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Abstract
Improving predicting methods for streamflow series is an important task for the water resource planning, management, and 
agriculture process. This study demonstrates the development and effectiveness of a new hybrid model for streamflow pre-
dicting. In the present study, artificial neural networks (ANNs) coupled with wavelet transform, namely Additive Wavelet 
Transform (AWT), are proposed. Comparative analyses of Discrete wavelet transform (DWT) based ANN and conventional 
ANN techniques with the proposed method were presented. The analysis of these models was performed with monthly 
streamflow series for four stations on the Çoruh Basin, which is located in northeastern Turkey. The Bayesian regulariza-
tion backpropagation training algorithm was employed for the optimization of the ANN network. The predicted results of 
the models were analyzed by the root mean square error (RMSE), Akaike information criterion (AIC), and coefficient of 
determination (R2). The obtained revealed that the proposed hybrid model represents significant accuracy compared to other 
models, and thus it can be a useful alternative approach for predicting studies.

Keywords Additive wavelet transform · Discrete wavelet transform · Artificial neural networks · Monthly streamflow · 
Prediction

Introduction

Short- and long-term reliable prediction of river flows are 
vital for the management, planning and design of water 
resources. It is also important for various issues related to 
water resources such as flood control, hydropower genera-
tion in drought periods, land use, agriculture and transport 
planning in rivers. A number of streamflow prediction meth-
ods have been proposed and employed in previous stud-
ies. They generally fall under statistical/stochastical based 
and conceptual/physically based methods. Statistical- or 
stochastic-based techniques include simple and multiple 

linear and nonlinear regression, autoregressive moving 
average (ARMA) models, ARMA with exogenous variables 
(ARMAX), and transfer function techniques (Salas et al. 
2000). These techniques are generally called as black-box 
type of models. On the other hand, conceptual or physically 
based techniques that are usually employed for streamflow 
prediction depend on mathematical descriptions of the phys-
ical processes that take place in a watershed.

During the last decades, an alternative approach to 
streamflow prediction has been developed based on Artifi-
cial Neural Networks (ANNs) and it has been successfully 
applied in various areas of hydrological predicting. For 
instance, Hsu et al. (1995) compared the ANN model with 
linear ARMAX in rainfall-runoff modeling. They empha-
sized that the ANN model performed better than ARMAX. 
Cigizoglu (2003) investigated the performance of the ANN 
model in predicting of the streamflow data. Unes et  al. 
(2015) employed ANN models to forecast daily reservoir 
levels for Miller Ferry Dam in USA. They found that the 
capabilities and accuracy of ANN was better than those 
of the conventional models. Rajendra et al. (2019) used 
ANN models for the prediction of hourly meteorological 
data and compared its results with those of the Multiple 
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linear regression (MLR). They underlined that ANN models 
achieved higher satisfactory results than the MLR.

Although ANN has been widely adopted in the fields of 
hydrology and water resource, there are criticisms about it, 
too. It does not explain as to the structure of the physical 
process of the data analyzed during the modeling phase (Par-
tal and Cigizoglu 2008), and also the accuracy of the model 
mostly depends on the expert's capability and knowledge 
(Cigizoglu 2004). At this point, recently, wavelet and ANN 
conjunction models have been developed to improve the per-
formance of ANN. The wavelet analysis, which provides 
information on the behavior and structure of the structure 
of the series observed in the time–frequency domain, has 
been successfully applied in the prediction of the hydrologi-
cal series (Danandeh Mehr et al. 2013; Sithara et al. 2020; 
Abda et al. 2021).

In these methods, the time series analysis is decom-
posed into many different resolution components using 
wavelet techniques. Then, the resulting sub-series are used 
as the input of ANN. In the last years, several researches 
relevant to hybrid discrete wavelet transform and ANN 
(DWT–ANN) have been done in the field of hydrology 
and water resources. For example, Wang and Ding (2003) 
suggested a wavelet network model to increase the predict 
accuracy of the ANN technique. They applied the proposed 
method for the estimation of the short- and long-term peri-
ods of the monthly groundwater level and daily streamflow 
data. The results indicated that the new method could extend 
the estimated time and increase the success of the prediction 
in the hydrological time series. Nourani et al. (2009) utilized 
ANN in conjunction with the wavelet transform for 1-day-
ahead runoff discharge forecasting. This multivariable model 
has significantly improved the prediction accuracy of the 
ANN in the rainfall–runoff forecasting models. Mehr et al. 
(2014) employed wavelet—ANN model and investigated the 
effect of discrete wavelet transform on neural networks in 
the estimation of monthly flows. They used the sub-series 
of the main series as inputs for ANN. Sun et al. (2019) 
assessed the ability of the wavelet-based ANN model for 
streamflow forecasting and compared it with a single ANN 
model. They suggest that the coupled wavelet neural network 
model is better than the single model. Siddiqi et al. (2021) 
utilized wavelet pre-processing to improve the accuracy of 
the ANN model for monthly mean streamflow prediction in 
Indus River Basin, Pakistan. The results indicate that the 
integrated models were found to perform better in monthly 
streamflow prediction compared to other single models.

In this study, we propose a neural network model com-
bined with additive wavelet transform (AWT) for the predic-
tion of hydrology and water resource time series. AWT has 
been used in the field of image processing and also to define 
the trends of the time series in hydrology (Nunez et al. 1999; 
Otazu et al. 2005; Tosunoglu and Kaplan 2018).

In this study, the main reason for using AWT in addi-
tion to other classical wavelet transformations is that it is 
easier to implement, more practical and its calculation cost 
is lower, especially for large data. AWT basically decom-
poses the analyzed time series to approximate and wavelet 
subcomponents. The approximation component (low fre-
quency component) is obtained by a bicubic spline filter 
(Yilmaz et al. 2020). The detailed component of the time 
series is obtained from the difference between the approx-
imate component subbands. To achieve a higher level of 
decomposition, the same process is applied to the approxi-
mation component. The time series decomposition process 
with AWT is much easier in comparison with the other con-
ventional wavelet transform techniques. To our knowledge, 
there is not published work using AWT for the prediction 
of hydrometerological variables. This present application is 
the first study for predicting streamflow using additive wave-
let transform and artificial neural network (AWT–ANN) in 
the literature. In this paper, a new method is suggested for 
streamflow modelling from previous flow data using Addi-
tive Wavelet Transform-based neural network methods. The 
research methodology of the paper is as follows. First, DWT 
and AWT techniques are utilized to decompose the analyzed 
series into detailed and approximate components, which 
give information about the periodic structure of the data 
set. Secondly, proper wavelet components are used as inputs 
to the ANN to predict the monthly streamflow data from 
four stations in Çoruh Basin, one of Turkey's most important 
watersheds in terms of water potential. Finally, to evaluate 
predictive ability of the models, the results obtained from 
AWT–ANN are compared with those of the DWT–ANN 
and single ANN and prediction accuracy of the AWT–ANN 
model is evaluated and discussed.

Methods

Artifical neural networks (ANN)

Artificial neural networks (ANN) can be defined as a data-
driven statistical approach that can quickly solve non-linear 
relationships between input and output data. ANN is a black 
box that generates outputs for given inputs (Kohonen 1988). 
An advantage of ANN is the ability to provide models in 
which the relationship between input and output variables 
is not fully understood in complex nonlinear problems 
(Belayneh et al. 2014) ANN is used as a powerful tool for 
estimation in the different areas of hydrology and water 
resources (Kisi 2005; Athar and Ayaz 2021). In this study, 
feed forward back propagation (FFBP) trained with the 
Bayesian regularization backpropagation algorithm is used 
as ANN model. Nourani et al. (2008) has proved that FFBP 
model with the three-layer provides satisfactory results for 
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prediction. For this reason, the FFBP network model used 
in this study consists of three layers network, namely, an 
input layer, a hidden layer, and an output layer. In Fig. 1, the 
structure of the feed—forward network consisting of neu-
rons connected by the connections is given. The connection 
between the first and the last layer is provided by hidden 
neurons. The back propagation algorithm with two phases 
is the most popular learning method for the network in the 
training process.

First, each node receives the weighted input, which is 
the output of each node in the previous layer and transmits 
it to the nodes of the next layer by means of links for proper 
output after processing it with an activation function. Sec-
ond, according to the error function calculated by difference 
between the signal obtained in the output layer and the origi-
nal signal, the connection weights are updated backwards 
(Partal 2009; Adamowski and Sun 2010). The values of the 
weights can be updated during the network training until the 
calculated error in Eq. (1) is minimized.

where N is length of the training data. k indicates the output 
neuron number. Tij is the observed values. Oij is the network 
output value at the end of the training.

Wavelet transform

Wavelet transform is a multi-resolution analysis that can 
provide information about the behavior of a signal in the 
time–frequency domain (Saraiva et al. 2021). One advantage 
of the wavelet transform compared to the Fourier transform is 
that it performs with different window sizes analysis instead 
of a single window technique to decompose the signal. The 
main problem in using a single window is that the temporal 

(1)e =
1

2N

N
∑

i=1

k
∑

j=1

(

Tij − Oij

)2

information can be lost at high-frequency while the window 
is sliding through the analyzed signal (Torrence and Compo 
1998). The wavelet transform uses the narrow and wide win-
dow analysis to decompose the signal into low and high reso-
lution components, respectively. The second advantage is that 
since the hydro-meteorological time series are mostly non-
stationary, the wavelet transform is considered as a more suc-
cessful tool than Fourier analysis in these series (Partal and 
Kisi 2007). It has a wide area of usage for predicting of hydro-
logical variables and for defining the trends of time series in 
the fields of hydrology and water resources. In this study, two 
different wavelet forms which are explained in detail in the 
following sections are used for ANN-based prediction models.

Additive wavelet transform

The conventional AWT technique is widely employed for 
image analysis (Nunez et al. 1999; Otazu et al. 2005). Firstly, 
the image is decomposed with a bicubic spline filter to acquire 
the first approximation compound (Nunez et al. 1999). Since 
the time series analyzed in this study are 1D, the 1D AWT 
decomposition approach explained by Tosunoglu and Kaplan 
(2018) is used to obtain components that give information 
about the structure of the time series.

The following 1D filter is used for the first decomposition 
level.

The original data are decomposed by convolving the series 
with the filter in Eq. (2) and at the end of the process the first 
approach compound is obtained as:

where, Ao represents the extracted state of the original 
data and ∗ is the convolution operator. A1 indicates the first 

(2)ho = [14641]

(3)A1 = Ao ∗ ho

Fig. 1  General architecture of 
a typical three –layered feed 
forward neural network
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approximation compound. The first detail component is the 
difference between Ao and A1.

Filtering is continued as follows until the determined 
decomposition level.

where, Al shows l th approximation component. The detailed 
component in the l th level is defined as:

The reconstruction of the signal decomposed for L level 
is as seen in Eq. (7):

The flowchart for the two levels decomposition of the 
AWT, which separates the data into the sub-series, is pre-
sented in Fig. 2.

Discrete wavelet transform (DWT)

The DWT technique is widely used for prediction and trend 
analysis, as the hydrological and water resources time series 
are generally measured at discrete intervals (Nalley et al. 
2012; Mehr et al. 2014; Joshi et al. 2016). An advantage of 
DWT compared to other classic transformation types such as 
Continuous wavelet transform is that the process of decom-
position is easier and it provides an accurate and effective 
analysis instead of redundant information (Partal and Kucuk 

(4)D1 = Ao − A1

(5)Al = Al−1 ∗ h0

(6)Dl = Al−1 − Al

(7)A =

L
∑

l=1

Dl + AL

2006). In addition, thanks to the orthogonal feature of the 
DWT, the decomposed signal can be easily reconstruction 
(Torrence and Compo 1998). The DWT has the form as

where Ψ represents the mother wavelet function; a and b are 
integers that symbolize the wavelet scale and the translation 
parameter, respectively. so is a constant dilation step and its 
value is greater than 1. �o represent location variable and 
its value should be higher than zero. The values of so and �o 
are determined as 2 and 1, respectively (Mallat 1989). The 
coefficients for DWT at scale s = 2a and location � = 2ab 
can be defined as:

The DWT operates to obtain approximate and detailed 
components at any level with low pass filter and a high pass 
filter, respectively. The approximate components provide 
information on the low frequency of the signal, while the 
detailed components contain information on the frequen-
cies of the signal at different levels from high to low (Freire 
et al. 2019).

Study area and data

Çoruh river basin situated in north-east of Turkey was cho-
sen as the study area in this study. The Çoruh river originates 
from Bayburt and discharges to the Black Sea in Batum City 
and its drainage area is approximately 19.748  km2. The mean 
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)

(9)W(a,b) = 2−a∕2
N−1
∑

t=0

xtΨ
(

t

2a
− b

)

Fig. 2  Flow chart for 2 levels of 
decomposition and reconstruc-
tion via AWT (Tosunoglu and 
Kaplan 2018)
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annual flow for this river is about 200  m3/s inside Turkey's 
borders (Danandeh Mehr et al. 2013). Recently, with water 
structures such as dam and hydroelectric power plants built 
in the basin has gained significant contribution to Turkey's 
economy. The Çoruh River has a total of 37 water structures, 
10 of which are on the main line and 27 are on the side 
branches. The annual energy potential is about 16 billion 
kWh which constitutes 6% of the total energy produced in 
Turkey (Sume et al. 2017).

Monthly streamflow prediction plays a critical role in 
the field of water resource management and hydrologic 
analysis to solve problems of water resource dispatching 
plans, supply, irrigation, and reservoir operation. (Partal 
2009; Honorato et al. 2018). In this study, monthly aver-
age flows belonging to four gauging stations in the Çoruh 
basin were used. These stations were chosen since the 
observation periods are sufficient and the observations are 
not influenced by human intervention. The missing flow 
data of the stations 2323 and 2320 in the period between 
2003–2004 and 1990–1992, respectively, were estimated 

by means of an artificial neural network (Can et al. 2012). 
Figure 3 gives the map of the study area and the location 
of the selected gauging stations. The basic statistical char-
acteristics of monthly average flows and some informa-
tion about gauging stations are presented in Table 1. The 
symbols SD, Cs and Cv in the table represent the standard 
deviation, skewness coefficient and coefficient of varia-
tion, respectively. It can be seen from the Table 1 that the 
monthly mean streamflow varies about between 14 and 70 
 m3/s (stations 2321 and 2305, respectively). The SD for 
monthly mean streamflow varies approximately between 
13 and 75  m3/s and its maximum value is determined at 
station 2305. The skewness coefficient indicates the degree 
of asymmetry in a probability distribution function around 
the point corresponding to the mean. The skewness value 
for the monthly streamflow varies from 1.34 (station 2321) 
to 2.56 (station 2323). It can be said that the data has a 
high positive skewness. In other words, monthly average 
flows show a scattered distribution. The Cv is the ratio 
of standard deviation to the average of the observed data 

Fig. 3  Location map of the 
Çoruh Basins and the stations 
used in this study

Table 1  Data range, locations, 
names, numbers, and basic 
statistical properties of the 
analyzed stations

Station number Station name Latitude Longitude Data range Mean SD Cs Cv

2305 Peterek 40.74 41.48 1962–2011 70.81 75.09 1.71 1.060
2320 Laleli 40.39 40.60 1970–2011 29.49 33.55 1.88 1.138
2321 Dutdere 40.89 41.53 1971–2011 14.07 13.25 1.34 0.942
2323 İşhan Köprüsü 40.78 41.70 1964–2011 34.52 35.69 2.56 1.034
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series. Cv is a dimensionless value that is used to compare 
parameter sizes of different variables. The Cv range from 
0.94 to 1.13 for monthly values.

Efficiency criteria

The performance of the models used in this study is evalu-
ated by means of several statistical criteria which identified the 
errors relevant to the model. The coefficient of determination 
(R2), the root mean squared error (RMSE) and the Akaike 
Information Criterion (AIC) are employed to evaluate the 
accuracy of the agreement between the observed and predicted 
values in the ANN, DWT–ANN and AWT–ANN model.

The RMSE is the square root of the sum of the squares 
of errors that known as difference between output and target 
values. The smaller is the value of RMSE, the higher is the 
accuracy of the model. The R2 evaluates the strength of the 
correlation between the observed and predicted values. This 
coefficient ranges from 0 to 1. A higher value of the coef-
ficient indicates that the performance of the model has a high 
efficiency. The RMSE and R2 are defined as:

where n denotes the number of data points used; Qobs
i

 , Q 
and Qpre

i
 represent observed values, average of the observed 

values and predicted data, respectively.
The most important problem in ANN modeling is the 

excess of parameters to be predicted. Because, this situation 
can reduce the predicted performance of the models and lead 
to uncertainty (Kisi 2009). The information criteria is sug-
gested by Anders and Korn (1999) for selecting the best ANN 
model. The main reason for the use of information criteria is 
the ability to penalize the model to avoid the use of excessive 
parameters by taking into account the estimation of the model 
parameters (Kumar et al. 2005). The akaike information cri-
terion (AIC) recommended by Akaike (1981) is one of the 
commonly used criteria. Based on Salas et al. (1980), the AIC 
is defined as:

where n is the length of the data used as input; p representes 
the number of parameters used in the model; �2

�
 denotes the 

variance of the residual values. The low AIC value indicates 
high performance of the model.

(10)
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(11)R2 = 1 −

∑n

i=1

�

Qobs
i

− Q
pre

i
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�
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(12)AIC = n × ln
(

�
2
�

)

+ 2 × p

Model development

ANN models

In this part of the study, ANN models for monthly mean 
streamflow prediction are developed through the commercial 
software MATLAB R2016 program. We used three-layer 
feed-forward back propagation (FFBP) networks consisting 
of an input layer, an output layer and one hidden layer. Tan-
gent sigmoid and linear transfer functions are utilized in the 
hidden layer and output layer, respectively. The Bayesian 
regularization backpropagation algorithm was employed in 
the network training process. Initially, ANN models with 
different input combinations are trained and tested. In this 
study, since the antecedent flows are used to predict flow 
at current time, the number of neurons in the input layer is 
chosen based on the partial auto-correlation function (PCF) 
of the monthly mean flows (Shiri and Kisi 2010). The PCF 
for monthly mean data is given in Fig. 4. This figure clearly 
shows that the lags that are up to three previous months 
have a significant impact on the current time. Thus, different 
combinations were generated for each station using three 
antecedent lags and these combinations are used as inputs 
for ANN models. Different combinations can be written 
mathematically as follows:

where Qt represents monthly mean streamflow at time t; Qt−1 , 
Qt−2 and Qt−3 denote one month previous flow, two months 
previous flow and three months previous flow, respectively. 
One of the most important tasks in ANN modeling is to 
detect the optimal number of neurons in the hidden layer 
for an efficient network. As mentioned in the previous sec-
tions, excessive number of parameters can cause overfitting 
problem in the network's training phase.

Conversely, if too few neurons are used in the network, 
the network may not be able to fully understand the incom-
ing signal from data and this may cause loss of informa-
tion. According to the researchers, increasing the number of 
neurons in the hidden layer does not increase the efficiency 
of the model (Cannas et al. 2006; Wu et al. 2009). For this 
reason, the number of hidden neurons was define using the 
trial-and-error technique proposed by the Kisi (2008) and 
the highest number of neurons we considered was 10. The 
optimal number of hidden nodes was define according to the 
AIC value calculated in the test process at each trial. In the 

(13)Model1Qt = f
(

Qt−1

)

(14)Model 2Qt = f
(

Qt−1,Qt−2

)

(15)Model 3Qt = f
(

Qt−1,Qt−2,Qt−3

)
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literature, there is no definite information about the period 
of data used in the training and testing steps of the network. 
However, in general, the length of the data used for training 
in the studies varies between 70 and 90% of the entire data 
length (Partal and Cigizoglu 2008). In this study, the first 70 
percent of the observations at all stations are selected for the 
training of the ANN models and the remaining 30 percent 
are used as test data.

Wavelet‑based models

The wavelet-neural network conjunction models are ANN 
model that uses, as input, sub-series (detail and approxima-
tion components) obtained by AWT and DWT. The struc-
ture of the wavelet-neural network model developed in this 
study is given in Fig. 5. Each sub-series component contains 
important information about the structure of the series. To 

improve the prediction performance of ANN, ANN models 
are constructed with the decomposed series and an original 
series is obtained as output. However, there are two impor-
tant tasks that need to be done before decomposing the 
series. The first is the determination of the proper mother 
wavelet for the DWT. The other is the choice of appropriate 
decomposition level (Sharie et al. 2020). There are differ-
ent methods proposed regarding mother wavelet selection 
in the literature (Nalley et al. 2012; Nourani et al. 2014). 
For the trend analysis and prediction of the hydrology and 
water resources time series, The Daubechies wavelet, one of 
the wavelet families, has been commonly used (Adamowski 
et al. 2012; Nalley et al. 2013; Araghi et al. 2015). Due 
to the Daubechies wavelet’ s ease of use, compact support 
and orthogonal feature (Vonesch et al. 2007), it was deter-
mined as the mother wavelet in this study. These features 
provide the wavelets to be adjusted to include the high and 
low frequencies of the signal (Nalley et al. 2013). There are 

Fig. 4  Partial auto-correlation function of montly streamflow series for all stations

Fig. 5  The Wavelet-ANN model 
structure
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different types of Daubechies (db) wavelet family from db1 
to db10. In this study, these db types are examined for each 
data set. To find the type of suitable db wavelet, we have 
considered the method suggested by Nourani et al. (2009). 
They compared the effects of different wavelet types on 
the performance of the wavelet–ANN models and used the 
RMSE and  R2 as criterion to compare the results. Accord-
ing to this procedure, we used the DWT with db6 mother 
to obtain different resolution sub-components. Our results 
suggest that db6 can successfully capture the characteristics 
of the data analyzed in the study.

For the minimum level of decomposition, the following 
formula recommended by Wang and Ding (2003) is used.

where n is the number of observations; INT represents 
integer number. In this study, the record lengths vary from 
480 to 588 months. Based on Eq. (16), the minimum decom-
position level is 2. However, it is selected five to analyze 
the effect of higher scales on wavelet–ANN models. For 
instance, the all sub-time series for Station 2323 at the 
Çoruh watershed has been illustrated in Fig. 6.

The structure consists of two phases. In the pre-process-
ing phase, the series is decomposed into approximation and 
detail components using DWT and AWT.

The decomposition process is repeated up to the selected 
decomposition level, so that the series is split into many low 
resolution components.

In the second phase, namely simulation phase, at first, 
for the DWT–ANN and AWT–ANN models, the developed 
ANN networks consists of input layer, hidden layer and 
output layer consisting of one node denoting the monthly 

(16)L = INT(logn)

streamflow. The input nodes are determined through follow-
ing the procedure below. Based on the correlation coefficient 
between each sub-time series (DW) and the original data, 
the DW components are selected as input for ANN models. 
Each of these components represents the different charac-
teristics of the data. Finally, the selected DW components 
(and approximation series) are summed up to increase the 
efficiency of the ANN models, and the summed new series 
is used as input to the ANN model (Kisi 2009; Adamowski 
and Chan 2011). As in single ANNs, each model analyzed 
by trial-and-error method to specify the optimum number 
of neurons in the hidden layer, depending on the number 
of neurons in the model’s hidden layer. Then, the first 70 
percent of the data series at all stations were selected for the 
training of the AWT–ANN and DWT–ANN models and the 
remaining 30 percent were used for testing of the methods.

Results

Tables  2, 3, 4 and 5 present the ANN, DWT–ANN, 
AWT–ANN model performance statistics results( AIC, 
RMSE and  R2) and their model structures for stations 2305, 
2320, 2321 and 2323, respectively. The model structure 
column given in the tables indicates the number of input, 
hidden and output neurons for each station, respectively. 
For each ANN, DWT–ANN and AWT–ANN models, the 
optimal number of hidden neurons that gives the minimum 
AIC value was selected.

For Station 2305, three input combinations according 
to monthly mean streamflow of antecedent periods are 
evaluated to predict current streamflow value. Table 2 indi-
cates that the AWT–ANN model is found to provide more 

Fig. 6  Wavelet components of streamflow time series at Station 2323  m3/sn
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accurate prediction results than the DWT–ANN models and 
regular ANN models in the prediction of monthly average 
flows of Station 2305. The best AWT–ANN is a function 
of the monthly mean streamflow from one, two and three 
months ago. The best AWT–ANN model has one hidden 
layer with five neurons. The best AWT–ANN model with 
a coefficient of determination (R2) of 0.9237, root mean 
square error (RMSE) of 21.4153 and Akaike information 
criterion (AIC) of 1136 for the test period showed higher 
performance than the best DWT–ANN model (R2 = 0.8678, 
RMSE = 28.1826 and AIC = 1233) and ANN model 
(R2 = 0.6985, RMSE = 42.5594 and AIC = 1370). Figure 7 
compares the predicted values obtained from the best ANN, 
AWT–ANN and DWT–ANN models and the observed flow 
values for the test period. It can be seen from the Fig. 5 
that The AWT model is able to capture the structure of the 
observed flows values better than the ANN and DWT–ANN 

models, especially in high flows. Figure 7 also shows scat-
terplots comparing the observed and estimated streamflow 
values derived from these models. The scatterplots denote 
that the AWT–ANN model has more concentrated estimates 
around the identity line.

The RMSE,  R2 and AIC statistics of the ANN, 
DWT–ANN and AWT–ANN models for the Station 2320 
are given in Table 3. The best AWT–ANN model clearly 
has higher values R2 (0.9389) and lower RMSE (8.4813) 
and AIC (681.2857) than those of the best DWT–ANN 
(R2 = 0.7957, RMSE = 15.5103 and AIC = 855.55) and 
ANN (R2 = 0.6886, RMSE = 19.14 and AIC = 902.787) 
models. Table 3 indicates that the AWT–ANN model has a 
better performance than the ANN and DWT–ANN models 
in terms of RMSE, R2 and AIC. In the best AWT–ANN 
model, the input consists of the streamflow of three pre-
vious months. The optimum number of hidden neurons of 

Table 2  Performance comparison of single ANN, DWT-ANN and AWT-ANN models at Station 2305 for test period

Model ANN DWT-ANN AWT-ANN

Model structure RMSE R2 AIC Model structure RMSE R2 AIC Model structure RMSE R2 AIC

1 1,2,1 57.549 0.4487 1449 1,2,1 54.2928 0.5093 1428 1,2,1 51.2389 0.5629 1408
2 2,5,1 42.559 0.6985 1370 2,3,1 47.1898 0.6293 1389 2,3,1 35.0111 0.7959 1285
3 3,6,1 41.611 0.7118 1382 3,5,1 28.1826 0.8678 1233 3,5,1 21.4153 0.9237 1136

Table 3  Performance comparison of single ANN, DWT-ANN and AWT-ANN models at Station 2320 for test period

Model ANN DWT-ANN AWT-ANN

Model structure RMSE R2 AIC Model structure RMSE R2 AIC Model structure RMSE R2 AIC

1 1,2,1 26.308 0.4122 976.335 1,2,1 24.544 0.488 955.848 1,2,1 24.181 0.503 951.474
2 2,4,1 19.148 0.6886 902.787 2,4,1 24.107 0.506 969.72 2,4,1 9.556 0.922 698.619
3 3,5,1 19.987 0.6608 933.554 3,5,1 15.51 0.795 855.559 3,5,1 8.481 0.938 681.285

Table 4  Performance comparison of single ANN, DWT-ANN and AWT-ANN models at Station 2321 for test period

Model ANN DWT-ANN AWT-ANN

Model structure RMSE R2 AIC Model structure RMSE R2 AIC Model structure RMSE R2 AIC

1 1,2,1 10.048 0.455 679.518 1,2,1 9.787 0.483 671.919 1,2,1 9.14 0.549 652.243
2 2,4,1 8.06 0.649 635.589 2,4,1 7.784 0.672 625.439 2,4,1 5.767 0.82 537.881
3 3,6,1 7.469 0.698 640.903 3,6,1 5.981 0.806 574.194 3,6,1 4.273 0.901 480.58

Table 5  Performance comparison of single ANN, DWT-ANN and AWT-ANN models at Station 2323 for test period

Model ANN DWT-ANN AWT-ANN

Model structure RMSE R2 AIC Model structure RMSE R2 AIC Model structure RMSE R2 AIC

1 1,2,1 26.604 0.368 1123 1,2,1 23.244 0.517 1078 1,2,1 23.679 0.499 1084
2 2,4,1 22.088 0.564 1080 2,4,1 20.089 0.639 1047 2,4,1 14.133 0.821 922.466
3 3,9,1 21.138 0.601 1124 3,7,1 14.29 0.817 971.835 3,6,1 14.749 0.805 966.214
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the ANN, DWT–ANN, AWT–ANN models are found to 
vary between 2 and 5. For the best ANN, DWT–ANN and 
AWT–ANN models, the number of hidden neurons are 4, 
5 and 5, respectively. The prediction performances of the 
best ANN and DWT–ANN and AWT–ANN models are 
compared in Fig. 8. It is understood from the figure that 
AWT–ANN model estimations show a higher harmony 
with original data than those of the ANN and DWT–ANN 
models. For the best performing ANN, DWT–ANN and 
AWT–ANN models, a scatterplot is also presented in Fig. 8. 
The scatterplots show that the estimates of the AWT–ANN 
model are much closer to the original time series than those 
of the ANN, DWT–ANN model.

For the Station 2321, the performance statistics of 
ANN, DWT–ANN and AWT–ANN models in test period 
are shown in Table 4. It can be seen from the table the 
best AWT–ANN model, which has R2 of 0.9015, RMSE 
of 4.2733 and AIC of 480.5707 shows the highest 

performance than the best DWT–ANN model (R2 = 0.8069, 
RMSE = 5.9816 and AIC = 574.1946) and ANN model 
 (R2 = 0.6494, RMSE = 8.0603 and AIC = 635.5891) in pre-
dicting monthly mean flows. The best AWT–ANN model 
whose inputs consist of the flows of the previous three 
months has the highest accuracy to predict the monthly aver-
age flows of the Stations 2321. In all models, the optimal 
neurons number in the hidden layer varies between 2 and 6. 
The best AWT–ANN, DWT–ANN and ANN models have 6, 
6 and 4 neurons, respectively, in the hidden layer. To graphi-
cally compare the performance of the best AWT–ANN, 
DWT–ANN and ANN models, Fig. 9 presents the scatter-
plots and plots for predicted and observed data in the test 
period. It is obvious from the figure that the AWT–ANN 
model has a high ability to predict the monthly average flows 
of Station 2321. The AWT–ANN model estimations have 
better harmony with the observed data compared to the ANN 
and DWT–ANN models.

Fig. 7  Observed and predicted streamflow time series obtained from the best ANN (a), DWT-ANN (b) and AWT-ANN (c) models at Station 
2305 for test period
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Table 5 gives the performance statistics results statistics 
of ANN, DWT–ANN and AWT–ANN models for station 
2323. From Table 5, RMSE and AIC values (14.133 and 
922.4664, respectively) and high R2 (0.8218) value for the 
best AWT–ANN models were found when compared to the 
best ANN(R2 = 0.5646, RMSE = 22.0821 and AIC = 1080) 
and DWT–ANN (R2 = 0.8178, RMSE = 14.2903 and 
AIC = 971.8352) models.It is observed from the table that 
the accuracy of the AWT–ANN model having two anteced-
ent values of the data series in monthly streamflow predic-
tion is better than ANN and DWT–ANN models. For the 
ANN, DWT–ANN, AWT–ANN models, the optimal number 
of hidden nodes in the hidden layer varies between 2 and 
9 and the best AWT–ANN, DWT–ANN and ANN models 
have 4, 7 and 4 neurons, respectively, in this layer. Figure 10 
shows the hydrograph of observed and predicted values for 
the best AWT–ANN, DWT–ANN and ANN models over the 
test period. This illustration clearly shows that the predicted 

values obtained from AWT–ANN model are slightly better 
matched with the observed values compared with those of 
the ANN and DWT–ANN models. Figure 10 also presents 
the scatterplot between the predicted and observed stream-
flow for station 2323. It can be seen that the AWT–ANN 
estimates are slightly closer to the regression line than those 
of the DWT–ANN and ANN.

Overall, it can be concluded for monthly streamflow pre-
dicting the AWT–ANN models provided more accurate pre-
dicting results than the DWT–ANN and single ANN models.

As aforementioned, overfitting is an important problem 
in ANN modeling because it can reduce the prediction abil-
ity of the model and lead to consequent uncertainty. As it 
was mentioned previously, in this study, the trial-and-error 
method recommended by the Kisi (2008) is used to avoid 
overparameterization. For choosing the optimal nodes num-
ber in hidden layer, the Akaike information criterion value 
is used for test period in each trial as it penalizes the models 

Fig. 8  Observed and predicted streamflow time series obtained from the best ANN (a), DWT-ANN (b) and AWT-ANN (c) models at Station 
2320 for test period
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having more parameters. For example, It can be seen from 
Table 5 that in single ANN modeling the RMSE value of 
Model 3 is smaller than that of Model 2 and the value of R2 
is greater. In other words, the Model 3 is better than model 
2 in terms of RMSE and R2. However, 12 (2 × 4 + 4 × 1) and 
36 (3 × 9 + 9 × 1) weights are used for model2 and model3, 
respectively. In addition, the AIC value of Model 2 is smaller 
than that of the Model 3. Thus, to avoid overfitting issue, the 
best single ANN model is determined as Model 2.

Discussion

The raw signal is decomposed into various resolution inter-
vals using AWT and DWT technique. Thus, the behavior of 
periodic structures of original time series can be seen more 
clearly through sub-series. The ANN model is reconstructed 

with the effective wavelet components to belong to vari-
ous resolution levels. The accuracy of the model predic-
tions shows better performance than those obtained directly 
by original time series. In other words, since the subseries 
belonging to the different wavelet resolution levels are used 
as inputs in the network, the combined neural-wavelet model 
increases the ANN predicting performance. Table 6 gives 
the best results for each model at all stations. It is clear from 
the table that wavelet-ANN models outperform regular ANN 
models for predicting monthly mean streamflow because the 
wavelet technique provides low and high resolution decom-
positions of the series and wavelet decomposed data sets 
improve the prediction performance of ANN by capturing 
useful information at different resolution levels. Different 
studies have been carried out to improve the performance 
of ANN in streamflow prediction. Dalkiliç and Hashimi 
(2020) used hybrid models by coupling wavelet with ANN 

Fig. 9  Observed and predicted streamflow time series obtained from the best ANN (a), DWT-ANN (b) and AWT-ANN (c) models at Station 
2321 for test period
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to predict monthly streamflow series. The results indicate 
that wavelet-based ANN models demonstrate more accurate 
results compared to traditional ANN model. Güneş et al. 
(2021) developed discrete wavelet-based artificial neural 
models to predict streamflow at three stations. They indi-
cated that the hybrid model performed better than single 
ANN models for discharge prediction at all stations.

This study also presented a comprehensive comparative 
analysis of the AWT–ANN, DWT–ANN and single ANN 
approaches. As can be seen in Table 6, the AWT–ANN 
model is more adequate than the other models for predict-
ing monthly mean streamflow.

To illustrate detailed comparison of the performance of 
the best AWT–ANN, DWT–ANN and ANN models, the 
observed and predicted hydrographs at test period for Station 
2320 is presented in Fig. 11. The figure shows that all three 

models have great ability in predicting monthly streamflow. 
However, the AWT–ANN predictions show better match 
with observed data than those of DWT–ANN and ANN. In 
addition, the AWT–ANN model has captured the extremes 
(i.e. minima and maxima) better than other models in the 
observed monthly mean flows. For further analysis of model 
performances, the spatial pattern of predicted and observed 
values of monthly mean flows by the best AWT–ANN, 
DWT–ANN and ANN models were evaluated using Taylor 
diagram (Fig. 12). The Taylor diagram (Taylor 2001) pro-
vides a comprehensive statistical information for evaluating 
the performance of different models based on observations. 
The Taylor diagram exhibits three statistics (i.e., correla-
tion of coefficient (CC), normalized standard deviation, and 
RMSE). From Fig. 12 it is evident that AWT–ANN shows 
high spatial CC in all the four Stations. Considering the 

Fig. 10  Observed and predicted streamflow time series obtained from the best ANN (a), DWT-ANN (b) and AWT-ANN (c) models at Station 
2323 for test period
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aspects of standard deviation and RMSE it is understood 
that the AWT–ANN posseses low values of RMSE with 
normalized SD close to unity indicating better skill exhib-
ited by the model compared to other models. In summary, 
the AWT–ANN conjunction model proposed in this study is 
obtained from the combination of AWT and ANN. As seen 
in this study, AWT technique has many beneficial points 
compared to other conventional wavelet types such as DWT:

1) Before decomposing the hydrological time series with 
DWT, a suitable mother wavelet should be selected and there 
are many methods proposed for this selection process. As it 
was mentioned previously, in this study, the approach pro-
posed by Nourani et al. (2009) was tried for each of different 
types of the Daubechies wavelets. The wavelet type, which 

gives the most optimum result according to RMSE and val-
ues among the db wavelets in DWT–ANN modelling, was 
chosen as the mother wavelet. However, in AWT technique, 
the hydrological series is more easily decomposed into its 
sub-components compared to DWT. The reason behind this 
is that there is no need to select mother wavelet since there is 
no mother wavelet used in AWT method. The decomposition 
process of time series is done simply by a bicubic spline fil-
ter. Especially for large data, AWT is more useful than DWT.

2) As mentioned, DWT process uses two different filter-
banks to obtain the detail and approximation components, 
therefore some of the information within the series cannot 
be transferred to the components. In AWT method, the detail 
component is obtained by a simple subtraction between the 
series and approximation compound, so all of the infor-
mation within the series is transferred into compounds. 
Moreover, the computational complexity of AWT is three 
times lower than DWT as given in Table 7. In the table, N 
is the length of the series and M is the number of vanish-
ing moments of the mother wavelets. Since, the amount of 
information kept in the components is higher in AWT, it is 
expected to provide better results.

3) Our results showed that the AWT–ANN model pro-
vided more accurate predicting results than the DWT–ANN 
model. The reason for this is that the sub-series obtained 
from AWT is better to capture the falling and rising limbs 
of the original time series than those of DWT. Thus, when 
these components are used as inputs in ANN modeling, the 
accuracy of the predictions is found to be more successful 
than that of DWT–ANN model. In addition, AWT–ANN 
model provided accurate estimations for four different 
stations, which means that the method is both stable and 
reliable.

Table 6  Comparison of the best AWT–ANN model with the best 
DWT-ANN model and ANN model for streamflow predicting at all 
stations during the testing period

Station Model Model structure RMSE R2 AIC

2305 ANN 2,5,1 42.559 0.6985 1370
DWT-ANN 3,5,1 28.1826 0.8678 1233
AWT-ANN 3,5,1 21.4153 0.9237 1136

2320 ANN 2,4,1 19.148 0.6886 902.787
DWT-ANN 3,5,1 15.51 0.795 855.559
AWT-ANN 3,5,1 8.481 0.938 681.285

2321 ANN 2,4,1 8.06 0.649 635.589
DWT-ANN 3,6,1 5.981 0.806 574.194
AWT-ANN 3,6,1 4.273 0.901 480.58

2323 ANN 2,4,1 22.088 0.564 1080
DWT-ANN 3,7,1 14.29 0.817 971.835
AWT-ANN 2,4,1 14.133 0.821 922.466

Fig. 11  Comparison of predicted versus observed streamflow using the best ANN, DWT-ANN and AWT–ANN models at Station 2320 for test 
period
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In summary, for the aforementioned reasons, the new 
hybrid model obtained by combining the Additive Wavelet 
Transform and Artificial Neural Networks performed bet-
ter than the ANN and DWT–ANN methods in predicting 
monthly mean streamflow. The suggested AWT–ANN pre-
dicting method for monthly streamflow could be useful in 
the management and planning of water resources systems. 
This method showed good predicting results. In light of 
this, the proposed method can be used for the prediction 
in different fields of hydrological and water resources and 
should be studied further.

Conclusion

A new hybrid method based on coupling Additive Wave-
let Transform (AWT) and artificial neural networks (ANN) 
was presented for monthly streamflow predicting of four sta-
tions in the Çoruh basin which is situated in the northeast of 
Turkey. To totally shown the effectiveness of the suggested 
model, the AWT–ANN models were compared to single 
ANN models and DWT–ANN models. Using the Additive 
Wavelet Transform and discrete wavelet transform, original 
series were decomposed into subcomponents containing 
important information about the original data at different 
resolution levels, which were then used for predicting in 
ANN modelling. Both the AWT–ANN and the DWT–ANN 
model improved the predictive performance of ANN. How-
ever, since the subcomponents obtained from AWT are bet-
ter matched to the original series than those of DWT, the 
AWT–ANN model demonstrates a higher performance than 
DWT–ANN model in monthly mean streamflow prediction. 
The accurate prediction results for all stations in the Çoruh 
basin indicate that the AWT–ANN method is a very useful 

Fig. 12  Taylor diagrams of the 
best results at each model for a 
Station 2305, b Station 2320, c 
Station 2321, d Station 2323

Table 7  Comparison of 
computational complexities for 
DWT and AWT methods

Method Compu-
tational 
complexity

DWT 4MN
2log2(N)

AWT N
2log2(N)
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new method for predicting the monthly flow. We recommend 
that future studies should use the proposed method to predict 
other hydrologic and water source variables (e.g., tempera-
ture, evapotranspiration and groundwater level) and also to 
model the rainfall-runoff process of the basins in different 
geographical regions.
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