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Abstract
Slope stability is the main attribute of geotechnical engineering systems which can be established by calculating factor of 
safety, FoS. In this context, there are various existing conventional methods which can be used for slope stability analy-
sis. However, in the era of Artificial Intelligence (AI), the slope stability analysis can be performed using soft computing, 
SoCom, models which have superior predictive capability in comparison to other methods. SoCom is capable of addressing 
uncertainty and imprecision and which can be quantified using statistical parameters (viz., R2, RMSE, MAPE, t-stat, etc.). In 
this context, this review paper mainly focuses on conventional methods viz., Bishop method, Taylor method, Janbu method, 
Hoek–Brown method, apart from SoCom models viz., SVM, Model Tree, CA, ELM, GRNN, GPR, MARS, MCS, GP, etc. 
Also, quality assessment parameter like data preprocessing techniques and performance measures have been covered in this 
paper. Furthermore, merits and limitations of SoCom techniques in comparison to conventional approaches has also been 
discussed elaborately in this review.
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Abbreviations
SoCom  Soft computing
FoS  Factor of safety
β  Reliability index
CA  Cubist Algorithm
MARS  Multivariate adaptive regression splines
ELM  Extreme learning machines
GPR  Gaussian process regression
GRNN  Generalized regression neural networks
MCS  Monte-Carlo simulation
SVM  Support vector machine
GP  Genetic Programming
FN  Functional network
sd  Standard deviation
AAE  Average absolute error
R2  Coefficient of determination
Adj R2  Adjusted coefficient determination
RMSE  Root mean square error
NS  Nash–Sutcliffe efficiency
VAF  Variance account factor
MAE  Maximum absolute error
MBE  Mean bias error
WMAE  Weighted mean absolute error
MAPE  Mean absolute percentage error
NMBE  Normalized mean bias error
RPD  Relative percent difference
LMI  Legate and McCabe’s Index
U95  Uncertainty at 95% confidence level
α, β  Slope angle
c  Cohesion
ϕ  Angle of internal friction
γ  Unit weight
τ  Shear stress

Introduction

Slope stability is a major concern for geotechnical struc-
tures due to involvement of monetary as well as loss of 
flora and fauna due to slope failures (Liu et al. 2014; Gao 
et. al 2019). Anthropogenic activities and natural condi-
tions leads in climate change and global warming which 
ends up affecting natural as well as engineered slopes, 
also results in first-time and reactivated failures in some 
cases (Dijkstra and Dixon 2010; Liu et al. 2010; Zhang 
et al. 2020; Mehta et al. 2021; Wong et al. 2022; Peeth-
ambaran et al. 2022). The designing and construction of 
optimum slopes not only includes stability and safety but 
also consists of vast economic factors (Verma et al. 2013; 
Chen et al. 2020), which needs to be decided on the basis 
of various parameters (viz., Factor of safety (FoS), reli-
ability index (β), sensitivity analysis). Researchers have 
mentioned various methods for conducting slope failure 

analysis such as empirical equations (Bieniawski 1989; 
Janbu 1973; Taheri and Tani 2010; Wang et al. 2021) and 
computational intelligence approaches (Bui et al. 2020; 
Singh et  al. 2019; Taheri and Tani, 2010; Chen et  al. 
2020). Thus, the analysis and detailed construction of 
slopes should be conducted properly, survey and monitor-
ing of prior and post construction should be conducted 
using effective techniques to ensure the stability of slopes 
and thus structures (viz., roads and railways embankments, 
hydraulic structures, etc.) and also long-term sustainabil-
ity (Kainthola et al. 2013; Singh et al. 2020; Zhang and 
Tang 2021). Slope behaviour eventually described and 
mainly discussed focussing on the factor of safety (FoS) 
values which evaluates the stability and failure of slopes 
(Kainthola et al. 2013; Liu et al. 2014). Unfortunately, 
many failures due to slope instability issues has been 
occurred in past due to: (i) generation of pore-water pres-
sure, (ii) erosion, (iii) earthquakes, (iv) geological char-
acteristics, and (v) external loading.

Incidentally, there are many methods (conventional 
and soft computing) available for conducting slope analy-
sis. However, the suitability and applicability of methods 
changes with change in slope conditions wherein, factor of 
safety (FoS) of natural as well as man-made slopes plays 
a very crucial role and thus, needs to be considered elabo-
rately. Furthermore, new utility tools and approaches in 
the form of SoCom models and numerical modelling has 
been explored by researchers (Tinoco et al. 2018; Singh 
et al. 2020; Hassan et al. 2022), apart from conventional 
methods.

Unfortunately, there is lack of extensive review stud-
ies on methods which have been used for performing the 
slope stability analysis. Furthermore, with increase in soft 
computing models-based slope stability analysis, the suit-
ability of these methods on various slope conditions fol-
lowed their performance accuracy needs to be understood. 
Therefore, the studies available on rock slopes as well as 
soil slopes using conventional and soft computing methods 
have been reviewed and discussed critically in this review. 
The models have also been compared in terms of FoS and 
their performance statistics. Thereafter, the suitability and 
limitations of the methods have also been considered and 
discussed briefly in this review.

Methods of slope stability used in literature

Researchers have used several methods for doing slope 
stability analysis of rocks (Taheri and Tani 2010; Pinheiro 
et al. 2015; Singh et al. 2020) and soils (Javankhoshdel and 
Bathurst 2014; Liu et al. 2014; Tinoco et al. 2018). The 
methods involve conventional (viz., Mohr–Coulomb method, 
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Table 1  Summary of conventional methods used for slope stability

References Slope type Method of analysis Input parameters Performance measures

(Verma et al. 2013) Low strength sandstones, 
shales and clay sequence

Simplified Bishop’s method, 
Janbu’s corrected method

cohesion, angle of internal 
friction, uniaxial compres-
sive strength, geologi-
cal strength index and 
material constants for the 
Hoek–Brown material

Factor of safety

(Li and Yang 2019) Soil Hoek–Brown cohesion, angle of internal 
friction, uniaxial compres-
sive strength

FoS, Shear strength

(Baker 2004) Soil Hoek and Brown c, ϕ, σ, τ, β Normal strength, Shear 
strength, failure 
envelope

(Xiang and Zi-Hang 2017) Soil Mohr–Coulomb σ, τ, c, ϕ FoS, Failure envelope
(Rafiei Renani and Martin 

2020)
Rock Mohr–Coulomb, Hoek–

Brown
c, ϕ, σ, τ, β, γ, H FoS, Normalized area of 

failure
(Zhang et al. 2017) Soil Bishop method γ, c, ϕ, σ, τ, weight of verti-

cal slice  (Wi), pore-water 
pressure

FoS, curvature radius

(Al-karni and Al-shamrani 
2000)

Soil Method of slices γ, c, ϕ, θ, σ, τ, weight of 
vertical slice  (Wi), pore-
water pressure

Slip surface, degree of 
anisotropy

Table 2  Summary of SoCom studies on slope stability

γ = Unit weight, c = cohesion, ϕ = angle of internal friction, β = slope angle, H = slope height,  ru = pore-water pressure coefficient, σt = residual 
tensile stress,

Researchers Slope type Model(s) used Input parameters Training data size Testing data size Performance measure

(Zhou et al. 2019) Soil Gradient Boosting 
machine (GBM)

γ, c, ϕ, β, H,  ru 80 20 Area under the curve 
(AUC), Sensitivity, 
Specificity, False 
Positive rate (FPR), 
True positive rate 
(TPR)

(Singh et al. 2020) Rock Cubist, ELM and 
MARS

γ, c, ϕ, σt, intersec-
tion angle of slip 
surfaces

56 24 AUC,  R2, Adj.R2, 
MAPE, NMBE, 
t-stat, VAF, RMSE, 
RPD, LMI,  U95, β, 
Bias factor, WI

(Lin et al. 2018) – SVM γ, c, ϕ, β, H,  ru 89 18 Accuracy, Area under 
curve

(Liu et al. 2014) – ELM γ, c, ϕ, β, H,  ru 80 17 Sensitivity,  R2, MAPE
(Samui 2008) – SVM γ, c, ϕ, β, H,  ru 32 14 RMSE, MAE
(Keshtegar and Kisi 

2017)
– M5 model tree and 

Monte Carlo simu-
lation

– – – Probability of failure, 
reliability index (β), 
absolute error

(Suman et al. 2016) Soil Functional networks 
(FNs), MARS, GP

γ, c, ϕ, β, H,  ru 75 28 MAE, RMSE, aver-
age absolute error 
(AAE), Nash-sutcliff 
coefficient,  R2

(Luo et al. 2021) Rock PSO-CA, SVM, 
CART, kNN

γ, c, ϕ, β, H – – MAE, RMSE,  R2,

(Yuan and Moayedi 
2020)

Soil GA – 504 126 Mean square error 
(MSE)

(Chen et al. 2020) Rock BPNN c, ϕ,β, α,ω 25,214 8386 R2
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Bishop method, Janbu method, Taylor method, Hoek and 
Bray) as well as SoCom methods (viz., M5 Model Tree, Cub-
ist, MARS, ELM, GPR, GRNN, MCS, SVM, etc.) which have 
been keep evolving with time (Samui 2008; Zhang and Li 
2019). Summary of the various work conducted by research-
ers are elaborately compiled in Tables 1 and 2 for conven-
tional methods and SoCom methods, respectively. Some of 
the methods used by researchers have been briefly discussed 
in the following sections.

Conventional methods

Bishop method

The failure of the soil mass is assumed to be by rotation 
on a circular slip circle which is centred at a point (Bishop 

1955; Zhang and Li 2019). The normal force assumed to be 
act at the centre of each slice’s base and shear stress acting 
between the slices is neglected as forces on slices sides are 
assumed to be horizontal. The simplified Bishop’s method 
provides relatively accurate values for the FoS, however, 
the method does not satisfy the complete static equilibrium 
(Verma et al. 2013). The FoS as per Bishop’s method can be 
obtained using Eq. (1)

where c’ = cohesion, l = width of slice, α = angle at the base 
of sliding slice, �′ = angle of internal friction, u = Pore water 
pressure, W = effective weight of the slice, P = Normal force 
acting at the base of the slice, and FoS = Factor of safety.

(1)FoS =

∑�
c
�
lcos(α)+(P−ulcos(α))tan(�

�
)

cos(α)+(sin(α)tan(�� ))∕(FoS)

�

∑
Wsin(α)

,

Fig.1  Schematic representing: a analysis of circular failure of slopes using Bishop’s method of slices, and b analysis of non-circular failure in 
slopes using Janbu’s method of slices

Soil Yellow
friable

sandstone

Shaley coal Shale Yellow
sandstone

Coal0

10

20

30

40

50

0

10

20

30

40

50

0.46

14

19

16

27

8
10

38

35

30

43

35

0.5 0.5 0.5 0.5 0.5 0.5
3

15

4

8

17

4

)aP
M(

S
C

U

Litho-type

UCS
GSI
Disturbance factor
 mi

Fig. 2  Schematic representing average values of geotechnical proper-
ties

Bi
sh

op
C

ir
cu

la
r

Ja
nb

u-
co

rr
ec

te
d

ci
rc

ul
ar

Bi
sh

op
 n

on
-

ci
rc

ul
ar

 (a
ut

o)

Ja
nb

u-
co

rr
ec

te
d

no
n-

ci
rc

ul
ar

(a
ut

o)

Bi
sh

op
 n

on
-

ci
rc

ul
ar

 (p
at

h)

Ja
nb

u-
co

rr
ec

te
d

no
n-

ci
rc

ul
ar

(p
at

h)

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

ytefasfo
rotcaF

Critically stable

Unstable

Fig. 3  Typical graph representing FOS from different methods



5Modeling Earth Systems and Environment (2023) 9:1–17 

1 3

Verma et al. (2013) used Bishop’s method for analys-
ing stability of an open cut slope at Wardha valley coal 
field near Chandrapur, India. The simplified schematic 
diagrams of circular failure of slopes using Bishop’s 
method are presented in Fig. 1a (Verma et al. 2013). The 
average value of geotechnical properties used by research-
ers have been presented in graphical form (refer Fig. 2). 
From Fig. 2, it can be noticed that the highest geological 
strength index (GSI) rating is 43, which was assigned to 
yellow sandstone, while the material was assigned a GSI 
of 10. Estimation of reduction in strength parameters for 
different geological conditions of rock mass is represented 
in terms of GSI rating (Hoek et al. 1998). Researchers took 
 mi values in their study as suggested by Hoek and Brown 
(1997). FoS values obtained are presented in Fig. 3. From 
the FoS values, it is clear that the cut slope at that location 
was in very critical state which may lead to failure with-
out warning and thus, recommendation for proper atten-
tion was suggested by the researchers. In this context, FoS 
plays a vital role while performing stability analysis of 
slopes.

Janbu method

Janbu’s method is applicable to non-circular failure of the soil 
mass (Janbu 1973). As like Bishop’s method, the normal force 
assumed to be act at the centre of each slice’s base and shear 
stress acting between the slices is neglected as forces on slices 
sides are assumed to be horizontal. Verma et al. (2013) used 
Janbu’s corrected method where interslices shear force has 
been taken into consideration. The expression for FoS as per 
given by Janbu (1973) is presented using Eq. (2).

where c’ = cohesion, l = width of slice, α = angle at the base 
of sliding slice, �′ = angle of internal friction, u = Pore water 
pressure, W = effective weight of the slice, P = Normal force 
acting at the base of the slice and FoS = Factor of safety.

The method of slices for analysis of non-circular fail-
ures in slopes using Janbu’s method is presented in Fig. 1b. 
Researchers have used non-circular failure analysis and 
also used corrected Janbu’s method for circular failure in 
slopes. The average value of geotechnical properties used 
by researchers is presented in Fig. 2, while the FoS values 
obtained for Janbu’s method are presented in Fig. 3.

Taylor method

Taylor’s method is applicable for circular failure of the soil 
mass (Taylor 1937). The assumption that soils are homoge-
neous and isotropic does not applicable in reality (Sakellar-
iou and Ferentinou 2005). Taylor’s slope stability chart was 
earlier used by researchers for estimating factor of safety of 
slopes having simple geometry with homogeneous and iso-
tropic soil properties in clays under single-value undrained 
shear strength (Javankhoshdel and Bathurst 2014; Liu et al. 
2022). Taylor (1937) also derived charts for computing fac-
tor of safety for simple slopes of cohesive-frictional (c-ϕ) 
shear strength soils. The drawbacks associated with Tay-
lor’s chart are the necessity associated in form of iterative 

(2)FoS =

∑
(c

�

l + (P − ul)tan(�
�

)sec(α))
∑

Wsin(α)
,

Fig. 4  Schematic representing Taylor’s slope stability chart for cohe-
sive soils (Taylor 1937)

Fig. 5  Schematic representing Stability chart of c’-ϕ’ soil (Steward 
et al. 2011)
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procedures to calculate the FoS. Taylor’s slope stability 
chart is presented in Fig. 4. The FoS can be calculated using 
Eq. (3)

where stability number (Ns) depends on slope angle (α) and 
depth factor (D). In Fig. 4, DH is depth of firm stratum from 
slope crest and ‘H’ is height of slope. ‘H’ and ‘α’ are con-
sidered to be deterministic. Also, the probability of failure 
can be calculated using Su as lognormally distributed or ran-
dom variable and γ as a constant or both can be considered 
for lognormal distributions having uncorrelated random 
variables.

Steward et al. (2011) proposed modified version of Tay-
lor’s chart for slope stability design of dry slopes having 
no tension cracks and the same can be seen in Fig. 5. The 
modified chart has advantage associated with it as the criti-
cal slope FoS can be computed without iteration.

Hoek–Brown method

Hoek–Brown strength criteria is an non-linear strength cri-
teria and can be expressed in terms of shear and normal 
stresses, can also be represented in terms of major and minor 
principal stresses (Li and Yang 2019). For strength analysis 
of soils, power law criteria in terms of σn—τ stress space 
can be used, which are presented by Eq. (4).

where Pa = atmospheric pressure (standard, 100 kPa), n 
(degree of curvature), A (shear strength coefficient), and T 
are dimensionless experimental parameters (using triaxial). 
Product Pa.T is tensile strength and has been denoted as 
tNL (refer Fig. 6). The ranges of mentioned dimensionless 
parameters are T ≥ 0, A > 0 and 1 ≥ n ≥ 0.5.

(3)FoS =
Su

�HNs

,

(4)� = PaA

(
�n

Pa

+ T

)n

,

In the case of pore-water pressure, effective stress and 
strength parameters should be taken into consideration for 
analysis (Baker 2004). Slope stability analysis can be per-
formed by calculating FoS using strength reduction method. 
In Fig. 6, solid line represents original strength curve, while 
dotted one represents strength curve after reduction in the 
plane of normal and shear stresses. Modified strength crite-
rion can be represented using Eq. (5).

where τF represents shear strength after reduction.

Soft computing (SoCom) models used in literature

Artificial intelligence-based soft computing consists of 
several models which have been extensively used for solv-
ing civil engineering problems (viz., slope stability). Prior 
to training and validation of data, it is required to normal-
ize the data in a range of appropriate values of lower and 
upper limits (generally between 0 and 1) (Bardhan et al. 
2021). Furthermore, dataset is divided into training (gener-
ally 70/80/90%) and testing (generally 30/20/10%) of total 
database. A schematic of flowchart representing various 
steps of training and validation is presented in Fig. 7. Sub-
sequently, after developing the model, performance of the 
same is accessed using various statistical parameters (Zhang 
et al. 2021; Kardani et al. 2021; Wu et al. 2022; Zhang et al. 
2022a; Phoon and Zhang 2022; Zhang and Phoon 2022).

(5)�F =
PaA

Fs

(
�n

Pa

+ T

)n

,

Fig. 6  Nonlinear failure envelope and stress circle (strength reduction 
method) (Li and Yang 2019)

Fig. 7  Flowchart representing various steps involved in SoCom 
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Support vector machine (SVM)

Support vector machine (SVM) are algorithms which is 
being used for classification and regression analysis of a 
dataset and a better alternative to artificial neural networks 
(Boser et al. 1992; Samui 2008; Zhang et al. 2020). Suppose, 
T set of training vectors belongs to two separate classes, then 
for classification analysis, can be represented using Eq. (6).

such that, y € {− 1, + 1}, x €  Rn

where l is the number of training dataset and n-dimen-
sional data vector, x€  Rn, belonging to either of two classes 
labelled as y € {− 1, + 1}. Samui (2008) considered angle 
of internal friction (ϕ), cohesion (c), unit weight of soil (γ) 

(6)T =
{(

xl, yl
)
,………………

(
xl, yl

)}
,

and pore-water pressure coefficient  (ru) for slope’s strength 
determination while for geometry of slope, height (H) and 
slope angle (β) was considered. Thus, in this case, x = [ϕ, 
c, γ,  ru, H, β]. Linear hyperplane for distinguishing the two 
classes is presented using Eq. (7).

Graphs representing margin widths of hyperplanes and 
maximum margins are presented in Fig. 8a, b. Further details 
can be found in Samui (2008) and Boser et al. (1992). Thus, 
authors conclude that SVM is a powerful and effective 
computational which can be used extensively for problems 
related to slope stability.

(7)f (x) = w. x + b = 0.

Fig. 8  Schematic representing a Hyperplanes margin width, and b Maximum margins and support vectors (Samui 2008)

Fig. 9  Schematic representing: a Splitting of input space by M5 model tree algorithm such that every model follows linear regression, and b 
New instance prediction by model tree (Jung et al. 2010)
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Model tree

M5 algorithm used in model tree was first proposed by 
Quinlan (1993). Model tree works on the concept of divide 
and rule. Multiple linear regression models applied on 
input parameter space after dividing them into smaller 
sub-spaces. Furthermore, model tree approach involves: 
(i) building the tree, and (ii) inferring knowledge from the 
tree created. Also, the linear regression model is used for 
tree building by partitioning the input space into mutually 
exclusive regions as presented in Fig. 9a, b. A splitting 
technique is adopted in the inference procedure to fed new 
instance at the leaves of the tree using one of the models 
and thus, using linear model at the leaf, predicted output 
is obtained (Jung et al. 2010; Zhang et al. 2020). Wang 
and Witten (1997) modified the M5 algorithm and intro-
duced M5’, which was able to deal effectively with missing 

values. M5’ model tree considers set of piecewise linear 
models as final solution of the problem after dividing the 
input space into sub-spaces and works in three stages: (i) 
building the tree, (ii) pruning the tree, and (iii) smoothen-
ing the tree (Jung et al. 2010; Etemad-Shahidi and Bali 
2012; Bui et al. 2020). Suppose a model tree of training 
cases for ‘T’ sets, while ‘Ti’ represents the subset of ‘i’ 
outcomes with standard deviation sd(Ti), then the formula 
for calculating the standard reduction factor (SDR) can be 
given as:

where T = set of data point before spitting, sd = standard 
deviation, Ti = data point which as per chosen splitting 
parameter falls into one subspace and is result of splitting the 
space. Different splitting points is tested by M5’ model tree 
after dividing the space and thus, using sd for sub-spaces. 
SDR also represents the change in error value, i.e., Δerror. 
As the test proceeds, model tree picks the outcome with 
maximum reduction in the value of errors.

Cubist algorithm (CA)

Cubist, a rule-based model, is an extension of Quinlan’s 
M5 model tree (Kuhn et al. 2016). CA is based on recur-
sive partitioning, and also it splits training cases as like 
growing a decision tree. Regression problems having large 
number of input attributes (even thousands of variables) 
can be effectively solved using CA. It should be noted that, 
CA generally works in four steps (refer Fig. 10) to predict a 
regression problem and also while analysing FoS for slope 
stability. Luo et al. (2021) applied CA for slope stability 

(8)SDR = sd(T) −
∑

i

||Ti||
|T|

× sd
(
Ti
)
,

Fig. 10  Flowchart representing Cubist algorithm

Fig. 11  Slope stability analysis 
using Extreme learning machine 
model (modified from Liu et al. 
(2014))
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and obtained R2 as 0.983. Pouladi et al. (2019) used CA 
and obtained R2 as 0.88 with RMSE value of 3.26%.Also, 
Singh et al. (2020) used CA, while performing reliability 
analysis on rock slopes and obtained R2 as 0.999.

Extreme learning machines (ELM)

Extreme learning machines, ELM, consists of three layers 
in the form of the: (i) input layer, (ii) hidden layer, and (iii) 
output layer as presented in Fig. 11. Weight connections 
been exposed between the input layer and the hidden layers 
and also between the hidden layer and the output layer (Liu 
et al. 2014; Wang et al. 2020). The input layer consists of 
n neurons which corresponds to 6 dimensions of n slope 
cases. The hidden layers have l hidden neurons while the 
output layer consists of m neurons which represents m fac-
tor of safety (refer Fig. 11). From Fig. 11, it can be noted 
that the weight w connecting the input layer with the hidden 
layer while the weight β is connecting the hidden layer with 
the output layer. It has been observed that for used dataset 
by Liu et al. (2014), ELM performs better as compared to 
GRNN which have been realised from values of statistical 
parameters like R2 and MAPE. Unfortunately, the researchers 
have not considered the seismic parameters in their study, 
which needs to be considered to get more generalised out-
puts. Singh et al. (2020) used ELM model on 80 datasets for 
slope stability of rock mass and used statistical parameters 
for analysis, and observed reliability index (β) values as 
1.772 and 2.163 for training and testing cases, respectively.

Generalized regression neural networks (GRNN)

Generalized regression neural network (GRNN), a memory 
based model proposed by Specht (1991), can be used for 
fitting non-linear relationships (Liu et al. 2018; Zhang et al. 
2021). GRNN structure consists of (i) input layer, (ii) pattern 
layer, (iii) summation layer, and (iv) output layer (Polat and 
Yildirim 2008). GRNN draws the function using the data and 

approximating the arbitrary functions among the input and 
output vectors in the place of iterative training procedure as 
in back-propagation. The estimate error becomes zero only 
with mild restrictions on the function, as the training set 
size increases. A typical GRNN architecture is presented in 
Fig. 12. First layer consists of input units, the second layer 
has the pattern units whose outputs are passed on to the 
summation units in the third layer, and output units cover 
the final layer as can be seen in Fig. 12. GRNN uses below 
algorithm while calculating  yi’, Eq. (9) can be used.

where xi = training dataset input, yi = associated output, 
n = number of training dataset, yi’ = corresponding output 
to the input xi, α = spread.

The expression of D(x, xi) can be given using Eq. (10).

Gaussian process regression (GPR)

Gaussian process consists of a collection of random vari-
ables (Williams 1998; Rasmussen 2004; Ray et al. 2022). 
The random variables have finite subset of the variables 
having Gaussian distribution. Suppose a random variables 
collection G as Gy1,Gy2,Gy3,…… ..Gyn . Variables have 
been indexed using elements y of a set Ƴ. The correspond-
ing vector of the variables containing normal or multivari-
ate Gaussian distribution Gy =

[
Gy1,Gy2,Gy3,…… ..Gyn

]T 
for any finite length of vector which have indices as 
=
[
y1, y2,…… .., yn

]T,

(9)y
�

i
=

∑n

i=1
yiexp(−D(x, xi))∑n

i=1
exp(−D(x, xi))

,

(10)D
(
x, xj

)
=
∑m

j=1

(
xj − xij

�

)2

.

(11)Gy ∼ N{�(y), k(y, y)},

Fig. 12  Schematic diagram of 
generalized regression neural 
network architecture
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where k is kernel function and μ(y) is prior mean function of 
μ(yi). Kernel gives covariance between variables Gyj and Gyi 
by taking two indices yj and yi correspondingly. Each Gyi is 
marginally Gaussian with variance k(yi, yi) and mean μ(yi). 
k returns the matrix of covariances among all pairs of vari-
ables vectors of indices yj and yi, where the first and second 
in pair comes from Gyj and Gyi respectively.

Suppose a function g(y) needs to be optimized. Also 
assume function g cannot be observed directly but can be 
observed as a random variable Gy which is indexed by the 
similar domain as g(y), and whose expected value is g, i.e. 
∀y ∈ Υ,E

[
Gy

]
= g(y) . Furthermore, the function g has prior 

mean as μ and kernel k conforms to a Gaussian process. As 
Gy is an observation of g(y) which has been corrupted by 
zero mean, i.e. Gy = g(y) + � , where � ∼ N

(
0, ��

2
)
 . Thus, 

the resulting inference is called Gaussian process regres-
sion (GPR).

Assume Gy as the resulting real-valued observation of y 
set of observation points. For calculating the posterior distri-
bution of a new point ŷ ϵ Ƴ, the mean and the corresponding 
variance of the Gaussian distribution can be given using 
Eqs. (12) and (13).

Furthermore, optimum of the unknown function can be 
calculated in the final step using the optimum of resulting 
posterior mean yR = argmaxŷϵƳ μ(ŷ|y). In general, the same 
cannot be computed in closed form and thus, some tech-
nique is required for the optimization of the function. The 
remaining challenge is to decide the points yi for which the 
observations have to be generalized.

(12)𝜇 (ŷ|y) = 𝜇(ŷ) + k(ŷ, y) k(y, y)−1
(
Gy − 𝜇(y)

)

(13)𝜎2(ŷ|y) = k(ŷ, ŷ) − k(ŷ, y) k(y, y)−1k(y, ŷ).

Optimal selection Model can be computed theoretically by 
considering all the possible points in the domain. Further-
more, it can be done by considering: (i) all possible points 
in the domain, (ii) possible outcomes (real-valued), and 
(iii) expectations and maximizations for all possible future 
sequences out to the horizon. Thus, next observation is 
made at the point which maximizes the posterior maximum 
considering future optimal decisions.

Most probable improvement For finding the domain with 
largest observed value, let Gy+ is the maximum observed 
value and take ympi to maximize the posterior probabil-
ity P (Gxmpi > Gx+), which is known as the most probable 
improvement (MPI) criterion.

Incidentally, the mean and the posterior standard devia-
tion in this ratio are continuous functions and differentiable, 
and thus the function optimization techniques can be applied 
in the model to find ympi (Mockus 2005).

Multivariate adaptive regression splines (MARS)

MARS, developed by Friedman (1991), uses adaptive regres-
sion methods for achieving flexible modelling of even large 
dimensional dataset. It uses non-linear, non-parametric 
regression approach and works on the strategy of divide 
and conquer, and thus partitions training data into distinct 
domains having their own regression string. Basis function 
(BF) formation initiated by the model, defines the number 
of parameters (location of knots and degree of product) and 
number of BF, automatically by operations performed on 
given data. It should be noted that the knots are the con-
nection between two BF (LeBlanc and Tibshirani 1994; 

(14)𝜑(ŷ) = 𝜎(ŷ|y)∕(Fx+ − 𝜇(ŷ|y)).

Fig. 13  Schematic representing a MARS model having splines and knots, and b basis function (BF) (Bardhan et al. 2021)
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Zhang et al. 2020). Furthermore, knots are located at the 
best search possible locations. Therefore, best possible loca-
tion of the search is selected with lowest sum of square error 
with only one knot. Unfortunately, use of two or more knots 
for searching locations is challenging as it requires more 
computational effort as compared to earlier (single knot). 
Locations of knots are determined by MARS model in two 
steps: (i) collection of  BF using possible knot’s locations, 
and (ii) decision on number of BF in final model (backward 
step).  FB, generally known as splines, forms flexible model 
after combining and as mentioned earlier, connection points 
of two consecutive splines are knots. Schematic represent-
ing typical MARS model having splines with knots and BF 
can be seen in Fig. 13a, b, respectively. Suman et al. (2016) 
used MARS for stability analysis of soil slopes and obtained 
R2 values of 0.923 and 0.922 for training and testing cases, 
respectively, which represents superior performance of 
MARS model. Incidentally, Singh et al. (2020) used MARS 
model while performing reliability analysis of rock slopes 
and observed R2 values of 0.999 for training as well as test-
ing cases. Further information about MARS can be found in 
Yuvaraj et al. (2013), Zhang and Goh (2013), Suman et al. 
(2016), Zhang and Goh (2016), Goh et al. (2017, 2018), 
Zhang et al. (2017, 2019), and Bardhan et al. (2021).

Monte Carlo Simulation (MCS)

Monte Carlo Simulation (MCS) uses SoCom techniques con-
sidering not only impact of uncertainty but also risk associ-
ated (Mahdiyar et al. 2017). When the failure domain cannot 
be presented in analytical form and the analytical solution 
is not attainable, MCS is employed in slope stability prob-
lems (Tobutt 1982). MCS can also be applied in situations of 
complex nature of problems, having large number of basic 
variables, and also in some cases, where other methods are 
not applicable or not able to perform. MCS mathematical 
formulation is comparatively simple and has the capabil-
ity to handle every practical possible case regardless of its 
complexity level. Excessive computational effort is involved 
in conventional MCS. Due to this, by reducing the statistical 
error inherent in MCS, a lot of variance reduction technique 
(sampling technique), have been developed to improve the 
computational efficiency. Importance sampling and condi-
tional expectation are of special interest due to their potential 
of being very efficient (Dyson and Tolooiyan 2019; Kong 
et al. 2022).

Suppose, a limit state function be F(Y), having vector 
of basic random variable Y = (Y1, Y2, Y3,……., Yn), then the 
probability of failure can be expressed using Eq. (15):

(15)pf = ∫ F(y)=0

fy(Y)dY ,

where fy(Y) is the joint probability and F(Y) is an irregular 
domain (non-linear boundaries). Also, impartial estimator 
of probability of failure can be given by Eq. (16)

where I(Yi) is an indicator which can be defined using 
Eq. (17).

Probability of failure (pf) in terms of sample mean using 
MCS can be expressed as presented in Eq. (18).

where n = total number of simulations and ni = number of 
successful simulations.

Using values of mean and coefficient of variation (ASTM 
International 1966; Kadar 2017), standard deviation can be 
calculated and thus generation of data can be processed 
through MCS using command formula “randn”. Different 
datasets of 50, 100, 500, 1000, 5000, 10,000 etc., from a 
limited number of datasets can be generated using MATLAB 
and the equation can be represented by Eq. (19).

where μ = mean dataset values, σ = standard deviation of 
dataset values, and N = number of datasets needed to be 
generated.

Genetic programming (GP)

Genetic programming (GP) is an extension of John Hol-
land’s genetic algorithm (Holland 1975). GP creates a pop-
ulation of fixed length character string based on the Dar-
winian operation of ‘Survival of fittest’, each representing 
possible solution of the problem. While obtaining iterations 
solution, GP algorithm uses an evolutionary function which 
uses genetic manipulation (chromosomes) in the form of 
mutation, crossover, and reproduction. Random population 
contains terminals and functions hierarchically as branches 
of a tree. Some of the functions used for computations like: 
(i) Boolean (NOR, OR, AND, NAND, NOT, etc.), (ii) Inte-
gers (1, 3, 7, 44, 69, 98, etc.), (iii) Arithmetic (+ , -, ÷ , × , 
etc.), and (iv) Trigonometric (sinh, cos, sech, cot, etc.). A 
blind random exploration of maiden population is created in 
the space of approx. solutions. Optimized fitness function is 
obtained by GP by direct searches in the space of chromo-
somes. Thus, fitness function is created for each chromo-
some. However, each chromosome act as a separate case, 

(16)pf =
1

N

∑N

i=1
I(Yi),

(17)I
(
Yi
)
=

{
1, ifF

(
Yi
) ≤ 0

0, ifF
(
Yi
)
= 0

.

(18)pf =
ni

n
,

(19)r = � + � ∗ randn (N, 1),
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the search remains parallel and tests proceeds on individual 
possible solution. Fitness value, linked to each individual, 
monitors search. Structure and the framework of the genetic 
algorithm (GA) can be found in Fig. 14. More details of GP 
can be found in Koza (1992, 1994), Manouchehrian et al. 
(2014) and Bardhan et al. (2021). Singh et al. (2019) applied 
GP while performing reliability analysis of rock slope and 
proposed an equation of FoS as given below.

where ϕ = angle of internal friction, c = cohesion and 
σt = residual tensile stress.

Other soft computing methods adopted include gated 
recurrent unit (GRU) networks (Zhang et al. 2022b), ensem-
ble learning (Zhang et al. 2022c), Long Short-Term Memory 
Neural Network and Prophet Algorithm (Tang et al. 2021).

Quality assessment

Data preprocessing techniques

Data analysis using SoCom models deals with huge data hav-
ing various (varying) patterns. The raw data has complexi-
ties associated with it in the form of: (i) noisy data, (ii) miss-
ing values, (iii) inconsistent data, (iv) incomplete data, and 
(v) outlier data, etc. Thus, in order to enhance the efficiency 
of data, various advanced Data-preprocessing techniques 
needs to be applied as an essential step. A typical flowchart 
representing data-preprocessing technique is presented in 
Fig. 15. Therefore, in this context, several techniques like (i) 
cleaning, (ii) transformation, (iii) integration, and (iv) reduc-
tion have been elaborately discussed in the below sections.

Data integration

Data from various resources viz., data warehouse combines 
in data integration technique and can be having multiple 

(20)
FoS = − 0.2153 − 0.01724cos

(
sin

(
� ∗ �t

))
+ 0.2063exp(�)

+ 0.1453c + 0.0129�t + 0.5334�,

Fig. 14  Flowchart of Genetic 
Programming (GP) with opera-
tors

Fig. 15  Typical flowchart representing data-preprocessing
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database, data cubes and files. Issues like redundancy, object 
matching and scheme integration are issues associated with 
data integration. Some redundancies can be detected using 
correlation analysis. Attributes of one associated on the other 
can be measured from correlation between two variables.

Aggregation

It is the process of summarizing the data using mean, median 
and variance. The aggregated data thus obtained are used in 
data mining algorithms.

Data transformation

It is the process of transforming the data suitable for mining 
process.

Smoothing

The process of removal of noise from the data is known 
as smoothing of the data. Techniques generally used for 
smoothing the data are regression, clustering and binning.

Normalization

Normalization is the process of adjusting the data into spe-
cific range values, viz., − 1 to 1 and 0 to 1. Normalization is 
useful in mining techniques including clustering algorithms, 
artificial neural network and classification.

Data reduction

Data reduction technique is used to reduce representation of 
dataset in smaller volumes maintaining the integrity of the 
original dataset.

Table 3  Statistical parameters with their expressions for performance measurement of SoCom

di = observed values,  yi = predicted values, sd = standard deviation, n = number of event inputs, p = number of variables, N = number of data, 
Xnormalized = normalized value, Xmin = minimum value from all the events, Xmax = maximum value from all the events, and X = particular value of 
that parameter

Statistical parameter Formula References

Normalization of data Xnormalized =
X−Xmin

Xmax−Xmin

(Bardhan et al. 2021)

Coefficient of determination (R2)
R2 =

∑n

i=1
(di−dmean)

2−
∑n

i=1
(di−yi)

2

∑n

i=1
(di−dmean)

2

(Bui et al. 2020)

Adjusted coefficient determination (Adj R2) AdjR2 = 1 −
(n−1)

(n−p−1)
(1 − R2) (Singh et al. 2019)

Root mean square error (RMSE)
RMSE =

�
1

N

∑n

i=1
(di − yi)

2 (Manouchehrian et al. 2014)

Nash–Sutcliffe efficiency (NS)
NS = 1 −

∑n

i=1
(di−yi)

2

∑n

i=1
(di−dmean)

2

(Nash and Sutcliffe 1970)

Variance account factor (VAF) VAF = (1 −
var(di−yi)

var(di)
) × 100 (Singh et al. 2020)

Maximum absolute error (MAE) MAE =
1

N

∑n

i=1

���
�
yi − di

����
(Suman et al. 2016)

Mean bias error (MBE) MBE =
1

N

∑n

i=1

�
yi − di

� (Singh et al. 2020)

Weighted mean absolute error (WMAPE)
WMAPE =

∑n

i=1

����
di−yi

di

����
×di

∑n

i=1
di

(Bardhan et al. 2021)

Performance index (PI) PI = adj.R2 + 0.01VAF − RMSE (Kung et al. 2007)
Bias factor Bias Factor =

1

N

∑n

i=1

yi

di

(Prasomphan and Machine 2013)

Mean absolute percentage error (MAPE) MAPE =
1

N

∑n

i=1

���
di−yi

di

��� × 100 (Armstrong and Collopy 1992)

Normalized mean bias error (NMBE)
NMBE(%) =

1

N

∑n

i=1
(yi−di)

1

N

∑n

i=1
di

× 100
(Srinivasulu and Jain 2006)

Relative percent difference (RPD) RPD =
sd

RMSE
(Viscarra Rossel et al. 2006)

Legate and McCabe’s Index (LMI)
LMI = 1 −

� ∑N

i=1
�di−yi�∑N

i=1
�di−dmean�

�
(Legates and Mccabe 2013)

Uncertainty at 95% confidence level  (U95) U95 = 1.96(SD2 + RMSE2)1∕2 (Gueymard 2014; Behar et al. 2015)
t-stat

t-stat =

√
(N−1)MBE2

RMSE2−MBE2

(Stone 1993)
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Binning

Binning is splitting top to down technique having depend-
ency on bins number. Hierarchy generation and discretiza-
tion also being conducted by data smoothing techniques like 
binning. For discretizing the values of attribute, equal-fre-
quency and equal-width binning can be performed by replac-
ing the bin value by median or mean similar to smooth-
ing. Binning does not use class label and thus unsupervised 
technique, and also depends on bin numbers specified by 
the user.

Performance measures

Factor of safety (FoS) plays vital role in stability analysis 
of slopes and is a key factor for ensuring the performance 
of conventional methods. However, performance of SoCom 
models is used to be analysed based on different statistical 
parameters as mentioned in Table 3. More details of Table 3 
can be found in Singh et al. (2020) and Kumar et al. (2021).

Discussion

The challenges associated with the slope stability analysis 
are the limited knowledge, data and site specificity of the 
problems and thus, SoCom models seems to be a prom-
ising tool to solve problems which can even perform in 
cases where no prior relationship between the predictors 
and predicted variables are available, which makes SoCom 
methods advantageous over conventional statistical and 
empirical relationships. It is prudent to mention that, many 
researchers have worked extensively and developed sev-
eral SoCom models, performance of whose depends on a 
number of factors which have been discussed elaborately 
in this review. However, suitability of SoCom models gen-
erally decided on the basis of several statistical parameters 
(viz.,  R2, RMSE, MABE, and RMSE etc.), which depends 
on (i) input parameters, (ii) slope conditions, (iii) training 
and testing of dataset, (iv) number of data points and many 
other factors. Thus, in the era of AI, SoCom models seems 
to be an emerging and efficient methods for doing analysis 
of different types of problems which are not easy to solve 
using conventional methods.

However, there are some challenges in using SoCom in 
slope stability problems due to the (i) unavailability of data 
in some studies which are location specific and varies from 
place to place, (ii) underfitting and overfitting of models, 
(iii) as SoCom models are case and site-specific, there are 
chances of mis-fitting of data which may result in falsified 
output. Thus, more extensive and comprehensive research 
needs to be continued on SoCom models to enhance the effi-
ciency of these methodologies.

Conclusion and way‑forward

Applications and suitability of SoCom models and recent 
developments in the context of slope stability of geotechni-
cal structures have been elaborately discussed in this paper. 
Furthermore, the analysis of conventional methods which 
have been continuously used since ages have also been con-
sidered in this article. The authors believe that most of the 
SoCom models are user-friendly and time-saving and are 
good substitution to conventional methods. Incidentally, the 
problems associated in the field of geotechnical engineering, 
especially slope stability, evolve with number of variables 
which make it difficult for numerical modelling and also 
solving using conventional methods. Thus, in the era of big 
data and time-efficient requirements, SoCom models are 
acting like a boon to solve difficult and complex problems 
more efficiently and in least amount of time as compared to 
other methods. Authors believe that in future, application of 
SoCom models forecasting and analysis would be brighter 
as more and more research efforts are devoted in this area.
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