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Abstract
Drought is the most complex, devastating, slow-onset natural disaster and has recently affected more people than ever before. 
Remote sensing has recently played a vital role in providing huge amounts of data for monitoring and modeling the incidence 
of droughts at broad spatiotemporal scales. Therefore, the objective of the current study in Ethiopia’s highlands was to model 
and map the spatiotemporal patterns, status, and trends of agricultural drought based on the satellite-derived vegetation 
health index (VHI) on a monthly (June–September) scale from 2004 to 2018. The study used Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity 8-Day (MOD11A2) and Enhanced Moder-
ate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index (eMODIS NDVI) datasets. During data 
analysis, the VHI, Mann–(MK) Kendall’s trend test, and Sen's slope estimator were used, respectively, to grade agricultural 
drought, investigate agricultural drought trends, and examine the magnitude of agricultural drought change. Crop yield 
data for 41 crop growing zones was used to evaluate the capability of VHI for agricultural drought monitoring. The results 
showed the VHI detected moderate to severe agricultural droughts. Seasonally, 26.3% of the total crop growing areas showed 
a decreasing VHI trend. In most northern, central, and southeastern Ethiopia, the correlation analyses between VHI and crop 
yields showed good relationships. The findings of the current study display the importance of mapping the spatiotemporal 
patterns of agricultural droughts using VHI, aiming at agricultural drought monitoring and establishing early warning and 
decision-making systems.
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Abbreviations
VHI  Vegetation health index
LST  Land surface temperature
NDVI  Normalized difference vegetation index
TCI  Temperature condition index
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Introduction

Declared as a naturally occurring, slow onset, and most 
complex disaster, droughts are an extended incidence of 
an abnormally dry period and inadequate rainfall to satisfy 
usual requirements, resulting in massive damage to human 
beings, agriculture, and livestock (Mishra and Singh 2010; 
Mutsotso et al. 2018; Mishra et al. 2022; Patil et al. 2021). 
Drought can occur anywhere in the world regardless of the 
region’s normal precipitation rates and trends (Mishra and 
Singh 2010; Hayes et al. 2011; Bhaga et al. 2020), and its 
onset and end are difficult to detect and highly unpredict-
able (Bhaga et al. 2020). In terms of the number of people 
affected globally, it is the first natural hazard (Baniya et al. 
2019). Drought has a vast range of consequences that influ-
ence many different sectors of society (Mishra and Singh 
2010; Kogan et al. 2019). However, its immediate impact is 
highly related to crop production and farm employment by 
reducing soil water availability and increasing pest infections 
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(Sai et al. 2016), which leads to considerable losses in crop 
failure and pasture losses and creates food insecurity (Kogan 
et al. 2019; Bayable and Gashaw 2021). Apart from its huge 
impact on a large number of people living on Earth, drought 
has been a very costly disaster in countries of Africa and 
Asia (Bayissa et al. 2018; Kogan et al. 2019; Qu et al. 2019).

More than 85% of the Ethiopian population’s economy is 
mainly dependent on rain-fed agriculture, which is sensitive 
to climate change (Bayissa et al. 2018; Liou and Mulualem 
2019). Droughts that affected the majority of the country 
were documented in the years 1983–1984, 1994–1995, 
2009–2010, and 2014–2015 (Viste et al. 2013; Degefu and 
Bewket 2015; Liou and Mulualem 2019). Overall, 2015 was 
identified as the driest year, with 10.2 million people affected 
(Liou and Mulualem 2019; Qu et al. 2019). In Ethiopia’s 
highlands, specifically in the northern and central highlands, 
where the study area is located, agricultural drought is cur-
rently more pronounced (Gebrehiwot et al. 2016).

Drought indices are used to detect and monitor agricul-
tural drought and hence provide a valuable means of scientif-
ically evaluating the magnitude and impact of droughts and 
offering policy recommendations (Mishra and Singh, 2010; 
Ihinegbu and Ogunwumi 2021). Since agricultural drought 
results from complex and nonlinear interactions between 
climate, soil systems, crop phenology, and socioeconomic 
activities, monitoring its frequency/intensity, spatial vari-
ability, and impact has continued to be a challenging task 
for drought managers and policymakers (Sai et al. 2016). 
As a result, developing regionally and locally fitted early 
agricultural drought management and analysis mechanisms 
that can serve as an integral part of the nation’s efforts to 
prevent drought-related losses is critical.

Precipitation indices, remote sensing data (Wilhite 2011), 
and agricultural sample surveys have been used to explore 
and monitor agricultural droughts. Agricultural sample 
surveys are traditional, time-consuming, and expensive. In 
addition, stand meteorological indices, such as the stand-
ardized precipitation index (SPI), rainfall anomaly index 
(RAI), Palmer drought severity index (PDSI), and stand-
ardized precipitation-evapotranspiration index (SPEI), have 
been commonly used to monitor drought in various regions 
aimed at characterizing agricultural droughts (Mishra and 
Singh 2010; Vicente-serrano et al. 2010; Nam et al. 2015; 
Rahman and Lateh, 2016; Miah et al. 2017; Yisehak and 
Zenebe 2020; Haile et al. 2022). However, both agricultural 
surveys and alone stand precipitation index approaches did 
not produce continuous spatial data to monitor the detailed 
drought conditions (Gu et al. 2007; Gidey et al. 2018). 
Various remote sensing indices, such as the normalized dif-
ference vegetation index (NDVI) (Tucker 1979; Anyamba 
and Tucker 2012), vegetation condition index (VCI), tem-
perature condition index (TCI), and vegetation health index 
(VHI) (Kogan 1995; Karnieli et al. 2006) have been used for 

agricultural drought monitoring to overcome this shortcom-
ing over the last decades. According to Bhuiyan et al. (2017) 
and Gidey et al. (2018), remote sensing-based agricultural 
drought monitoring gives more accurate, adaptable, and 
dependable results in drought studies (Bhuiyan et al. 2017; 
Gidey et al. 2018).

Previous studies on the monitoring of agricultural 
droughts in Ethiopia were based on SPI (Edossa et al. 2010; 
Viste et al. 2013; Degefu and Bewket 2015; Mohammed 
et al. 2018), combined SPI and VCI (Gebrehiwot et al. 2011) 
and VCI (Gebrehiwot et al. 2016). Despite a large number 
of remote sensing-based studies on agricultural and vegeta-
tion-related drought in Ethiopia, there are still uncertainties 
and major gaps to be considered. For example, the studies 
mentioned above (1) mainly relied on NDVI data derived 
from a coarse spatial resolution from mixed spatial cover-
age of agricultural and nonagricultural areas, (2) did not 
exclusively focus on annual crop growth periods/seasons, 
and (3) did not consider temperature conditions (LST), while 
recently, due to global warming, the role of temperature in 
drought monitoring has become crucial. Evaluating the spa-
tiotemporal dynamics of agricultural drought by incorporat-
ing climatic elements (LST) is important for policymakers to 
establish effective and comprehensive monitoring and early 
warning systems to reduce the negative effects of drought.

Thus, in this study, agricultural drought monitoring was 
conducted on a four-month time scale (i.e., June–Septem-
ber) with VHI and Mann–Kendall (MK) nonparametric 
rank-based trend analysis by exclusively focusing on annual 
agricultural croplands. The stated time-scale is the main 
annual rain-fed crop growing period of the highlands of 
Ethiopia. Therefore, studying agricultural drought during 
this time-scale with VHI that combines VCI of moisture 
and TCI relying on the thermal infrared (TIR) (Singh et al. 
2003; Bhuiyan et al. 2006) can provide better information. 
Therefore, this is the first study of its kind to look at agri-
cultural drought through VHI and MK nonparametric rank-
based long-term agricultural drought monitoring in Ethiopia 
in general and in the highlands of Ethiopia in particular. The 
objectives of this study were to (1) explore the spatiotem-
poral dynamics of agricultural drought and (2) examine the 
frequency of agricultural drought in the highlands of Ethio-
pia from 2004 to 2018.

Materials and methods

The study area

The study covers the highlands of Ethiopia, which lie 
above 1500 m above sea level; situated between 3° 48′ 
5″ N and 14° 37′ 28″ N and 34° 12′ 6″ E and 42° 58′ 
48″ E (Fig. 1), and it occupies an area of 320,442 square 
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kilometers. The climatic zone is defined as a humid sub-
tropical highland (Beyene and Meissner 2010) with a 
regional annual average rainfall of ~ 1100 mm (Dinku 
et al. 2018). The general rainfall pattern is monomodal 
(Kiremt and long rain season) (June–September), with 
short rainy seasons (March–May).

The total annual rainfall (65–95%) in the region is con-
tributed by the long rainy season accounts (Segele and 
Lamb 2005). Nearly 90–95% of the annual food crops of 
Ethiopia are being grown during the Kiremt season in the 
region. The mean annual minimum and maximum tem-
peratures are 7.9 °C and 21.1 °C, respectively (Dinku et al. 
2018). The highlands of Ethiopia are home to over 90% 
of Ethiopia’s population, as well as approximately 90% 
of the country’s cultivated land and 60% of the country’s 
livestock (Hurni et al. 2010). Small-scale and subsistence 
mixed agriculture is practiced by Ethiopian farmers in the 
highlands.

Data acquisition

In this study, NDVI, LST, and land use land cover (LULC) 
(area of the cropland of the highlands of Ethiopia) were used 
as input data.

Terra eMODIS NDVI

In this study, we obtained multitemporal smoothed decadal 
enhanced moderate imaging spectrometer (eMODIS) nor-
malized difference vegetation index (NDVI) raw data for the 
East Africa window from the Famine Early Warning System 
Network (FEWS-NET) from 2004 to 2018 (June–Septem-
ber) with a 250 m spatial resolution. We used Terra eMO-
DIS-NDVI data because, for agricultural drought monitor-
ing, it is said to be superior to Aqua eMODIS data and data 
of other satellite images, such as SPOT-Vegetation (Swets 
1999; Gidey et al. 2018; Jenkerson et al. 2010). The monthly 
eMODIS-Terra NDVI data were calculated and used as an 
input to calculate the VCI and VHI, as part of an integrated 
agricultural drought monitoring approach.

Land surface temperature (LST)

In addition to NDVI, LST has been used as a criterion 
for examining the situation of vegetation health since the 
Earth’s surface temperature affects vegetation growth 
(Kogan 1995; Frey and Kuenzer 2015; Gidey et al. 2018). 
The ultimate reason for selecting these data is the bet-
ter spatial, temporal variation, and up-to-date algorithm 
(Frey et al. 2012). The eight-day MOD11A2 Terra LST 

Fig. 1  Location map of the study area (extracted from CSA 2007; GADM 2018)
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data with a 1-km spatial resolution were downloaded from 
https:// lpdaa csvc. cr. usgs. gov/ appee ars/ for the 4 months 
of the Ethiopian crop growing period. The monthly LST 
of each month was calculated using the 8-day LST and 
used as an input to calculate the TCI and VHI.

Furthermore, the anomaly hot spots of agricultural 
production (ASAP) dataset on cropland and rangeland 
masks was used for agricultural areas (Fig. 2). These data 
were mainly obtained by evaluating eight global datasets 
through a multicriteria analysis (MCA) (Pérez-Hoyos 
et al. 2017).

In this study, only cropland information is used to 
extract the NDVI, LST, TCI, and VCI statistics for the 
detection of agricultural droughts. Cereal crops (teff, 
wheat, and maize) at the administrative zonal scale 
(shown in Fig. 2) were used to evaluate the VHI. The crop 
yield data were obtained from Ethiopia’s Central Statis-
tical Agency (CSA). The crop yield data collected for 
the Kiremt season represent 90–95% of Ethiopia’s annual 
total crop production. Crop yield data for 41 adminis-
trative zones were thus collected for the period 2004 to 
2018. However, 3 years of data (2009, 2017, and 2018) 
were missing and therefore discarded.

Data processing and analysis

Identification of drought

The spatiotemporal variation in agricultural drought from 
2004 to 2018 (15 years) was characterized using drought 
grades defined by the VHI. The VHI can detect and describe 
the duration, spatial distribution, frequency, and/or status of 
agricultural drought (Bhuiyan et al. 2006; Choi et al. 2013; 
Kogan and Guo 2016; Ma’rufah et al. 2017; Patil et al. 2021). 
The VHI monitors overall vegetation health by combining the 
vegetation condition index and the temperature condition index 
during a certain period (Kogan and Guo 2016; Kogan 2019).

Vegetation condition index (VCI) The VCI is a means of 
quanitifying the relative healthiness of vegetation in response 
to weather (Kogan 1995). According to Singh et al. (2003), 
the VCI can indicate the cumulative environmental influence 
on vegetation. It rescales the dynamics vegetation between 
0 (bad) and 100 (optimal) (Kogan 2019). Before computing 
the VCI, 10-day composite eMODIS NDVI raw data for the 
study area were masked out and rescaled between − 1 and 1 
using the ArcGIS 10.5.1 package as follows (Eq. 1):

Fig. 2  The spatial locations of the crop growing area (GADM 2018; ASAP/EU 2019 crop mask)

https://lpdaacsvc.cr.usgs.gov/appeears/
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Then, the VCI was derived as (Eq. 2) based on Kogan 
(1995).

where NDVIi is the current smoothed NDVI value of the ith 
month, whereas NDVImin and NDVImax are a multiyear 
(2004–2018) absolute minimum and maximum NDVI value 
for every pixel at a particular period, respectively.

Temperature condition index (TCI) Currently, because of 
global warming, the role of temperature in drought monitor-
ing is crucial, and only using the NDVI-based VCI index is 
not sufficient to fully characterize agricultural drought (Has-
san and Mahmud-ul-islam 2015).

In this study, the four MOD11A2 Terra 8-day LST data 
were added and divided by four in a raster calculator to 
obtain the mean monthly LST, which was then resampled to 
250 m to correspond to the eMODIS NDVI data. The valid 
LST value was rescaled and converted into degree Celsius 
(°C) units (Wan 2006) as follows (Eq. 3):

where ϖ = row scientific data (RSD).
As a thermal stress indicator, the TCI incorporates tem-

perature-related drought scenarios (Kogan 2019). Thus, it 
is important to use the TCI to identify temperature-induced 
vegetative stress for drought monitoring (Karnieli et al. 
2010). TCI was utilized to capture various responses of veg-
etation to in situ temperature (Cai et al. 2018; Zeng et al. 
2022) and computed as (Eq. 4) based on Kogan (1995).

where LSTi is the LST value of the ith month (June–Sep-
tember), whereas LSTmax and LSTmin are the smoothed 
multiyear maximum and minimum LSTs (2004–2018, 
15-year records), respectively. Similar to the VCI, the TCI 
varies from 0 (a water stress condition) to 100 (an optimal 
moisture condition).

Vegetation health index (VHI) Finally, the VHI that rep-
resents the overall health of the vegetation and is used to 
identify drought (Karnieli et al. 2006; Zeng et al. 2022) is 
computed by combining the TCI and the VCI (Eq. 5) as pro-
posed by Kogan (1995, 2019).

where ‘a’ is a coefficient determining the contribution of TCI 
and VCI and is generally taken as 0.5. Drought conditions 
are defined as extreme drought, ≤ 15; severe drought, 16–25; 

(1)
eMODISNDVI = Float(SmoothedeMODISNDVI − 100)∕100.

(2)
VCI = 100 × (NDVIi − NDVImin)∕(NDVImax − NDVImin),

(3)LST = (� × 0.02) − 273.15,

(4)TCI = 100 × (LSTmax − LSTi)∕(LSTmax − LSTmin),

(5)VHI = a × VCI + (1 − a) × TCI,

moderate drought, 26–40; and no drought (no effect on agri-
culture) > 40, according to a recent study by Kogan (2019).

In addition, the frequency of agricultural drought was 
determined by calculating the mean value of VHI for 
administrative zones during the Kiremt season (June–Sep-
tember) from 2004 to 2018. Consequently, all observa-
tions below the mentioned threshold (40%) were counted 
for each month (June, July, August, and September) for 
15 years (overall 60 months).

Agricultural drought trend detection

The Mann–Kendall (MK) method is a nonparametric test 
method that does not require a normally distributed data 
series (Mann 1945), is widely used to identify a monotonic 
trend in the time series of the vegetation condition index 
(Baniya et al. 2019) and climate by using remote sensing 
and hydrometeorological data (Zeng et al. 2022) and is 
a nonparametric test method that does not require a nor-
mally distributed data series. We used the MK trend test 
to detect the spatial and temporal patterns of VHI changes 
pixel by pixel using monthly (June–September) datasets 
(20042018). The Mann–Kendall test compares the slopes 
of all pairs of samples to detect a monotonic trend (Katila 
et al. 2020). The MK statistics S for time series data  (Yt, 
t = 1, 2…, n) are calculated according to Pohlert (2020) 
as (Eq. 6):

where  Yi and  Yj are the monthly mean VHI values in years i 
and j, respectively, i > j, and n is the length of the time series 
data. The sign of all possible differences  Yi −  Yj is computed 
as follows (Eq. 7):

When n ≥ 8, the statistic S is approximately normally 
distributed with mean E [S] = 0 and variance σ2 given by 
the following equation (Eq. 8):

where p and tj are the number of tied groups in the time 
series dataset and the number of data points in the jth tied 
group, respectively.

Then, the test statistic Z is calculated as follows (Eq. 9):

(6)S =

n∑
J<1

Sig(Yi − Yj),

(7)S(Yi − Yj) =

⎧⎪⎨⎪⎩

+1, if Yi − Yj > 0

0, if Yi − Yj = 0

−1, if Yi − Yj = 0

.

(8)�2 =

{
n(n − 1)(2n + 5)

p∑
j=1

tj(tj − 1)(2tj + 5)

}
∕18,
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The null hypothesis  (H0) states that there is no trend in the 
series, whereas the alternative hypothesis  (H1) states that the 
series has an increasing or decreasing monotonic trend. The 
magnitude of the linear trend was then predicted following 
Sen’s slope estimation procedure (Sen 1968; Li et al. 2017). 
The change per unit time of a trend was computed as fol-
lows (Eq. 10):

where Xi and Xj are the changing monthly VHI values at 
times i and j, respectively. There is not significant variation 
over time, with a value near zero. As an average change, 
the slope of the monthly VHI trend is computed. A nega-
tive value shows a downward trend, and a positive value 
shows a positive trend. The positive (upward) VHI slope val-
ues indicate increased vegetation growth as a consequence 
of no-or reduced drought, while the negative (downward) 
trends specify a decrease in vegetation cover as a result of 
rising drought (Qian et al. 2016). The trend analysis for VHI 
was performed using TerrSet software (Neeti and Eastman 
2011).

Evaluating the VHI prediction capability of agricultural 
drought in the highlands of Ethiopia

Because agricultural yields and productivity are impacted 
by several factors, including scientific and technical break-
throughs (e.g., improvements in plant genetics and fertilizer) 
as well as weather and climatic conditions, assessing drought 
losses over time and space is challenging (Lu et al. 2017). 
We concentrated on the influence of climate on crop yield 
rather than other factors in this study. Thus, in this study, 
detrending (simple linear regression model), which removes 
the upward linear trend of crop yields (Wu et al. 2007; Lu 
et al. 2017), was used. Twelve years of crop yield data were 
used to detrend the zonal yield statistics as (Eq. 11):

where Ydt is the detrended yield at time t; Yat is the actual 
yield at time t; Y(t) is the predicted yield at time t, α is the 
y-intercept (the estimated value of the crop yield at time t = 0 
or first-year record), β is the slope of the trend line (or the 
average change in crop yield per year), and X(t) is the year 
that the yield is estimated.

Finally, the capabilities of the VHI for agricultural 
drought monitoring in the highlands of Ethiopia were eval-
uated using a simple linear regression model. The annual 

(9)

⎧
⎪⎨⎪⎩

S−1

𝜎
, if S > 1

0, if S = 0
S+1

𝜎
, if S < 1

.

(10)Sen’sslope = Median{(Xi − Xj)∕(i − j)}, i > j,

(11)Ydt = Yat − (Y(t) = �X(t)),

cereal crop production was correlated with the September 
VHI time series. September was chosen because the veg-
etation cover (NDVI) in most parts of Ethiopia’s highlands 
had achieved its maximum value (Gebrehiwot et al. 2011; 
Bayissa et al. 2018). Simple linear regression and Pearson 
correlation can provide either positive or negative results. 
This ranges between 0 and + 1 (Table 1). Regression or Pear-
son correlation values close to zero indicate no relationship 
between the indices.

The Evans standard (1996) was adopted to determine the 
level of the Pearson correlation matrix and coefficient of 
determination  (R2) strengths (Table 1, Fig. 3).

Results and discussions

Validation of the VHI prediction capability 
of agricultural drought

The spatial and temporal relationships between the detrended 
crop yield and VHI (at the end month of the Kiremt rainfall 
season, September) for the 41 selected crop growing zones 
were investigated. Figure 4 shows the spatial correlation 
determination values between the vegetation health index 
(VHI) and detrended maize crop yield in the crop growing 
areas. The regression analysis results showed that the rela-
tionship between the VHI and maize crops in 34 out of 35 
crop growing zones was positive, moderate  (R2/r = 0.16/0.40 
to  R2/r = 0.35/0.59) to strong  (R2/r = 0.3.6/0.60), and statis-
tically significant in 14 crop growing zones (P < 0.05). A 
strong correlation was observed in the West Harerge, Wag 
Himra, Oromia, Eastern Tigray, East Harerge, North Gondar, 
East Gojjam, North Shewa3, Asosa, Keffa, and Jimma zones, 
while a moderate correlation was observed in all zones of 
the South Nations, Nationalities and Peoples (SNNP) of 
Ethiopia.

Regarding teff, the northern and central highlands of Ethi-
opia showed a strong correlation with the rest of the study 
area. A high regression result  (R2) between teff and VHI was 
observed in the Southern Tigray Zone  (R2 = 0.56/r = 0.75 or; 
P < 0.01). Likewise, in 10 zones, the regression value was 
r > 0.5 or  R2 = 0.25, and 8 of these values were statistically 
significant (P < 0.05). Furthermore, the correlation between 

Table 1  Strengths of Pearson bivariate correlation coefficients and 
linear regression model ( Source: Evans 1996)

Level of statisti-
cal strength

Pearson correlation matrix (r) Coefficient of 
determination 
 (R2)

Strong  ≥ 0.60, ≤ – 0.60  ≥ 0.36
Moderate 0.40–0.59, – 0.40 to (– 0.59) 0.16–0.35
Weak – 0.40 to 0.40  < 0.16
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wheat yield and VHI in the 9 zones was statistically signifi-
cant at P < 0.05. Similarly, Kogan et al. (2018) observed a 
solid relationship between wheat yield and VHI in Australia 
during the crop growing period. Generally, a higher relation-
ship between VHI and crop yield was observed in the north-
ern, central, southeastern, and some zones in the southern 
and southwestern parts of Ethiopia. The spatial correlation 
pattern obtained in this study is consistent with the pattern 
noted in Tadesse et al. (2015) and Bayissa et al. (2018), 
who attempted to evaluate evapotranspiration products and 
CDI-E with cereal crop yield, respectively. Typically, the 
evaluations presented here advise that VHI is suitable for 

agricultural drought monitoring in the highlands of Ethio-
pian agricultural management systems.

Modeling the spatial and temporal agricultural 
drought patterns based on VHI

The spatiotemporal pixel-based VHI investigation over the 
Kiremt season from 2004 to 2018 in the highlands of Ethio-
pia showed a wide range of drought conditions (moderate 
to extreme) during the crop growing periods of 2004, 2005, 
2009, 2010, 2014, and 2015 in the central, northern and 
southeastern highlands of Ethiopia, where the land is mainly 

Fig. 3  Methodological flow chart for modeling the incidence of agricultural drought
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covered by rain-fed agriculture. According to Liou and Mul-
ualem (2019), the 2009–2010 and 2014–2015 droughts in 
Ethiopia were the direct influence of ENSO. In contrast, the 
years 2006, 2007, 2008, 2011, 2012, 2013, 2016, 2017, and 
2018 exhibit near-normal vegetation conditions, which could 
indicate a good crop harvest. This study’s findings matched 
those of Liou and Mulualem (2019), who documented severe 
drought years in Ethiopia’s central, northern, and eastern 
parts during the Kiremt season in 2002–2004, 2009–2010, 
and 2014–2015. In addition, Bayable and Gashaw (2021) 
reported drought years in the upper part of the Awash basin 
in 2002–2003, 2009–2010, and 2012–2014.

Figure 5 depicts spatiotemporal VHI patterns during the 
Kiremt season for selected extensive drought years (2004, 
2009, 2010, 2014, and 2015) as well as a wet year (2018). 
A large portion of the study area was affected by severe 
drought in 2009 and 2015. By studying the VHI map of 2009 
from June to September, drought conditions were prevalent 
in most parts of the study area, ranging from moderate to 
extreme. It was found that 30–78% of the total area was 
affected by moderate to extreme drought conditions (Fig. 6). 
For instance, in June 2009, 78% of the total area was under 
drought, of which 42% was under extreme drought condi-
tions. Likewise, in July 2009, 45% of the study area was 
under drought, with 6% of the area under extreme drought 

conditions. In August and September of 2009, the total 
area affected by extreme drought was 5% and 11%, respec-
tively. During August, the total area affected by drought was 
reduced, probably because of the heavy precipitation during 
August 2009 over the western and northern highlands of 
Ethiopia (Bayissa et al. 2018). In 2009, a severe drought 
affected the central, northern, and northwestern parts of the 
study area.

Similarly, the portion of the area affected by agricultural 
drought during the 2015 cropping season ranged from 40 to 
48% (Fig. 6). In June, it was revealed that 43% of the study 
area was under drought conditions, with 3%, 16%, and 24% 
areas under extreme, severe, and moderate drought condi-
tions, respectively.

The total areas affected by extreme drought in July and 
August were 6% and 8%, respectively. In 2015, the central, 
southeastern, and northern parts of the study area experi-
enced extreme drought conditions. On the other hand, in 
June, July, and August 2018, more than 85% of the study 
area showed normal conditions. However, due to the failure 
of rainfall, moderate to extreme drought conditions in Sep-
tember affected a relatively large portion of the study area 
(22%) (Fig. 6).

The findings of this study aligned with those of Viste 
et al. (2013), who stated that 2009 was the only year during 

Fig. 4  Spatial distribution of correlations between the vegetation health index (VHI) and detrended maize crop yield in the crop growing areas
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Fig. 5  Spatial pattern of agricultural drought in the highlands of Ethiopia using the vegetation health index (VHI) for drought years (2004, 2009, 
2010, 2014, and 2015) and normal years (2018)
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1972–2011 that most zones of Ethiopia were struck by mod-
erate to severe drought conditions, and Sohnesen (2020) and 
Qu et al. (2019), who reported that 2015 was a drought year 
with low rainfall in the growing season.

Status and frequency of agricultural droughts

Table 2 depicts the frequency of agricultural droughts in 
Ethiopia’s highlands. The northern and southeastern high-
lands had the highest frequency of agricultural drought, 
while the southern and southwestern highlands had a lower 
incidence of agricultural drought, with the area experiencing 
nearly 1–4 drought occurrences (Table 2).

During the study period, the northern and central high-
lands (Tigray and Amhara regions), Ormia’s East and West 
Hararge, East Shewa Zones, and Southern Nations Nation-
alities and people’s Alaba, Sidama, and Silti zones were 
delineated as drought-prone zones. These findings are sup-
ported by the findings of Gebrehiwot et al. (2016).

Spatial and temporal drought (VHI) trends

The spatial and temporal VHI trends of Ethiopia’s highlands 
in the Kiremt season varied geographically from − 6.9 to 7.5 
from 2004 to 2018 (Fig. 7). A negative trend was observed 
in 26.3% of the crop growing areas, with only approximately 
3.6% being statistically significant at p < 0.05. Negative VHI 
slope values were observed in the study area’s southern, 
southwestern, and northern parts, which indicates a potential 
drought-vulnerable area due to reduction and fluctuation in 
rainfall. On the other hand, the VHI discovered a positive 
trend in 73.6% of crop-growing areas, with just 13% of those 
statistically significant. The areas with no changes in VHI 
make up a small portion of the total (0.01%).

Regarding the monthly VHI trend, the southeastern, 
southwestern, and central parts of the study area experienced 
a decreasing pattern in June (Fig. 8). In this month, the VHI 
slope values varied from − 8.7 to 7.7, and 20.5% of the study 
area showed a downward trend, with 2.7% being statisti-
cally significant at P < 0.05. However, the majority of the 
study area (79.3%) showed a positive pattern, with only 0.2% 
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Fig. 6  The area affected (%) by moderate to extreme drought condi-
tions for drought years (2009 and 2015) and normal years (2018)

Table 2  Frequency of 
agricultural drought incidence 
per administrative zones at a 
monthly time scale from 2004 
to 2018

E extreme drought, S severe drought, M moderate drought, T total periods in which drought occurred

Zones E S M T Zones E S M T

Asosa 2 2 East Harargie 3 8 11
Awi 1 3 4 East Shewa 2 14 16
South Gonder 1 2 10 13 North Shewa4 1 8 9
South Wollo 4 8 12 Alaba 1 4 10 15
West Gojjam 2 8 10 Benchi Maji 2 2
East Gojjam 1 1 6 8 Gamo Gofa 6 6
North Shewa3 3 7 10 Gedeo 4 4
Oromia 2 3 8 13 Gurage 1 3 4
North Gonder 2 10 12 Hadiya 4 4
North Wollo 5 7 12 Keffa 1 1
Wag Himra 5 9 14 Kembata Tembaro 4 4
Arsi 1 6 7 Sidama 2 6 8
Bale 12 12 Silti 1 12 13
South West Shewa 1 9 10 Wolayita 1 6 7
East Welega 4 4 Yem 6 6
Illubabor 3 3 Southern Tigray 1 13 14
Jimma 4 4 Central Tigray 1 1 16 18
West Welega 3 3 Western Tigray 2 10 12
West Harare 1 2 9 12 Eastern Tigray 1 2 14 17
West Shewa 1 5 6 North Western Tigray 1 3 8 12
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of areas showing no change in VHI. During July, the VHI 
trend showed a declining pattern with slope values ranging 
from − 6.3 to 6.8, and 47.9% of the study area showed a 
decreasing pattern, out of which 2.1% was statistically sig-
nificant. All studied zones in Tigray, Amhara (North Wollo, 
Waghimra, North Gondar, South Wollo, and North Shewa), 
Oromia (East Shewa, Bale, and North Shewa), and SNNP 
(Hadiya and Wolayita) experienced a decreasing VHI trend.

During August, 45.1% of the pixels had a diminishing 
VHI pattern. In this month, however, 52% and 2.9% of 
pixels, respectively, indicated an increasing and no change 
trend. Furthermore, during September, the VHI slope val-
ues ranged from -21.2 to 24.1, with 36% of the study area 
showing a downward trend. Furthermore, only 5.1% of pix-
els showed a statistically significant declining pattern, and 
the results are similar to those of Liou and Mulualem (2019).

Conclusion

This study employed VHI and MK nonparametric rank-
based trend analysis to investigate the spatiotemporal varia-
tion in agricultural drought throughout the growing season 
in Ethiopia’s highlands for 15 years, from 2004 to 2018. 
Droughts of moderate to extreme severity were recorded by 

the VHI in 2004, 2005, 2009, 2010, 2014, and 2015. How-
ever, the years 2006, 2007, 2008, 2011, 2012, 2013, 2017, 
2016, and 2018 showed near-normal VHI in the majority 
of the studied areas. The years 2009 and 2015 were found 
to be major drought years. Spatially, the most vulnerable 
agricultural production areas were identified as the central 
and northern highlands (especially the Amhara and Tig-
ray regions), East Shewa4, East and West Harargie, Silti, 
and Alaba zones. Pixel-based trend analysis showed that 
a significant VHI decreased significantly in the southeast-
ern, southwestern, and northern parts of the area of study. 
Furthermore, the regression analysis between VHI and 
detrended maize showed a stronger positive correlation 
than teff and wheat. A strong positive relationship between 
maize and VHI was observed in the West Harargie zone 
 (R2/r = 58.8/76.7; P < 0.01). In southern Tigray, on the other 
hand, there was a substantial connection between VHI and 
teff  (R2 = 0.56/r = 0.75; P < 0.01) and  (R2 = 0.45/r = 0.67; 
P < 0.05). Overall, a higher relationship between VHI and 
detrended crop yields was observed in the northern and cen-
tral highlands of Ethiopia. As a result, the findings from this 
study will be used by planners and policymakers to create 
effective and comprehensive monitoring and early warning 
systems to minimize and lessen the severe effects of drought 
in drought-affected areas of the highlands of Ethiopia.

Fig. 7  Spatial patterns of seasonal VHI slope in the highlands of Ethiopia (2004–2018)
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