
Vol.:(0123456789)1 3

Modeling Earth Systems and Environment (2022) 8:4629–4648 
https://doi.org/10.1007/s40808-022-01387-6

ORIGINAL ARTICLE

Application of a novel technique of the multi‑discrete wavelet 
transforms in hybrid with artificial neural network to forecast the daily 
and monthly streamflow

Sadegh Momeneh1 · Vahid Nourani2

Received: 8 February 2022 / Accepted: 28 March 2022 / Published online: 16 April 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
In this study, a technique for accurate forecasting of streamflow, which is of great importance to reduce the risks of floods 
and water resources management, in the catchment area of Gamasiab River, located in western Iran, is presented. A hybrid 
of the artificial intelligence (AI) model called artificial neural network (ANN) models, with data preprocessing, includes 
discrete wavelet transform (DWT) and multi-discrete wavelet transform (M-DWT), were used. These hybrid models were 
used to forecast the flow of the study basin on a daily and monthly time scale with 1, 2, 3, and 7 steps ahead. The data used 
in this study include daily and monthly streamflow, precipitation, and temperature data for 31 years (23 September 1986–22 
September 2017), which is a time series of delayed data used as an input signal to the models. The criteria of Nash–Sutcliffe 
efficiency (NSE), root mean square error (RMSE), and correlation coefficient (R), were used to evaluate the performance of 
the models. The results indicated that the hybrid M-DWT-ANN models significantly reduced the forecasting error compared 
to the unit models DWT-ANN and usual models ANN for the time steps ahead. M-DWT-ANN model performed better than 
other models in forecasting the current for the 1, 2, 3, and 7 days and months ahead. For example, the RMSE  (m3/s) values 
of the ANN, DWT-ANN, and M-DWT-ANN models for streamflow forecasting the 7-daily-ahead in the verification period 
are 14.10, 9.96, and 0.26, respectively. In general, the results showed that using the M-DWT method as preprocessing of 
input data is a valuable tool to increase the accuracy and performance improvements of the predictive model. The findings 
of this study showed the potential of M-DWT-AI hybrid models to improve streamflow forecasting.

Keywords Artificial intelligence · Artificial neural network · Gamasiab River basin · Streamflow forecasting · Wavelet 
transform

Introduction

The management and forecasting of hydrological processes 
and their complexities are fundamental issues in different 
geographical areas. Streamflow forecasting plays an essential 
role in formulation strategies and sustainable management 
of water resources. It can also be considered, for various 

reasons, including helping with planning and optimizing the 
water resources system and reducing flood risks. Forecast-
ing very accurate and reliable flow fluctuations due to the 
environmental structure and the intermittent nature of the 
streamflow in semi-arid watersheds are of particular signifi-
cance. Most rivers flowing in semi-arid and arid catchments 
due to climatic conditions such as seasonal precipitation and 
high evaporation rate have rebellious behavior and seasonal 
and non-permanent flow and play a vital role in meeting the 
water demand of these areas. These happenings occur in 
most parts of Iran. Since in catchments, it is not possible to 
measure all the observational quantities required to model 
and analyze flow fluctuations. Therefore, essential to choose 
a model that can, despite the simple structure, requires mini-
mal parameters for forecast runoff and flow caused by rain-
fall in the basin with high accuracy.
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There are three approaches to modeling streamflow, 
including physical (process-oriented), empirical/metric 
(data-based and statistics), and conceptual (based on hypoth-
eses) approaches (Beck 1991; Ahooghalandari et al. 2016). 
The physical and conceptual models often require significant 
inputs, including various hydrological, geometric and struc-
tural, and climatic data from the basin. In addition, calibra-
tion of these models is complicated and time-consuming 
(Tokar and Markus 2000; Panda et al. 2010; Shi et al. 2011; 
Arnold et al. 2012). If sufficient input data is not available, 
metric (data-based) models perform better and more reliably 
than conceptual models (Carcano et al. 2008). Several stud-
ies have compared traditional physical and conceptual mod-
els, including SWAT, IHACRES, MIKE 11, and HEC-HMS, 
with data-based models such as ANN for flow forecasting 
and often found that ANN models provide forecasting bet-
ter (e.g., Carcano et al. 2008; Panda et al. 2010; Kim and 
Pachepsky 2010; Rezaeianzadeh et al. 2013; Ahooghaland-
ari et al. 2016; Young et al. 2017; Jimeno-Sáez et al. 2018; 
Ahmadi et al. 2019; Wagena et al. 2020).

At the same time, obtaining accurate forecasting is often 
more important than understanding the process and rec-
ognizing the mechanisms that create it; thus, simple data-
based models can be a suitable alternative (Ebrahimi and 
Rajaee 2017; Jha and Sahoo 2015). In streamflow fore-
casting programs, data-based or data-driven hydrological 
methods have become increasingly popular and used due 
to their rapid development time and minimal information 
requirements. The data-based approach involves math-
ematical equations derived not from the physical process 
of the basin but from time series analysis (Solomatine and 
Ostfeld 2008). In other words, data-based models can learn 
and generalize trends based on functional relationships in 
data by developed algorithms (Coulibaly et al. 2000; Zhang 
et al. 2001). When the observations and field data are not 
enough, and accurate estimation is more critical than under-
standing physics, that's the time a black-box or data-driven 
model can perform well. Although they may not provide a 
physical interpretation and performance of the catchment 
processes, they nevertheless forecast the relatively accurate 
streamflow. In data-based flow forecasting, linear models 
such as multiple linear regression (MLR) and autoregressive 
integrated moving average (ARIMA) are traditionally used 
to forecast streamflow. Linear models have limitations and 
do not perform well enough when modeling hydrological 
time series. Because these processes are often non-linear, 
the dynamic behavior of the hydrological system changes 
over time (Bierkens 1998; Tokar and Johnson 1999; Nourani 
et al. 2014a). In later years, the non-linear models and artifi-
cial intelligence (AI) data-based models, including the arti-
ficial neural network (ANN) and support vector regression 
(SVR), were introduced for flow forecasting applications. 
Kang et al. (1993) and Hsu et al. (1995) were among the first 

to use ANN programs in river flow and rainfall-runoff fore-
casting and compared the ANN model and linear models. 
They found that ANN is practical and suitable for forecast-
ing river flow. Gradually AI models, including ANN, SVR, 
radial function base network (RBF), adaptive neural-fuzzy 
inference system (ANFIS) models, and other AI models, to 
find essence relationships and identify patterns in a complex 
system in between streamflow and various hydrological vari-
ables, were used without having to build a conceptual model 
and understanding of the mechanism physics in complex 
systems and relationships. Thus, in recent years, AI models 
such as ANN, RBF, SVR, and ANFIS as alternative and 
efficient tools are accepted for modeling complex hydrologi-
cal systems and used effectively and extensively for stream-
flow forecasting (e.g., Zealand et al. 1999; Campolo et al. 
1999; Kumar et al. 2004; El-Shafie et al. 2007; Pramanik and 
Panda 2009; Kagoda et al. 2010; Meng et al. 2015; Kasiv-
iswanathan et al. 2016; Modaresi et al. 2018; Ateeq-ur-Rauf 
et al. 2018; Ali and Shahbaz 2020).

Although essential features of AI methods are their abil-
ity to identify patterns in a complex system, if the inputs 
are very non-stationary often do not cope with such data if 
the inputs are not preprocessed (Cannas et al. 2006). Here 
the combination of preprocessing with AI models can play 
an auxiliary role. In the last decade, wavelet analysis has 
been used as a data preprocessor in water resources engi-
neering and hydrology in various issues, and non-stationary 
data management has been very effective. Wavelet trans-
forms (WT) provide functional decompositions of original 
time series (input data). The data decomposed by the WT 
addresses the potential shortcomings of the model forecast-
ing by capturing and placing valuable information at dif-
ferent resolution levels. The use of WT as a mining tool 
can reveal and extract various concealed features in the 
physical structure of the data. The WT is an effective and 
well-known tool in non-stationary and noisy data analysis 
that for modeling and forecasting has been used in a wide 
range of water resources management issues (Nourani et al. 
2014a). Wavelet has proven to be an efficient mathematical 
tool (Adamowski 2008; Partal 2009).

Have been accepted Wavelet-AI hybrid models in recent 
years as a potentially helpful method for modeling hydro-
logical processes. These hybrid models in various applica-
tions have been used, including forecasting' streamflow, 
rainfall-runoff, precipitation, water quality, groundwater 
level, water temperature, evaporation, and sedimentation 
(Nourani et al. 2014b; Raghavendra and Deka 2014). Pre-
processing data before using it as input for ANN, ANFIS, 
RBF, and SVR networks (or other data-driven models) can 
significantly improve the performance of these models 
(Moosavi et al. 2014; Liu et al. 2014). The discrete wavelet 
transform (DWT)/wavelet analysis (WA) method can with 
ANN, SVR, RBF, ANFIS, and other models be combined 
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to create a hybrid model entitled DWT/WA-ANN, DWT/
WA-SVR, DWT/WA-RBF, and DWT/WA-ANFIS. Many 
researchers have shown in their studies that wavelet-based 
coupling models, especially ANN hybrid models, perform 
better than conventional models such as ANN, ANFIS, and 
RBF. For example, Cannas et al. (2006) used data process-
ing by WT as input to the ANN model to forecast river flow. 
They found which trained networks with preprocessed data, 
better performance in forecast compared to trained networks 
with raw data and without preprocessing. Kisi (2009) used 
the wavelet and ANN hybrid technique to study daily river 
flow forecasting and compared it with the results of indi-
vidual ANN models. His results showed that wavelet pre-
processing could significantly increase the accuracy of ANN 
forecasting in daily streamflow forecasting. Adamowski and 
Sun (2010) developed the WA-ANN model to improve the 
accuracy of streamflow forecasting at lead times of 1 and 
3 days for two different non-perennial rivers for semi-arid 
catchments in Cyprus. Liu et al. (2014) proposed to improve 
the accuracy of the DWT-SVR hybrid model and used the 
daily and monthly streamflow data at two stations in Indiana, 
USA, to evaluate the model's forecasting skills. The results 
showed that the DWT-SVR hybrid models performed better 
than the SVR model for daily and monthly streamflow fore-
casting. Zhu et al. (2016) modeled the streamflow of water-
sheds have in the upper reaches of the Yangtze River, China. 
After analyzing the data was used by wavelet transform and 
applying these time series as monthly input data to SVR 
to forecast streamflow. The results showed that the fore-
casting of DWT-SVR models improved compared to SVR 
models. Hadi and Tombul (2018) used WT as a preproces-
sor of input data to AI models to predict the streamflow for 
seven days ahead in a basin in southwestern Turkey. The 
results indicate an increase in the accuracy of WT-coupled 
AI models in streamflow prediction. Tayyab et al. (2019) 
data-based ANN and RBF models hybrid with DWT (i.e., 
DWT-ANN and DWT-RBF) were used to rainfall-runoff 
in the river basin in China. The results showed that hybrid 
models provided predictions better. Freire et al. (2019) used 
a synthetic WA-ANN composition to forecast daily flows 
to the Sobradinho Reservoir in Brazil for seven days ahead. 
Their studies results showed the superiority of the WA-ANN 
model over the single ANN model. Dalkiliç and Hashimi 
(2020) evaluated the ANN, ANFIS, and DWT-ANN models 
in the Büyük Menderes River in Western Anatolia and found 
that the DWT-ANN model performed best.

In the study, the novel technique called the multi-discrete 
wavelet transform (M-DWT) for preprocessing the inputs 
data was used and achieving high-precision streamflow fore-
casting. Combined models, including M-DWT-ANN, have 
been developed for this purpose. To prove the M-DWT pre-
processing efficiency, were comparisons between the per-
formance of the models developed by this method and the 

performance of the DWT-ANN unit models and separate 
ANN models for forecasting daily and monthly flows in the 
Gamasiab River basin. The study area is in parts of the Ker-
manshah and Hamedan provinces, located in a catchment 
area with a semi-arid climate in western Iran.

Materials and methods

Study area and data

In the present study, the flow in the catchment area of the 
Gamasiab River in western Iran evaluates (Fig. 1). This 
basin has 10,935 square kilometers, with a semi-arid climate 
and a semi-humid climate in the highlands. This basin in the 
geographical area with coordinates of latitude  33°49′ N to 
 34°57′ N and longitude  47°06′ E to  49°10′ E, is located. The 
maximum and minimum altitude of the region is 3450 m 
and 1272 m, respectively. It is from the above mean sea 
level (AMSL). The average height of the basin is 1873 m, 
and the perimeter is 636 km. The compactness coefficient 
(Gravelius method) of the catchment is 1.7. the shape is 
almost elongated. The length of the longest main waterway 
is 221 km. The slope of the basin varies from 0.1 to 53.1%. 
The slope of the canal is 2.91%, and the average slope of 
the plain is 7.96%. This basin has vegetation and land use 
in the middle areas, and lowlands are mainly horticultural 
and agricultural (irrigated, rainfed, and rainfed). In the 
highlands, the vegetation of the rangelands is semi-dense, 
dense, and poor density, respectively. A small part includes 
forest cover, barren lands, water, watercourse, mountainous 
(rocky), urban, and residential. Due to the density of wells 
in different parts of the area because of insufficient surface 
irrigation networks, groundwater is used to meet the water 
needs of agricultural products. The alluvial (porous) aqui-
fer in this region, which consists of a complex distribution 
of gravel, sand, grit, silt, and clay, is an example of many 
sedimentary systems of aquifers in Iran. The study basin is 
surrounded by heights of the Zagros Mountains and in the 
middle of a rugged hilly area and plain. Where feeding is 
the primary source of groundwater, and inclusive rainfall, 
infiltration from rivers in the region, return flow from irriga-
tion. Also, the main discharge parameters in this catchment 
are unauthorized exploitation and evaporation. Eventually, 
is discharged the water flows in the catchment by the outlet 
at the southwestern part of the catchment. The catchments of 
arid and semi-arid regions, including Iran, are flooded rivers, 
of which the Gamasiab River is no exception.

Hydrometry and Evaporation Stations of Polechehr 
(or Chehr Bridge) at the outlet of the catchment area with 
latitude coordinates of  34∘20′N latitude and  47∘26′E longi-
tudes, is located. The elevation of the Hydrometry Station 
is 1280 m above mean sea level, and it is on the Gamasiab 
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River located in Kermanshah province in western Iran. The 
Gamasiab River is the tributary of the Karkheh River and 
part of the Persian Gulf and Oman sea catchment in terms 
of the catchment area. The average annual discharge of 
Polechehr station is 25.82  m3/s, and the maximum recorded 
discharge rate for the long-term period is 796  m3/s. The 
maximum discharges rate recorded is most often in Novem-
ber–May, when most has occurred of the rainfall. The 
maximum monthly average temperature and the minimum 
monthly temperature at Polechehr station in July and Janu-
ary are 38.76 °C and − 4.15 °C, respectively. The average 
annual rainfall in this period is 384 mm, and about 92% of 
the total annual rainfall occurs between November and May. 
As can be seen in Fig. 4, the river is a non-permanent river, 
and this region has hot and dry summers. Due to the irriga-
tion of agricultural fields in the summer, the river becomes a 
seasonal and dry river. To prevent this can is used catchment 
management and flood control plans.

In this study, to train and verify the performance of ANN 
models, 31 years of daily data measured at Polechehr station, 
including streamflow, precipitation, and temperature data 
(23 September 1986–22 September 2017), were used in the 
catchment. Also, for monthly data was used of 31 years aver-
age monthly data (October 1986–September 2017). In most 
studies, it is divided into two parts and divided into two parts 
that can be sufficient in the modeling process (Nourani et al. 
2015). The data utilized were standardized and normalized 

using scaling between zero and one to confident that all 
variables have been paid equal attention during the training 
step. The first 70% of the total data set to develop the model 
(training), and the remaining 30% of the entire data set to 
evaluate (test) the developed models, were used. Meantime, 
is 1, 2, 3, and 7 time-steps days and months as forecasting 
time horizons selected. The data used in this research, the 
archive of the data and information of the regional water 
company of Kermanshah, was obtained.

Model performance criteria

Performance evaluation of a hydrological model is per-
formed and described, usually by comparing the error val-
ues and the differences between the observed and simulated 
variables. Were divided in forecasting hydrological phenom-
ena, most data into the calibration data set (training) and 
verification data set (testing) to obtain correct evaluation 
and comparison of model performance. It is also necessary 
for AI models to find a suitable structure. In this study, for 
all models developed for streamflow forecasting, statistical 
criteria inclusive correlation coefficient (R), Nash–Sutcliffe 
efficiency coefficient (NSE), and root mean square error 
(RMSE) to evaluate the statistical relationship between the 
forecasted value and the observed value, to assessment the 
forecast power of the model, and to measure the variance of 
the error, respectively, were used.

Fig. 1  Location map of the study area with national boundaries
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where n is the number of data set used, Fi is the forecasted 
values (model outputs), Oi is the observed data, and F and O 
are the average values for Fi and Oi, respectively. The best fit 
between the forecasted value and the observed value occurs 
when the values obtained from these relationships (Eqs. 1–3) 
reach values R and NSE to maximum one and value RMSE 
to minimum zero, respectively (Gong et al. 2016; Liu et al. 
2014).

Artificial neural network (ANN)

In recent decades, the ANN estimation approach as a black-
box model has been a great deal of consideration from many 
researchers globally. It has been used widely in diverse 
fields such as time series forecasting, pattern and sequence 
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recognition, processing data, mining data, and identifica-
tion and control system (Nayak et al. 2006). ANNs have 
performed well in the input–output function approximation 
such as forecasting. Hence, they have been used success-
fully for modeling and forecasting in the earth sciences 
(ASCE 2000a; b). The ANN from several artificial neural 
cells interconnected in several layers conforming to the spe-
cific architecture is composed. Can be using the ANNs to 
forecast future values of possibly noisy time series based 
on past histories. Were organized the neural networks for 
converting inputs into meaningful outputs (Adamowski and 
Chan 2011). In the connections between neurons are adjust-
able parameters located are called weight. The input signal 
through the network in a forward direction is transmitted. 
These signals are received in each neuron (node) in the input 
layer from external inputs and another layer from outputs 
from other neurons to which it is linked. Each neuron pro-
duces a result by an activation function that is a linear/non-
linear static function of the weighted sum of these inputs. 
ANN multi-layer perceptron (MLPs), first by Rumelhart and 
McClelland (1986), was proposed and is one of the most 
widely used neural networks for hydrological modeling that 
can recognize latent and non-linear patterns (Nayak et al. 
2006; Principe et al. 2000). Figure 2 are displayed the archi-
tecture of a typical MLP network with a hidden layer in 
which the logistic (sigmoid) activation function and a linear 
function in the output layer. The approach of feed-forward 
MLP to mathematical expression is as follows:

Fig. 2  ANN architecture three-layer with one hidden layer
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  where n is the number of data set, m is the number of 
neurons in the hidden layer; wij, wjk = the weight that neu-
rons have in the input and output layers, respectively; wbj, 
wbk = bias in the hidden and output layers, respectively; fh, 
fo = activation function of the neurons in the hidden and out-
put layers, respectively; xi (t), yk (t) = the i-th input variables 
and the k-th output variables at time step t, respectively (Kim 
and Valdes 2003).

For ANN model development, the designation of the 
structure and the model's training algorithm is critical. An 
algorithm is needed that provides proper performance in 
the forecast. Commonly used training algorithms include 
Levenberg–Marquardt (LM), scaled conjugate gradient 
(SCG), gradient descent with momentum, adaptive learn-
ing rate (GDX), and Bayesian regularization (BR) (Mohanty 
et al. 2010; Gong et al. 2016). Among these, the best BR 
back-propagation algorithm was selected, according to per-
formance criteria (i.e., lowest RMSE and highest NSE and 
R), to train and develop the ANN models. In these algo-
rithms, the error between the intended and forecasted out-
put is back-propagation through the network, and weights 
linking the neurons in the learning phase through a training 
algorithm are updated. MLPs can perform well in function 
approximation, provided that there are sufficient neurons in 
the hidden layer of the network enough amount of data is 
existed (Cybenko 1989; Principe et al. 2000). In this study, 
preliminary results showed that a hidden layer is sufficient 
to approximate the relationship between observed and fore-
casted streamflow. By the trial-and-error method was deter-
mined the optimum number of neurons hidden layers. The 
number of layers and neurons has been selected, with the 
lowest RMSE values as the appropriate number. Meantime, 
to ensure the optimal performance of the network, a cross-
verification method, be used to choose the best network 
architecture (Principe et al. 2000).

In the present study, used data sets of the precipitation, 
temperature, and streamflow into two subsets are divided. The 
first subset is the training data set used to calculate the error 
gradient and update the weight and bias of neurons in different 
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)

+ wbk

]

,

layers of the network. The second subset is the test suite that 
an independent data set employed to verify the efficiency and 
performance of the model. Primary stopping criteria were 
used based on cross-validation are applied during the train-
ing of the neural networks, including the Mu (equal 1.00e+10), 
Gradient (equal 1.00e−7), and Maximum Iteration (equal 1000 
epoch) criteria. The optimal structure of the ANN network 
and parameter tuning were designated using a trial-and-error 
method. In such a way that the optimal value of the parameters 
and variables based on performance criteria, including the 
RMSE, R, and NSE by sensitivity analysis, was determined.

Discrete wavelet transforms (DWT)

The wavelet transform (WT) is a mathematical tool that is 
a time-dependent spectral analysis that analyzes signals in 
a time–frequency space and provides a time-scale illustra-
tion of processes and their relationships (Daubechies 1990). 
The WT is a valuable and essential derivative of the Fourier 
transform (FT). Fourier analysis has a primary disadvan-
tage and the loss of time information in transforming into 
a frequency domain. At the same time, the WT includes 
a poly-resolution decomposition in the time and frequency 
domains (Tiwari and Chatterjee 2011). One type of WT is 
the discrete wavelet transform (DWT), which is used widely 
due to its simplicity and low data generation, and the need 
for short computational time. At the same time, with its con-
cise and valuable analysis, it still produces a very efficient 
and precise analysis (Partal and Kucuk 2006). The DWT 
using the different filters and various mother wavelets pos-
sesses long-time distances for low-frequency data and short-
time distances for high-frequency data and can reveal some 
properties and hidden aspects of the time series. The DWT 
is particularly beneficial when the signal contains various 
embedded information, jumps, or shifts (Nalley et al. 2012). 
DWT often is used for time series analysis in natural hydro-
logical problems (Nourani et al. 2014b). As shown in Fig. 3, 
the DWT has two sets of functions, the original time series 
passing through high-pass (detail) and low-pass (approxi-
mate) filters, and decomposes at different scales. Eventu-
ally, are shown fast events and trends in Fig. 8. Wavelets 
retain the characteristics of the frequency domain and time 

Fig. 3  The process of decomposition of a time series by the DWT
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domain described by the wavelet function (called the mother 
wavelet) and the scaling function (called the father wavelet). 
The mother wavelet mathematically is expressed as follows 
(Percival and Walden 2006):

where the coefficient “a” is a positive number and the 
parameter “b” is any real number. ψa,b(t) = wavelet function; 
a = frequency or scale (or dilated) parameter; b = translation 
or shifted parameter.

In the DWT, the scales “a” and shift times “b” in the 
mother wavelet is considered power-of-two, i.e., scale a =  2m 
and location b =  2mn. For a discrete time-series x(t) decom-
posed into several finite subsets, which happens at a discrete-
time t, DWT can have been calculated as follows (Mallat 
1989):

where wavelet with dilation is by “m,” and it is shifted by 
“n,” and this way wavelet tune and control.

Multi‑discrete wavelet transforms (M‑DWT), and its 
hybrid with ANN models

The principal purpose of using DWT as preprocessing is to 
provide more information to increase the understanding and 
accuracy of model forecasting (Maheswaran and Khosa 2012). 
In the last decade, hybrid modeling by wavelets-AI techniques 
has expanded significantly. Studies' results wide range of 
researchers represented the superior performance of coupling 
models compared with single models in accurately forecast-
ing streamflow (Nourani et al. 2014b). The hybrid wavelet-AI 
model to achieve the ability has been designed to model non-
linear. Choosing a suitable mother wavelet has an essential 
and significant role in wavelet-AI modeling. Time series of the 
hydrological phenomena have different characteristics due to 
the complexity and being affected by many parameters and can 
have long-term, short-term features, or various combinations. 
Hence, an appropriate mother wavelet can cover those pro-
cesses compact or broad so that models provide better forecasts 
(Maheswaran and Khosa 2012). Thus, it seems that a combina-
tion of different mother wavelets for time series decomposition 
is more proper and can have better covering and more compat-
ibility with other time series shapes.

On the other hand, hydrological phenomena have inherently 
intricate processes, and the sampled and observational data of 
these processes often contain noise and redundant informa-
tion. The input data of a network must so was organized and 
prepared to obtain trusted multi-time-step ahead streamflow 
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forecasting and such a way that it can adequately encompass 
wholly the information related to the desired data. Thus, 
decomposing or eliminating data noise is another fundamen-
tal step in modeling hydrological processes. The DWT-based 
method with decomposition and noise decrease can improve 
the performance of models if it has a suitable mother wavelet 
adequate decomposition level.

Thus, the importance of selecting and combining the appro-
priate mother wavelet increases in the utilization of multiple 
wavelets simultaneously. Accordingly, in this study, to obtain 
high-accuracy results, applied the DWT as a preprocessor was. 
Their effect on the performance of the models was evaluated 
and compared. DWT processes the original signal through 
high-pass and low-pass filters and decomposes them into sub-
sets. Finally, have been used the sub-signals as input to ANN 
models. For example, Fig. 4 shows the approximations and 
details originating from the streamflow time series decomposed 
by the db7 mother wavelet at level 2. For each input data delay 
to the model was formed a time series. Then, each time series 
in each wavelet transform (WT) at decomposition level two was 
decomposing into four subsets including, a1, a2, d1, and d2. As 
represented in Fig. 5, the use of several wavelets simultaneously 
with different scaling and filters lengths can contain various 
parts of the signal (streamflow time series data). A suitable 
combination of them can is lead to increased understanding and 
accuracy of data-driven models such as ANN.

In the present study, data preprocessing has been used to 
construct hybrid streamflow models both as single wavelets 
and simultaneously with several mother wavelets (Daubechies; 
db, Symlet; sym, Coiflet; coif, Biorthogonal; bior, and Fejer-
Korovkin; fk). Then the decomposed data by DWT in several 
combinations were imported to the ANN models and as the 
DWT-AI and M-DWT-AI. The matter is means were used 
several different wavelets for data decomposition, and then all 
the decomposed data by these wavelets were fed together as 
input to the ANN model. In other words, this technique can 
consider as a manner of mining and fusion data with differ-
ent features. The decomposition level selection and the type 
and number of wavelets in DWTs were designated using a 
trial-and-error method. In such a way that the optimal value 
of the parameters and variables based on performance criteria, 
including the RMSE, R, and NSE by sensitivity analysis, was 
determined. Meanwhile, all the ANN models, combinations of 
its, and DWTs, have been coded in MATLAB R2018 software.

Results and discussion

This study aims to apply artificial neural network (ANN) 
models to provide more accurate streamflow forecasting by 
introducing a new technique (i.e., M-DWT) in the short-
term up to 7 days and long-term up to 7 months beyond data 
records. For that purpose, after selecting the best network 
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architecture of the model and the respective input composi-
tion, it has been used to forecast the streamflow fluctuations 
of 1-, 2-, 3-, and 7-time-step ahead for daily and monthly 
time scales. Monthly flow rate forecasts are more used to 
manage water resources, and the daily flow rate forecasts 
are more applied to reduce flood risks.

Initially, the ANN model was used to model and fore-
cast streamflow of catchment with daily and monthly time 
scales without any preprocessing of input data. Table 1 
represents the RMSE  (m3/s) for several different ANN 
architectures as an instance. Each time in the model has 
been placed five to 20 neurons in a single hidden layer 

Fig. 4  Approximation (a1, a2) and detail (d1, d2) sub-signals of streamflow time series with the time scale a daily, b monthly, decomposed by 
db7 wavelet at level two
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for network training and was selected the optimal archi-
tecture according to the better performance of the model 
based on RMSE, R, and NSE performance criteria in both 
calibration and verification stages. The optimal number of 
neurons in the hidden layer, i.e., five neurons, was used to 
predict at different time stages. As shown in Table 1, was 
presenting several combinations of input data and various 
architectures for the ANN model as instances also optimal 
values of the artificial network structure and input data 
are highlighted. On a daily time scale, the best network 
structure, i.e., 22-5-1, and the best input combination, i.e., 
a synthesis with a delay of 1 day for precipitation, tem-
perature, and 1–20 days for streamflow, is presented. The 
model was selected with the most negligible value RMSE 

and the most value NSE and R in the verification stage as 
the optimal network (i.e., RMSE = 4.79, NSE = 0.96, and 
R = 0.98). Also, on a monthly time scale, given the slight-
est error in the verification stage, the best configuration 
(i.e., 20-5-1) for a combination set of inputs and networks 
is to forecast the streamflow one month ahead. This struc-
ture, the best input combination, i.e., the combination with 
delays of 1–20 months, and the most appropriate number 
of neurons in the hidden layer, i.e., five neurons, is for 
forecasts at different time steps (see Table 1). After deter-
mining the most appropriate ANN configuration based 
on the performance criteria, was completed the network 
calibration. The weights obtained from the network neu-
rons in the calibration stage generated in the network are 

Fig. 5  Daubechies; db, Symlet; sym, Coiflet; coif, Biorthogonal; bior, and Fejer-Korovkin; fk wavelets with different filter lengths and scaling 
functions
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Table 1   RMSE  (m3/s) results of the ANN model and a hybrid with different mother wavelets for one-time-step-ahead streamflow forecasted in 
calibration and verification periods

Model inputs with delay  (Wavelettype−Inputs) Structure network Daily time scale Monthly time scale

RMSE 
 (m3/s) cali-
bration

RMSE(m3/s) 
verification

RMSE(m3/s) 
calibration

RMSE(m3/s) 
verification

Q (t−1) 1-20-1 14.80 6.08 31.62 14.84
Q (t−1) 1-10-1 15.21 6.13 32.47 16.81
Q (t−1) 1-5-1 15.50 6.01 32.84 16.15
Q (t−1, −2, −3, −4, −5) 5-5-1 14.04 6.40 29.18 17.12
Q (t−1, −2, …, −20) 20-5-1 10.67 9.52 24.81 14.54
Q (t−1, −2, …, −20) 20-10-1 10.32 7.39 23.60 14.68
Q (t−1, −2, …, −20) 20-20-1 7.79 20.11 26.11 14.88
Q (t−1), T(t−1), P(t−1) 3-5-1 13.33 4.94 29.16 18.12
Q (t−1), T(t−1), P(t−1) 3-10-1 11.28 8.49 29.17 18.09
Q (t−1, −2, −3), T(t−1), P(t−1) 5-5-1 13.22 7.31 28.94 17.73
Q (t−1, −2, …, −10), T(t−1), P(t−1) 12-5-1 12.86 5.02 18.47 15.29
Q (t−1, −2, …, −20), T(t−1), P(t−1) 22-5-1 8.52 4.79 25.28 15.78
Q (t−1, −2, −3), T (t−1, −2, −3), P (t−1, −2, −3) 9-5-1 10.75 5.37 20.88 15.75
Q (t−1, −2, …, −7), T (t−1, −2, …, −7), P (t−1, −2, …, −7) 21-5-1 9.06 27.80 20.02 15.66
Q (t−1, −2, …, −7), T (t−1, −2, …, −7), P (t−1, −2, …, −7) 21-10-1 7.49 18.81 1.83 44.97
Q (t−1, −2, …, −20), T (t−1, −2, …, −20), P (t−1, −2, …, −20) 60-5-1 7.25 14.62 0.001 27.85
Wdb45−Q(t−1),  Wdb45−T(t−1),  Wdb45−P(t−1) 12-5-1 6.65 3.88 10.56 11.91
Wdb45−Q(t−1),  Wdb45−T(t−1),  Wdb45−P(t−1) 12-10-1 5.22 4.23 5.49 14.96
Wsym10−Q(t−1),  Wdb7−T(t−1),  Wdb7−P(t−1) 12-5-1 6.66 5.94 10.39 13.09
Wdb45−Q(t−1),  Wsym4−T(t−1),  Wsym4−P(t−1) 12-5-1 6.79 4.97 7.78 11.49
Wdb45−Q (t−1, −2, −3),  Wdb45−T (t−1, −2, −3),
Wdb45−P (t−1, −2, −3)

36-5-1 2.68 2.85 2.23 6.02

Wdb8−Q (t−1, −2, …, −7),  Wsym8−T (t−1, −2, …, −7),
Wsym8−P (t−1, −2, …, −7)

84-5-1 1.52 1.93 1.47 7.30

Wdb45−Q (t−1, −2, …, −7), Wdb45−T (t−1, −2, …, −7),
Wdb45−P (t−1, −2, …, −7)

84-5-1 0.55 0.59 0.27 4.86

Wdb45Wsym10−Q (t−1, −2, …, −20),  Wdb7−T(t−1), 
 Wdb7−P(t−1)

168-5-1 0.057 0.041 0.057 3.08

Wdb45Wsym10−Q (t−1, −2, …, −20),  Wdb45−T(t−1), 
 Wdb45−P(t−1)

168-5-1 0.059 0.037 0.005 2.88

Wdb45Wsym10−Q (t−1, −2, …, −20),  Wdb4−T(t−1), 
 Wdb4−P(t−1)

168-5-1 0.054 0.035 0.17 3.31

Wdb45Wsym4Wcoif5Wbior5.5Wfk6−Q(t−1),  Wdb45−T(t−1),
Wdb45−P(t−1)

28-5-1 5.04 4.22 5.75 6.73

Wdb8Wsym4Wcoif5Wbior5.5Wfk6−Q(t−1),  Wdb4−T(t−1),
Wdb4−P(t−1)

28-5-1 4.92 3.89 4.65 6.75

Wdb8Wsym4Wcoif5Wbior5.5Wfk6−Q(t−1),  Wsym8−T(t−1), 
 Wsym8−P(t−1)

28-5-1 4.90 3.68 4.84 6.69

Wdb8Wsym4Wcoif5Wbior5.5Wfk6−Q (t−1, −2, −3),
Wsym8−T (t−1, −2, −3),  Wsym8−P (t−1, −2, −3)

84-5-1 0.54 0.54 0.40 1.18

Wdb8Wsym4Wcoif5−Q (t−1, −2, −3),  Wdb8Wsym4Wcoif5−T (t−1, 
−2, −3),  Wdb8Wsym4Wcoif5−P (t−1, −2, −3)

108-5-1 0.956 1.30 0.52 4.37

Wdb8Wsym4Wcoif5Wbior5.5Wfk6−Q (t−1, −2, …, −7),
Wsym8−T (t−1, −2, …, −7),  Wsym8−P (t−1, −2, …, −7)

196-5-1 0.031 0.030 0.004 1.75

Wdb8Wsym20Wcoif5Wbior6.8Wfk8−Q (t−1, −2, …, −8),
Wdb45−P (t−1)

164-5-1 0.018 0.013 0.022 0.52

Wdb8Wsym20Wcoif5Wbior6.8Wfk8−Q (t−1, −2, …, −6),
Wdb45−P (t−1)

124-5-1 0.050 0.037 0.016 0.27
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stored, and these weights in the verification (testing) stage 
be applied.

In the next step, has been used the single wavelet (i.e., 
DWT) to preprocess the input data to the ANN model. The 
results showed that applying DWT data can significantly 
improve the performance of the models. The results of 
the present study are consistent and the findings of other 
researchers, including Adamowski and Sun (2010) and 
Tayyab et al. (2019). Therefore, due to the usefulness of 
DWT hybrids with AI models such as ANN, in this study, 
the multiple wavelet simultaneous technique (i.e., M-DWT) 
to better decompose the data was used and increased the 
streamflow forecasting accuracy.

The M-DWT was used to preprocess the input time series 
to the ANN model. As shown in Table 1, was presenting 
several combinations of input data and different architectures 
for the DWT-ANN and M-DWT-ANN models as examples 
and are highlighted optimal values of the artificial net-
work structure and input data. Indeed, the bolded part of 
this table shows the most accurate models for forecasting 
streamflow. For the daily time scale, the most optimal net-
work structure, i.e., is 408-5-1 for the M-DWT-ANN model 
is from was obtained 1–20 delays for streamflow data and 
one delay for temperature and precipitation data. The best 
multi-mother wavelets simultaneously for this model include 
db45, sym4, coif5, bior5.5, and fk6 wavelets, which pro-
vided more accurate forecasting of the streamflow of one and 
several steps ahead compared to other combinations based 
on RMSE performance criteria (see Table 1). Also, for the 
monthly time scale, the most optimal network structure, 
i.e., 124-5-1 for the M-DWT-ANN model, was presented 
with 1–6 delays for streamflow data and one delay for pre-
cipitation data. The best results for preprocessing by multi-
mother wavelets for the M-DWT-ANN model are the db7, 
sym10, coif5, bior6.8, and fk8 wavelets for the streamflow 

time series and the db45 wavelet for the precipitation time 
series. After selecting the optimal developed models were 
utilized for different time steps.

It is worth noting that selecting an optimal architecture 
for ANN models is an essential step in modeling because 
improper architecture can is lead to under/over-fitting and 
under/over-computing more problems. Furthermore, in mod-
eling data-driven models such as ANN, specific attention 
be paid to the appropriate selection of inputs, which can 
upgrade the model's efficiency in both calibrations (train-
ing) and verification (testing) stages. The effects of the cases 
mentioned in the model performance can have been seeing 
in Table 1. It is worth noting that some network structures 
had better performance in the calibration stage but were 
weaker performance in the verification stage according to 
RMSE values (see Table 1). The results obtained can be 
related to the model performance is that has been over-fitting 
with the target data in the training stage. The error of the 
testing period is usually more significant than the error of 
the training period because unknown values for the model 
for evaluation in the test period are used (Tapoglou et al. 
2014). As shown in Table 1, this principle is reversed in 
this study due to the difference in amplitude of streamflow 
fluctuations in the training and test periods in some results 
according to the RMSE criterion (i.e., the amount of test 
error is less than the training error). This performance is 
due to the dependence of the RMSE criterion on the scale 
of variables. But this has been correctly assessed according 
to NSE and R criteria.

Finally, the performance of the ANN model and its 
hybrids with the wavelet analysis were compared and eval-
uated in streamflow forecasting. As shown in the figures 
and tables in this section, models calibrated with simultane-
ous multi-wavelet preprocessing perform much better than 
single-wavelet models and models without preprocessing. 

Input variables are P precipitation, T temperature, Q streamflow data sets

Table 1   (continued)

Model inputs with delay  (Wavelettype−Inputs) Structure network Daily time scale Monthly time scale

RMSE 
 (m3/s) cali-
bration

RMSE(m3/s) 
verification

RMSE(m3/s) 
calibration

RMSE(m3/s) 
verification

Wdb7Wsym10Wcoif5Wbior6.8Wfk8−Q (t−1, −2, …, −6),
Wdb45−P (t−1)

124-5-1 0.037 0.021 0.0061 0.15

Wdb8Wsym4Wcoif5Wbior5.5Wfk6−Q (t−1, −2, …, −10),
Wdb4−T(t−1),  Wdb4−P(t−1)

208-5-1 0.00198 0.00125 0.015 0.86

Wdb8Wsym4Wcoif5Wbior5.5Wfk6−Q (t−1, −2, …, −20),
Wdb4−T(t−1),  Wdb4−P(t−1)

408-5-1 0.00113 0.00087 0.0001 1.87

Wdb45Wsym4Wcoif5Wbior5.5Wfk6−Q (t−1, −2, …, −20),
Wsym8−T(t−1), Wsym8−P(t−1)

408-5-1 0.00042 0.00038 0.0008 1.98

Wdb20Wsym8Wcoif2Wbior5.5Wfk14−Q  (t−1, −2, …, −20),
Wdb4−T(t−1),  Wsym8−P(t−1)

408-5-1 0.00049 0.00042 0.0004 2.43
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According to the obtained results, the models developed by 
the M-DWT technique have high efficiency. Although this 
technique increases the amount and time of calculations, 
it dramatically improves the performance of the models. 
As Fig. 6 clearly shows, this betters the performance of the 
ANN model in the training period, and the hybrid models, 
in particular, coupled with M-DWT, had lower RMSE error 
rates in the number of iterations (epochs) higher. The use of 
wavelet analysis, especially multi-mother wavelets, increases 
the model input information and also increases the model's 
understanding of the data behavior patterns. In the follow-
ing, are presented and analyzed the obtained results.

Results of ANN models and their hybrid with DWT 
and M‑DWT, with daily time scale

In this study, various input combinations, and different net-
work structures for each of these inputs, were used. ANN 
models use past data, including streamflow, precipitation, 
and temperature and as input to forecast streamflow. The 
hybrid ANN model with one or more wavelets decomposi-
tion (i.e., the DWT-ANN and M-DWT-ANN hybrid models) 
is composed to reduce the forecasting error. The noise and 
various information contained in the data were separated 
and preprocessed by the DWT were utilized as input to fore-
cast the streamflow. Figure 7 shows the results for the best 
ANN structure and the best DWT-ANN and M-DWT-ANN 
structure to forecast daily streamflow for one-time ahead. 
As can be seen in this figure, multi-wavelet hybrid ANN 
models can model and forecast the flow discharge peaks well 
more accurately than the single model. In Fig. 8 are shown 
the scatter and time series for comparing the observed and 
calculated streamflow. As shown in this figure, the output 
of the M-DWT-ANN model at different time steps has less 
scatter, and its values are more compact in the proximity of 
the direct-line than the DWT-ANN and ANN models, which 

indicate the better performance of this model is. The RMSE 
values of the ANN, DWT-ANN, and M-DWT-ANN models 
are represented in Table 1 for the forecast one step ahead of 
time. Table 2 presents the R, RMSE, and NSE values of the 
ANN, DWT-ANN, and M-DWT-ANN models for forecast-
ing different time steps. The best models with the slightest 
error and the most efficiency and correlation were used to 
forecast streamflow. Figure 6 clearly shows the proficiency 
of the wavelet-neural-network model to learn the non-linear 
relationship between input and target data. Results in the 
verification stage, for the 1-, 2- and 3-day ahead, the NSE 
and R values are entire close to 1, and the RMSE values are 
less than 3 for the DWT-ANN model and less than 0.01 for 
the M-DWT-ANN model. Increasing the forecast intervals 
affected adversely on forecasts, the R and NSE decreased, 
and RMSE increased. Yet, the forecasting results at 1-, 2-, 
3-, and 7-day ahead time scales for used ANN and DWT-
ANN models and especially M-DWT-ANN models are 
acceptable. For example, the NSE criterion values for the 
ANN model in the 1, 2, 3, and 7 steps ahead are 0.96, 0.90, 
0.75, and 0.66, respectively. Comparing the results of the 
models, the M-DWT-ANN model performs better than the 
ANN and DWT-ANN models based on the R, RMSE, and 
NSE (see Table 2). For instance, the RMSE value in the veri-
fication stage for the best ANN, DWT-ANN, and M-DWT-
ANN models, to forecast streamflow two time-steps 7.83 
 (m3/s), 2.32  (m3/s), and 0.0056  (m3/s), respectively, were 
obtained. Overall, M-DWT-ANN model forecasts in differ-
ent time steps are superior to ANN and DWT-ANN models.  

Results of ANN models and their hybrid with DWT 
and M‑DWT, with monthly time scale

The data set of this study, into two subsets, including cali-
bration and validation sets, are divided. Also, different com-
binations of models’ inputs were used similar to the daily 

Fig. 6  The performance of ANN, DWT-ANN, and M-DWT-ANN in RMSE(m3/s) with the time scale a) Daily, b) Monthly, for training data set
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time scale in a monthly time scale. ANN models used the 
monthly average of past data, including streamflow, pre-
cipitation, and temperature, as input to forecast streamflow. 
Table 1 represents the RMSE  (m3/s) for several different 
ANN structures as an instance. The model structure with 
the slightest value RMSE and the most value NSE and R 
was selected, In a balanced way in both the calibration and 

verification stages, as the optimal structure. In Table 2, the 
RMSE, NSE, and R criteria values for the best ANN model 
were 14.54, 0.52, and 0.76, respectively, was presented.

The DWT-ANN and M-DWT-ANN hybrid models were 
used to minimize the forecasting error for the monthly 
time scale. The results indicate the usefulness of the ANN 
model coupled with wavelets. Figure 9 shows the superior 

Fig. 7  Comparing observed and forecasted streamflow using the best ANN, DWT-ANN, and M-DWT-ANN models for multi-time-step-ahead 
forecasted during the calibration and verification periods in the daily time scale
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performance of the M-DWT-ANN hybrid model over the 
ANN and DWT-ANN models in modeling and forecasting 
streamflow. Multi-wavelet hybrid ANN models have been 
able to model and forecast flow discharge peaks well. The 
poorer performance of the ANN model is due to the inputs 
of noisy data. Also, Fig. 10 shows scatterplots comparing the 
observed and forecasted streamflow using the best M-DWT-
ANN model and the best ANN and DWT-ANN models for 
one month ahead forecasting during the calibration (train-
ing) and verification (testing) periods. Also, estimates of the 
M-DWT-ANN model have fewer scattered, and its values 
are more compact in the proximity of the direct-line, com-
pared to the DWT-ANN and ANN models, and means bet-
ter performance of the M-DWT-ANN model. Presented in 
Table 1 are the RMSE values of the ANN, DWT-ANN, and 
M-DWT-ANN models for the forecast one-time-step-ahead. 

M-DWT-ANN model is the most accurate streamflow 
forecast that offers one or more steps ahead of other com-
binations on a monthly time scale based on RMSE perfor-
mance criteria (see Table 1). Table 2 presents the R, RMSE, 

and NSE values of the ANN, DWT-ANN, and M-DWT-
ANN models for forecasting different time steps. The best 
models with the slightest error and the most efficiency and 
correlation were used to forecast streamflow in the calibra-
tion and verification periods. Results in the verification stage 
for the NSE criterion values for the M-DWT-ANN model 
in the 1, 2, 3, and 7 steps ahead are 0.99, 0.99, 0.95, and 
0.59, respectively. Increasing the forecast intervals affected 
unfavorably on forecasts, the R and NSE decreased, and 
RMSE increased. However, the forecasting results at 1-, 
2-, 3-, and 7-month ahead time scales for used ANN and 
DWT-ANN models and especially M-DWT-ANN models 
are acceptable. Comparing the results of the models, the 
M-DWT-ANN model performs better than the ANN and 
DWT-ANN models based on the R, RMSE, and NSE (see 
Table 2). For instance, the RMSE value in the verification 
stage for the best ANN, DWT-ANN, and M-DWT-ANN 
models, to forecast streamflow two time-steps-ahead 18.18 
 (m3/s), 11.10  (m3/s), and 1.68  (m3/s), respectively, were 
obtained. The results indicate that ANN models coupled 

Fig. 8  Scatter plot between observed and forecasted streamflow using ANN model and its hybrids with DWT and M-DWT for multi-time-step-
ahead during the calibration and verification periods in the daily time scale
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with multi-wavelet with good accuracy simulated and fore-
casted flow discharge peaks. In general, M-DWT-ANN 
model forecasts in different time steps are better than ANN 
and DWT-ANN models.

Conclusions

The present research suggests a technique based on a hybrid 
of multi-discrete wavelet transform (M-DWT) and artificial 
neural network (ANN) model to high accuracy streamflow 
forecasting. The proposed method with a better understand-
ing of the behavioral patterns of hydrological phenomena 
can further help engineers and managers in floods control 
and sustainable management of water resources. To evaluate 

and prove efficiency M-DWT-ANN model was compared to 
the mono-wavelet DWT-ANN model and single ANN model 
for streamflow forecasting. For this purpose, the data were 
analyzed and examined for 31 years with daily and monthly 
time scales for 1, 2, 3, and 7 time-steps-ahead in the catch-
ment area of Gamasiab River located in western Iran. At 
first, the input data into ANN models were entered, with sans 
none preprocessing and in raw form. The outcomes repre-
sented that these models (i.e., ANN model) could not cope 
with the non-linear and complex conduct of data. In the next 
step, the DWT on time-series data of the streamflow, temper-
ature, and precipitation, and then preprocessed data, as input 
of the ANN models, were utilized. Using DWT, each of the 
original time-series containing noisy data have decomposed 
into sub-signal sets, extracted valuable information hidden in 

Table 2  Results of the best ANN models and their hybrids with DWT and M-DWT for one and multi–step–ahead streamflow forecasted in cali-
bration and verification periods

Forecasted Model type R RMSE  (m3/s) NSE

Calibration 
(Train)

Verification 
(Test)

Calibration (Train) Verification (Test) Calibration 
(Train)

Verifica-
tion (Test)

Q(t + 1) Daily time scale
ANN

0.98 0.98 8.5167 4.7906 0.97 0.96

DWT-ANN 0.99 0.99 0.5452 0.5923 0.99 0.99
M-DWT-ANN 0.99 0.99 0.00042 0.00038 0.99 0.99
Monthly time scale
ANN

0.80 0.76 24.8136 14.5445 0.64 0.52

DWT-ANN 0.99 0.97 0.27235 4.8576 0.99 0.95
M-DWT-ANN 0.99 0.99 0.0061 0.15207 0.99 0.99

Q(t + 2) Daily time scale
ANN

0.97 0.95 12.3416 7.8307 0.94 0.90

DWT-ANN 0.99 0.99 1.6611 2.3172 0.99 0.99
M-DWT-ANN 0.99 0.99 0.0055 0.0056 0.99 0.99
Monthly time scale
ANN

0.71 0.64 29.2931 18.1782 0.50 0.26

DWT-ANN 0.99 0.86 1.4002 11.0975 0.99 0.72
M-DWT-ANN 0.99 0.99 0.3983 1.6751 0.99 0.99

Q(t + 3) Daily time scale
ANN

0.95 0.89 16.0690 12.2696 0.90 0.75

DWT-ANN 0.99 0.99 1.8700 2.3403 0.99 0.99
M-DWT-ANN 0.99 0.99 0.0127 0.0093 0.99 0.99
Monthly time scale
ANN

0.86 0.51 21.2007 23.2186 0.74 0.20

DWT-ANN 0.99 0.71 1.5056 14.9969 0.99 0.48
M-DWT-ANN 0.99 0.97 1.3977 4.6660 0.99 0.95

Q(t + 7) Daily time scale
ANN

0.90 0.84 22.7003 14.1048 0.81 0.66

DWT-ANN 0.98 0.92 10.6143 9.9572 0.96 0.83
M-DWT-ANN 0.99 0.99 0.1716 0.2615 0.99 0.99
Monthly time scale
ANN

0.65 0.58 31.7325 18.3942 0.42 0.25

DWT-ANN 0.99 0.58 1.7720 23.4234 0.99 -0.25
M-DWT-ANN 0.98 0.78 2.0204 13.3593 0.99 0.59
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Fig. 9   Comparing observed and forecasted streamflow using the best ANN, DWT-ANN, and M-DWT-ANN models for multi-time-step-ahead 
forecasted during the calibration and verification periods in the monthly time scale



4645Modeling Earth Systems and Environment (2022) 8:4629–4648 

1 3

the data, and ultimately increased the models' understanding 
of the streamflow process. The present study results showed 
best DWT-ANN model is more accurate in forecasting future 
streamflow at daily and monthly time scales than the best 
ANN model.

Each mother wavelet has a unique feature. Therefore, using 
several different wavelets and passing data through various 
filters by separating and adding information can help under-
stand and learn better ANN models. The reason is that each 
parsed time series contains hidden parts and aspects of the 
original time series (data). The results showed that the com-
bination of several of them as input to ANN models led to 
improved training, increased accuracy, and reduced error of 
these models in the forecast ahead streamflow. To create and 
develop models from a hybrid with an appropriate selection 
of the multi-wavelets and the ANN models (such as db, bior, 
coif, sym, and fk wavelets) was used as data preprocessing 
under the title of M-DWT-ANN. The use of the M-DWT tech-
nique significantly improved the performance of the model. 
The developed models can cope well with various non-linear 

characteristics of the streamflow process. This study indicated 
that the M-DWT-ANN model can are forecast streamflow 
with very high accuracy. Overall, the results showed that the 
best M-DWT-ANN model better performance in forecast-
ing streamflow at daily and monthly time scales for different 
time steps ahead, compared to the best ANN and DWT-ANN 
models based on RMSE, R, and NSE performance criteria. It 
means that the M-DWT-ANN model has the lowest RMSE 
value and the highest R and NSE value compared to other 
models. In the flow discharge scrutiny, the flow peak dis-
charge is of extraordinary importance, and in this regard, too 
M-DWT-ANN model has higher efficiency than other mod-
els. Surveys showed that forecasting streamflow with a daily 
time scale is more accurate than comparing a monthly time 
scale. This outcome may be due to the greater dependence of 
daily flow fluctuations on previous data and less correlation 
between average monthly streamflow data with earlier time 
delays. It is noteworthy that the number of the data (sam-
ples) has a very positive effect on the performance of data-
driven models (such as ANN), and it's clear that the daily 

Fig. 10  Scatter plot between observed and forecasted streamflow using ANN model and its hybrids with DWT and M-DWT for multi-time-step-
ahead during the calibration and verification periods in the monthly time scale



4646 Modeling Earth Systems and Environment (2022) 8:4629–4648

1 3

data is more than the monthly data. Another conclusion is 
that with increasing the time steps intervals, less conformity 
was observed between the measured and forecasted data. The 
forecast streamflow results for the catchment of the Gamasiab 
River show that the M-DWT-ANN method is an effective and 
mighty method for streamflow forecasting by detecting hidden 
and important hydrological parameters. Accurate streamflow 
forecasting can help relevant experts and managers to sustain-
able exploitation and optimal management of water resources. 
Considering the advantages of the proposed method is rec-
ommended that in future studies, the M-DWT-AI technique 
in forecasting streamflow is put under consideration in other 
hydrological phenomena for other catchments in different geo-
graphical and climate areas.
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