1 and D2 
the diameters at the lower and upper sides of each segment.

(1)� =
DryMss

GreenVss

,

(2)V =
� × L

8

(

D1
2 + D2

2
)

,
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The dry weights (biomass) of tree components were 
obtained by multiplying the dry-to-green weight ratio by 
the green weight of the respective tree component. The total 
biomass for each tree component was obtained by the fol-
lowing formula:

The total aboveground dry weight of a tree was finally 
computed as the sum of the stem, branch and leaf dry weight 
(Ubuy et al. 2018).

Model development, selection and evaluation

The relationship between tree variables (DSH, H and ρ) 
and the total biomass of the aboveground woody parts 
were used to fit regression models using the dynamic fit 
module function in R-software (Version R-4.1.3). Prior to 
developing allometric equations, the relationship between 
aboveground biomass (dependent variable) and DSH and 
H (independent variables) was plotted using scatter plots. 
This helped to visualize the range and shape of the func-
tional relationships of variables and to determine the type of 
model to be fitted (Picard et al. 2012; Kapinga et al. 2018). 
For the construction of the allometric equations, the data 
were tested for normality of residuals as determined by Sha-
piro–Wilk (p < 0.05) and homogeneity of variances (Djomo 
and Chimi 2017). We performed several regression models 
from the aboveground data on the basis of DSH only and in 
combination with H and/or ρ as predictor variables. These 
model forms have previously been applied in developing 
biomass models (see, e.g., Singh et al. 2011; Huy et al. 2016; 
Diédhiou et al. 2017; Djomo and Chimi 2017; Kapinga et al. 
2018). For this study, 11 allometric models of the following 
form were evaluated for their fitness in estimating ABG:

M1 AGB = a + b × DSH  
M2 AGB = a + b × (DSH) + c ×

(

DSH2
)

  
M3 AGB = exp(a + b × ln(DSH))  
M4 AGB = exp(a + b × ln(DSH × H))  
M5 AGB = exp(a + b × ln(DSH × �))  
M6 ABG = exp(a + b × ln(DSH2 × H))  
M7 AGB = a × DSHb  
M8 AGB = exp(a + b × ln(DSH2 × �))  
M9 AGB = exp(a + b × ln(DSH2 × H × �))  
M10 AGB = exp(a + b × ln(DSH2)×H × �)  
M11 AGB = exp(a + b × ln(DSH) × ln(�)).  
In which AGB is the response variable (total aboveground 

tree biomass) (kg  tree− 1), DSH is the tree diameter at stump 
height (30 cm), H is the tree height (m), and ρ is the wood 
density (g  cm− 3); a, b, c, d and e are model parameters.

(3)

Total biomass =
Total fresh mass a tree × Dry mass of aliquot

Fresh mass of aliquot
.

The non-linear programming (NLP) procedure in R-soft-
ware was used to estimate the model parameters (a, b, and 
c). The procedure produces the least-squares estimates of 
the parameters of a non-linear model through an iteration 
process. The selection of the best allometric models was 
obtained by comparing the values of the Akaike information 
criteria (AIC), root-mean-square error (RMSE), the adjusted 
coefficient of determination (adj. R2), and mean percentage 
error (MPE%) (Kapinga et al. 2018; Kusmana et al. 2018) 
based on the following formula:

In these formulae, MPE% is the mean percentage error; 
ŷi is the predicted aboveground biomass; yi is the observed 
aboveground biomass; 

−
y
i is the mean value of the biomass; 

n is the number of samples; p is the number of parameters; 
logLik is the log-likelihood values of the non-linear regres-
sion model. Then, the best models are selected based on the 
smallest values of AIC, RMSE, and MPE and the biggest 
value of adj. R2 (Kusmana et al. 2018). Student's t tests were 
done to see whether the MPE% values were significantly 
different from zero. Models with non-significant parameter 
estimates were excluded during the selection process regard-
less of AIC and MPE% values.

Data analysis

All models were estimated and evaluated on the basis 
of linear and non-linear regression statistics, taking into 
account the classical criteria such as coefficient of deter-
mination (adj. R2) and standard error of estimate (SEE). 
The decisive criterion for judging model performance 
when comparing different models was AIC. All statistical 
and regression analysis, equation parameterization, and all 
graphics were done using R-software. Significant means 
were separated by Tukey’s test at the 5% probability level.

AIC = −2logLik + 2(p + 1)

MPE% =
100

n
x

n
∑

i=1

[
(

yi − ŷi
)

yi

]

%

RMSE =

�

∑n

i=1

�

yi − ŷi
�2

n − p

adj.R2 = 1 −
(n − 1)

∑n

i=1

�

yi − ŷi
�2

(n − p)
∑n

i=1

�

yi −
−
y
i

�2
.
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Results

Spatial distribution of Prosopis

The overall classification accuracy of Prosopis and non-
Prosopis woody vegetation map was 95 and 97%, respec-
tively. The analysis results showed that quite large parts 
of the study area are covered with Prosopis followed by 
indigenous species-dominated vegetation (Fig. 2). About 
15% and 20% of the study area were covered with woody 
vegetation in 2016 and 2021, respectively (Table 1). Of the 
available woody vegetation resources, 59% in 2016 and 
69% in 2021 were covered with Prosopis. This shows that 
the spatial coverage of Prosopis increased by 40% within 
5 years and has been expanding at a rate of 8% per year. 
On the contrary, the area coverage of indigenous woody 

vegetation decreased by 23%. The distribution map shows 
that Prosopis is not uniformly distributed across the area; 
instead, it heavily invaded the banks of the Awash River 
and the western and central parts of the study area which 
are potentially suitable irrigation croplands (Fig. 2).

Allometric modelling

In total, 45 trees having a DSH ranging from 2.50 to 8.25 
were destructed to determine the total aboveground biomass 
of Prosopis species in the Afar Region. The mean specific 
gravity of the sampled species was 0.63 ± 0.06 (g  cm− 3), 
varying between 0.47 and 0.75 g  cm− 3 (Table 2). The tree 
height averaged 5.03 ± 0.20, varying from 2.80 to 7.50 
(Table 2). The scatter plot (Fig. 3) showed the relationship of 
AGB with the three predictor variables (DSH, H and ρ). As 
depicted in the figure, AGB did not show linear relation with 

Fig. 2  Map showing the distribution of Prosopis and non-Prosopis vegetation
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all three predictors. As a result, square and log-transformed 
data were used in selecting the best-fitted models for AGB 
estimation of Prosopis forest.

Species-specific allometric models for estimating tree-
level biomass (AGB) are shown in Table 3. These mod-
els were developed using DSH alone, DSH and H or in a 
combination of DSH, H and ρ. The analysis of the AGB 
models utilizing a combination of several independent vari-
ables revealed that the most effective variable was DSH. 

Table 1  Areas covered with Prosopis and non-Prosopis woody vegetations

Land cover In 2016 In 2021 Change between 2016 and 
2021

Area  (km2) % Area  (km2) % Area  (km2) %

Prosopis 1195 9 1674 12 + 479 40
Non-Prosopis 830 6 807 6 − 23 − 3
Non-vegetated 11,395 85 10,939 82 − 456 + 40
Total 13,420 100 13,420 100

Table 2  Mean and range of diameter at stump height (DSH), total 
height (H), specific wood density (ρ), and total aboveground biomass 
(AGB) of harvested sample trees

Variables N Mean Std. dev Min. Max.

DSH (cm) 45 4.544 1.403 2.5 8.25
H (m) 45 5.033 1.214 2.8 7.5
Ρ (g  cm− 3) 45 0.635 0.061 0.472 0.752
AGB (kg  tree− 1) 45 2.554 1.829 0.446 7.973

Fig. 3  Scatter plot relation of AGB with DSH (a), height (b) and density (c)
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Diameter at stump height (30 cm) alone showed a good fit 
in AGB in this model development (adj. R2 = 0.875–0.911) 
(Table 3). The strongest model for AGB of a single tree 
using only one independent variable (DSH) explained 91% 
variability (model 2). Adding H as the second predictor 
gave a much better prediction with the lowest values of bias 
and AIC compared to DSH-alone (M6). When DSH and 
H are included in the prediction, it can explain 96% of the 
variability in AGB. However, the AGB model using DSH 
and ρ (M5, M8, and M11) did not improve the fit and was 
found slightly weaker, explaining 92–93% variability in the 
observed data. The best-fit equation for the AGB estima-
tion of Prosopis was obtained by the combination of three 
predictor variables (DSH, H and ρ; M9) and by all metrics 
improved the model fitness. This model presented the high-
est adj. R2 value (0.985) and the lowest values of AIC statis-
tics (Table 3). Therefore, M9 is the best model for the AGB 
estimation of the species Prosopis with the highest value 
of the coefficient of determination (adj. R2) and the lowest 
value of AIC. This good fit that is provided by the biomass 
prediction model to the data is confirmed by the regression 
fit of the total AGB against the predictors (DSH, H and ρ) 
(adj. R2 = 0.985, at 95% CI) (Fig. 4).

Discussion

Spatial distribution of Prosopis in arid and semiarid 
regions

NDVI values and high spatial resolution satellite images, 
the size, color, and shape of the canopy (Gunawardena 
et al. 2015) and ground truth information were considered 
to map the spatial distribution of Prosopis. The analysis 
showed that about 69% of the available woody vegetation 

resource is Prosopis which expands at a rate of 8% per year 
(Table 2). On the contrary, the non-Prosopis woody vegeta-
tion decreased at a rate of 0.6% per year which is below 
the national deforestation rate (0.93% per year; Mongabay 
2019). We observed that Prosopis heavily invaded the graz-
ing areas because of the dispersal agents of its seed such as 
goats and camels. In addition, Prosopis is densely distributed 
around the Awash River banks—highly suitable for irriga-
tion and crop production—mainly due to the availability of 
water resources. This means that the species perform well 
in arid and semi-arid regions mainly in wetlands (Ng et al. 
2016; Meroni et al. 2017). Water availability quickly led to 
the formation of dense thickets that decreased the cultivation 
fields (Walter and Armstrong 2014). Hence, the most vulner-
able and threatened land use for the invasion of Prosopis is 

Table 3  Model parameter estimates and statistical summary of total aboveground biomass

Model no. Allometric equations Parameter estimates R2_adj AIC RMSE MAPE p Value

a b c

M1 AGB = a + b × DSH − 2.995 1.221 0.875 92.522 0.633 0.268 ≤ 0.001
M2 AGB = a + b × (DSH) + c ×

(

DSH2
) 0.338 − 0.278 0.154 0.911 78.013 0.527 0.211 ≤ 0.001

M3 AGB = exp(a + b × ln(DSH)) − 2.697 2.302 0.898 4.092 2.234 0.876 ≤ 0.001
M4 AGB = exp(a + b × ln(DSH × H)) − 3.756 1.452 0.954 − 32.055 2.204 0.896 ≤ 0.001
M5 AGB = exp(a + b × ln(DSH × �)) − 1.571 2.233 0.923 − 8.526 2.232 0.896 ≤ 0.001
M6 ABG = exp(a + b × ln(DSH2 × H)) − 3.476 0.919 0.963 − 41.982 2.202 0.899 ≤ 0.001
M7 AGB = a × DSHb 0.067 2.414 0.863 11.112 1.800 0.976 ≤ 0.001
M8 AGB = exp(a + b × ln(DSH2 × �)) − 2.194 1.161 0.933 − 14.931 2.223 0.894 ≤ 0.001
M9 AGB = exp(a + b × ln(DSH2 × H × �)) − 3.053 0.919 0.985 − 80.798 2.197 0.911 ≤ 0.001
M10 AGB = exp(a + b × ln(DSH2)×H × �) − 1.005 0.174 0.885 9.637 2.197 0.853 ≤ 0.001
M11 AGB = exp(a + b × ln(DSH) × ln(�)) − 2.041 2.308 1.451 0.933 − 13.955 2.223 0.896 ≤ 0.001

Fig. 4  Scatter plots showing the relationship between DSH and AGB
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the potentially suitable irrigation fields followed by grazing 
lands.

Currently, the invasion rate of Prosopis is tremendously 
high. For example, Ilukor et al. (2016) found that in the 
Afar region, the expansion of Prosopis towards the wetlands 
increased by 44  km2 (122%) between 2000 and 2005 years. 
In Somaliland, the uncontrolled spread of Prosopis into the 
irrigation fields becomes a serious problem in the region 
(Meroni et al. 2017; Ng et al. 2016). In semi-arid areas of 
South Africa, Prosopis becomes highly invasive, creating 
extensive and invulnerable thickets mainly due to its high 
seed production ability and fast growth and high capability 
of seeds to stay in the soil for long period (Ravhuhali et al. 
2021). Because of such behaviour, the species invaded about 
12% of the study area in the last 5 years (Fig. 2). Similarly, in 
the Afar region, Prosopis invaded the area of grazing lands 
and shrub lands and negatively affects useful native grass 
and herb species (Wakie et al. 2016).

Realizing its invasion rate, there have been attempts to 
eradicate the trees from the banks of irrigation canals in 
several locations. However, it took only a few years for 
Prosopis to re-occupy the space again (Walter and Arm-
strong 2014). On the other hand, Prosopis provides fodder 
to livestock, and becomes a reliable source of construction 
materials, furniture, firewood, and medicinal purposes in the 
Afar region (Wakie et al. 2016), reducing soil erosion, and 
providing good quality charcoal. In the Afar Region, Pros-
opis has become a reliable source of fuelwood and charcoal 
compared to acacia trees (Ilukor et al. 2016). Researchers 
reported that in arid and semi-arid regions, Prosopis has a 
multipurpose ecosystem role including controlling soil ero-
sion, providing fodder for livestock from its fruits and leaves 
and fuel energy resources, wood for furniture, and timber 
for construction (Gianvenuti et al. 2018; Linders et al. 2019; 
Edrisi et al. 2020). Studies showed that Prosopis species 
produce high-value charcoal that tends to burn very well. 
In particular, the calorific value of Prosopis (21 MJ  kg− 1; 
Kumar and Chandrashekar 2016) was higher compared to 
the conventional biomass of wood (8.4–17 MJ  kg− 1; Haile 
et al. 2018). This means that there is a possibility of utilizing 
Prosopis as a raw material for solid fuel production and its 
contribution to the energy supply for subsistence people in 
arid regions. Therefore, any control programme should not 
ignore its contribution to the smallholder livestock farmers 
in semi-arid areas.

Allometric equations for biomass estimation

The fundamental importance of species-specific model 
construction is to estimate the tree biomass using measured 
variables without destruction. Species-specific allometric 
equations were developed as a function of DSH, H and wood 
density (ρ) and performed well in predicting the AGB of the 

selected species (Abich et al. 2019). The selections of best 
models are based on the best fit to available independent 
variables. As proven in many allometric studies, DSH alone 
is the most powerful variable that always explains most of 
the variability in aboveground biomass estimation (Cien-
ciala et al. 2013; Kapinga et al. 2018; Abich et al. 2019). 
This is also confirmed here for Prosopis, where the AGB 
model using DSH only as an independent variable explained 
87–91% of the observed variability. This may be attributed 
to the high correlations between woody biomass and diam-
eter which constitutes the largest portion of the total above-
ground biomass (Kapinga et al. 2018). In the model, M1 
shows a linear relationship between DSH and AGB, whereas 
other models show an exponential growth of AGB. The 
value b (i.e., the slope) of the equations describes the type of 
scaling relationship between AGB and other tree parameters 
mainly DSH. For example, AGB increases proportionally 
with DSH when the exponent is 1, but in the case of M7, 
AGB increases exponentially with an increase in DSH.

For a quick estimation of Prosopis biomass at a single tree 
level, simply using the measurement of one variable (DSH) 
is certainly an advantage. This is because the diameter is suf-
ficient to yield reliable tree biomass (Kapinga et al. 2018). In 
addition, it reduces the difficulties in measurements of tree 
height (H) data in dense and closed-canopy Prosopis for-
ests. According to Kusmana et al. (2018), researchers prefer 
to use only the diameter in developing allometric models, 
because the measurements of the diameter are an easier men-
suration variable to do at the study site.

Adding tree height (H) as a second independent variable 
resulted in a much better prediction with the lowest values 
of bias and AIC than the model with DSH alone. Adding 
H to the DSH-based model decreased AIC and increased 
R2 values but not RMSE. Adding wood density (ρ) as the 
second predictor instead of H had no significant effect on 
the fit of the observed tree biomass (Table 3). Our findings 
conform to the findings of some authors (Djomo and Chimi 
2017; Kapinga et al. 2018) who noted that including ρ or H 
does not substantially lead to an increase in the predictive 
ability of diameter based models. However, the best overall 
result for the AGB model was obtained using a combina-
tion of the three independent variables, namely DSH, H, and 
ρ. It explained 99% of the variability in the observed data 
(Table 3). At a 95% confidence interval (CI), the param-
eter estimates of all model forms were significant. We also 
found that the AIC of the models was substantially reduced 
when H and ρ covariates are included in the model (Table 3), 
indicating that H may be more important than ρ for reduc-
ing uncertainty in AGB estimates. This was consistent with 
Kusmana et al. (2018) that the model used the diameter and 
height variables which basically can increase the accuracy 
in biomass estimation, with the assumption that a tree would 
have the same wood density. This confirms the findings of 
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the previous studies (Dimobe et al. 2018; Feyisa et al. 2018) 
that the inclusion of H in combination with basic wood den-
sity explains most of the variability in aboveground tree bio-
mass. In general, the fitting statistics revealed that the M9 
model containing three predictors accurately predicted AGB 
of Prosopis tree species with the RMSE of 2% and proposed 
for prediction.

Conclusions

The average wood-specific gravity found in this study 
(0.62 ± 0.01 g  cm−3) is in the range reported elsewhere. 
This study has confirmed that Prosopis continues to expand 
rapidly along river banks and rangelands. The spread of this 
invasive species is greater than the existing management 
capacity and is impossible to eradicate by human power. 
The mismatch between management strategies and the rate 
of Prosopis expansion calls for the application of new utili-
zation systems from this species like massive production of 
charcoal bricks and selling to other regions which may be a 
great blessing to the region. For such purpose, quantification 
of the biomass of Prosopis from easily measured variables is 
essential. Although DSH alone mostly explained the varia-
tion for biomass estimation of Prosopis species, adding tree 
height (H) and wood density (ρ) as additional independent 
variables resulted in a much better prediction with the lowest 
values of bias and AIC than the model with DSH alone. For 
practical purposes, using DSH alone as a predictor variable 
with the lowest bias is sufficiently robust to be applicable 
for Prosopis species across the arid regions of Ethiopia with 
similar growth forms.
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