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Abstract

In this study, a technique for accurate forecasting of streamflow, which is of great importance to reduce the risks of floods
and water resources management, in the catchment area of Gamasiab River, located in western Iran, is presented. A hybrid
of the artificial intelligence (AI) model called artificial neural network (ANN) models, with data preprocessing, includes
discrete wavelet transform (DWT) and multi-discrete wavelet transform (M-DWT), were used. These hybrid models were
used to forecast the flow of the study basin on a daily and monthly time scale with 1, 2, 3, and 7 steps ahead. The data used
in this study include daily and monthly streamflow, precipitation, and temperature data for 31 years (23 September 198622
September 2017), which is a time series of delayed data used as an input signal to the models. The criteria of Nash—Sutcliffe
efficiency (NSE), root mean square error (RMSE), and correlation coefficient (R), were used to evaluate the performance of
the models. The results indicated that the hybrid M-DWT-ANN models significantly reduced the forecasting error compared
to the unit models DWT-ANN and usual models ANN for the time steps ahead. M-DWT-ANN model performed better than
other models in forecasting the current for the 1, 2, 3, and 7 days and months ahead. For example, the RMSE (m*/s) values
of the ANN, DWT-ANN, and M-DWT-ANN models for streamflow forecasting the 7-daily-ahead in the verification period
are 14.10, 9.96, and 0.26, respectively. In general, the results showed that using the M-DW'T method as preprocessing of
input data is a valuable tool to increase the accuracy and performance improvements of the predictive model. The findings
of this study showed the potential of M-DWT-AI hybrid models to improve streamflow forecasting.

Keywords Artificial intelligence - Artificial neural network - Gamasiab River basin - Streamflow forecasting - Wavelet
transform

Introduction reasons, including helping with planning and optimizing the
water resources system and reducing flood risks. Forecast-
ing very accurate and reliable flow fluctuations due to the

environmental structure and the intermittent nature of the

The management and forecasting of hydrological processes
and their complexities are fundamental issues in different

geographical areas. Streamflow forecasting plays an essential
role in formulation strategies and sustainable management
of water resources. It can also be considered, for various
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streamflow in semi-arid watersheds are of particular signifi-
cance. Most rivers flowing in semi-arid and arid catchments
due to climatic conditions such as seasonal precipitation and
high evaporation rate have rebellious behavior and seasonal
and non-permanent flow and play a vital role in meeting the
water demand of these areas. These happenings occur in
most parts of Iran. Since in catchments, it is not possible to
measure all the observational quantities required to model
and analyze flow fluctuations. Therefore, essential to choose
a model that can, despite the simple structure, requires mini-
mal parameters for forecast runoff and flow caused by rain-
fall in the basin with high accuracy.
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There are three approaches to modeling streamflow,
including physical (process-oriented), empirical/metric
(data-based and statistics), and conceptual (based on hypoth-
eses) approaches (Beck 1991; Ahooghalandari et al. 2016).
The physical and conceptual models often require significant
inputs, including various hydrological, geometric and struc-
tural, and climatic data from the basin. In addition, calibra-
tion of these models is complicated and time-consuming
(Tokar and Markus 2000; Panda et al. 2010; Shi et al. 2011;
Arnold et al. 2012). If sufficient input data is not available,
metric (data-based) models perform better and more reliably
than conceptual models (Carcano et al. 2008). Several stud-
ies have compared traditional physical and conceptual mod-
els, including SWAT, IHACRES, MIKE 11, and HEC-HMS,
with data-based models such as ANN for flow forecasting
and often found that ANN models provide forecasting bet-
ter (e.g., Carcano et al. 2008; Panda et al. 2010; Kim and
Pachepsky 2010; Rezaeianzadeh et al. 2013; Ahooghaland-
ari et al. 2016; Young et al. 2017; Jimeno-Saez et al. 2018;
Ahmadi et al. 2019; Wagena et al. 2020).

At the same time, obtaining accurate forecasting is often
more important than understanding the process and rec-
ognizing the mechanisms that create it; thus, simple data-
based models can be a suitable alternative (Ebrahimi and
Rajaee 2017; Jha and Sahoo 2015). In streamflow fore-
casting programs, data-based or data-driven hydrological
methods have become increasingly popular and used due
to their rapid development time and minimal information
requirements. The data-based approach involves math-
ematical equations derived not from the physical process
of the basin but from time series analysis (Solomatine and
Ostfeld 2008). In other words, data-based models can learn
and generalize trends based on functional relationships in
data by developed algorithms (Coulibaly et al. 2000; Zhang
et al. 2001). When the observations and field data are not
enough, and accurate estimation is more critical than under-
standing physics, that's the time a black-box or data-driven
model can perform well. Although they may not provide a
physical interpretation and performance of the catchment
processes, they nevertheless forecast the relatively accurate
streamflow. In data-based flow forecasting, linear models
such as multiple linear regression (MLR) and autoregressive
integrated moving average (ARIMA) are traditionally used
to forecast streamflow. Linear models have limitations and
do not perform well enough when modeling hydrological
time series. Because these processes are often non-linear,
the dynamic behavior of the hydrological system changes
over time (Bierkens 1998; Tokar and Johnson 1999; Nourani
et al. 2014a). In later years, the non-linear models and artifi-
cial intelligence (AI) data-based models, including the arti-
ficial neural network (ANN) and support vector regression
(SVR), were introduced for flow forecasting applications.
Kang et al. (1993) and Hsu et al. (1995) were among the first
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to use ANN programs in river flow and rainfall-runoff fore-
casting and compared the ANN model and linear models.
They found that ANN is practical and suitable for forecast-
ing river flow. Gradually Al models, including ANN, SVR,
radial function base network (RBF), adaptive neural-fuzzy
inference system (ANFIS) models, and other AI models, to
find essence relationships and identify patterns in a complex
system in between streamflow and various hydrological vari-
ables, were used without having to build a conceptual model
and understanding of the mechanism physics in complex
systems and relationships. Thus, in recent years, Al models
such as ANN, RBF, SVR, and ANFIS as alternative and
efficient tools are accepted for modeling complex hydrologi-
cal systems and used effectively and extensively for stream-
flow forecasting (e.g., Zealand et al. 1999; Campolo et al.
1999; Kumar et al. 2004; El-Shafie et al. 2007; Pramanik and
Panda 2009; Kagoda et al. 2010; Meng et al. 2015; Kasiv-
iswanathan et al. 2016; Modaresi et al. 2018; Ateeq-ur-Rauf
et al. 2018; Ali and Shahbaz 2020).

Although essential features of AI methods are their abil-
ity to identify patterns in a complex system, if the inputs
are very non-stationary often do not cope with such data if
the inputs are not preprocessed (Cannas et al. 2006). Here
the combination of preprocessing with Al models can play
an auxiliary role. In the last decade, wavelet analysis has
been used as a data preprocessor in water resources engi-
neering and hydrology in various issues, and non-stationary
data management has been very effective. Wavelet trans-
forms (WT) provide functional decompositions of original
time series (input data). The data decomposed by the WT
addresses the potential shortcomings of the model forecast-
ing by capturing and placing valuable information at dif-
ferent resolution levels. The use of WT as a mining tool
can reveal and extract various concealed features in the
physical structure of the data. The WT is an effective and
well-known tool in non-stationary and noisy data analysis
that for modeling and forecasting has been used in a wide
range of water resources management issues (Nourani et al.
2014a). Wavelet has proven to be an efficient mathematical
tool (Adamowski 2008; Partal 2009).

Have been accepted Wavelet-Al hybrid models in recent
years as a potentially helpful method for modeling hydro-
logical processes. These hybrid models in various applica-
tions have been used, including forecasting' streamflow,
rainfall-runoff, precipitation, water quality, groundwater
level, water temperature, evaporation, and sedimentation
(Nourani et al. 2014b; Raghavendra and Deka 2014). Pre-
processing data before using it as input for ANN, ANFIS,
RBF, and SVR networks (or other data-driven models) can
significantly improve the performance of these models
(Moosavi et al. 2014; Liu et al. 2014). The discrete wavelet
transform (DWT)/wavelet analysis (WA) method can with
ANN, SVR, RBF, ANFIS, and other models be combined
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to create a hybrid model entitled DWT/WA-ANN, DWT/
WA-SVR, DWT/WA-RBF, and DWT/WA-ANFIS. Many
researchers have shown in their studies that wavelet-based
coupling models, especially ANN hybrid models, perform
better than conventional models such as ANN, ANFIS, and
RBF. For example, Cannas et al. (2006) used data process-
ing by WT as input to the ANN model to forecast river flow.
They found which trained networks with preprocessed data,
better performance in forecast compared to trained networks
with raw data and without preprocessing. Kisi (2009) used
the wavelet and ANN hybrid technique to study daily river
flow forecasting and compared it with the results of indi-
vidual ANN models. His results showed that wavelet pre-
processing could significantly increase the accuracy of ANN
forecasting in daily streamflow forecasting. Adamowski and
Sun (2010) developed the WA-ANN model to improve the
accuracy of streamflow forecasting at lead times of 1 and
3 days for two different non-perennial rivers for semi-arid
catchments in Cyprus. Liu et al. (2014) proposed to improve
the accuracy of the DWT-SVR hybrid model and used the
daily and monthly streamflow data at two stations in Indiana,
USA, to evaluate the model's forecasting skills. The results
showed that the DWT-SVR hybrid models performed better
than the SVR model for daily and monthly streamflow fore-
casting. Zhu et al. (2016) modeled the streamflow of water-
sheds have in the upper reaches of the Yangtze River, China.
After analyzing the data was used by wavelet transform and
applying these time series as monthly input data to SVR
to forecast streamflow. The results showed that the fore-
casting of DWT-SVR models improved compared to SVR
models. Hadi and Tombul (2018) used WT as a preproces-
sor of input data to Al models to predict the streamflow for
seven days ahead in a basin in southwestern Turkey. The
results indicate an increase in the accuracy of WT-coupled
Al models in streamflow prediction. Tayyab et al. (2019)
data-based ANN and RBF models hybrid with DWT (i.e.,
DWT-ANN and DWT-RBF) were used to rainfall-runoff
in the river basin in China. The results showed that hybrid
models provided predictions better. Freire et al. (2019) used
a synthetic WA-ANN composition to forecast daily flows
to the Sobradinho Reservoir in Brazil for seven days ahead.
Their studies results showed the superiority of the WA-ANN
model over the single ANN model. Dalkili¢c and Hashimi
(2020) evaluated the ANN, ANFIS, and DWT-ANN models
in the Biiyiik Menderes River in Western Anatolia and found
that the DWT-ANN model performed best.

In the study, the novel technique called the multi-discrete
wavelet transform (M-DWT) for preprocessing the inputs
data was used and achieving high-precision streamflow fore-
casting. Combined models, including M-DWT-ANN, have
been developed for this purpose. To prove the M-DWT pre-
processing efficiency, were comparisons between the per-
formance of the models developed by this method and the

performance of the DWT-ANN unit models and separate
ANN models for forecasting daily and monthly flows in the
Gamasiab River basin. The study area is in parts of the Ker-
manshah and Hamedan provinces, located in a catchment
area with a semi-arid climate in western Iran.

Materials and methods
Study area and data

In the present study, the flow in the catchment area of the
Gamasiab River in western Iran evaluates (Fig. 1). This
basin has 10,935 square kilometers, with a semi-arid climate
and a semi-humid climate in the highlands. This basin in the
geographical area with coordinates of latitude 33°49' N to
34°57' N and longitude 47°06' E to 4910’ E, is located. The
maximum and minimum altitude of the region is 3450 m
and 1272 m, respectively. It is from the above mean sea
level (AMSL). The average height of the basin is 1873 m,
and the perimeter is 636 km. The compactness coefficient
(Gravelius method) of the catchment is 1.7. the shape is
almost elongated. The length of the longest main waterway
is 221 km. The slope of the basin varies from 0.1 to 53.1%.
The slope of the canal is 2.91%, and the average slope of
the plain is 7.96%. This basin has vegetation and land use
in the middle areas, and lowlands are mainly horticultural
and agricultural (irrigated, rainfed, and rainfed). In the
highlands, the vegetation of the rangelands is semi-dense,
dense, and poor density, respectively. A small part includes
forest cover, barren lands, water, watercourse, mountainous
(rocky), urban, and residential. Due to the density of wells
in different parts of the area because of insufficient surface
irrigation networks, groundwater is used to meet the water
needs of agricultural products. The alluvial (porous) aqui-
fer in this region, which consists of a complex distribution
of gravel, sand, grit, silt, and clay, is an example of many
sedimentary systems of aquifers in Iran. The study basin is
surrounded by heights of the Zagros Mountains and in the
middle of a rugged hilly area and plain. Where feeding is
the primary source of groundwater, and inclusive rainfall,
infiltration from rivers in the region, return flow from irriga-
tion. Also, the main discharge parameters in this catchment
are unauthorized exploitation and evaporation. Eventually,
is discharged the water flows in the catchment by the outlet
at the southwestern part of the catchment. The catchments of
arid and semi-arid regions, including Iran, are flooded rivers,
of which the Gamasiab River is no exception.

Hydrometry and Evaporation Stations of Polechehr
(or Chehr Bridge) at the outlet of the catchment area with
latitude coordinates of 3420'N latitude and 47°26'E longi-
tudes, is located. The elevation of the Hydrometry Station
is 1280 m above mean sea level, and it is on the Gamasiab
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Fig. 1 Location map of the study area with national boundaries

River located in Kermanshah province in western Iran. The
Gamasiab River is the tributary of the Karkheh River and
part of the Persian Gulf and Oman sea catchment in terms
of the catchment area. The average annual discharge of
Polechehr station is 25.82 m>/s, and the maximum recorded
discharge rate for the long-term period is 796 m®/s. The
maximum discharges rate recorded is most often in Novem-
ber—May, when most has occurred of the rainfall. The
maximum monthly average temperature and the minimum
monthly temperature at Polechehr station in July and Janu-
ary are 38.76 °C and — 4.15 °C, respectively. The average
annual rainfall in this period is 384 mm, and about 92% of
the total annual rainfall occurs between November and May.
As can be seen in Fig. 4, the river is a non-permanent river,
and this region has hot and dry summers. Due to the irriga-
tion of agricultural fields in the summer, the river becomes a
seasonal and dry river. To prevent this can is used catchment
management and flood control plans.

In this study, to train and verify the performance of ANN
models, 31 years of daily data measured at Polechehr station,
including streamflow, precipitation, and temperature data
(23 September 1986-22 September 2017), were used in the
catchment. Also, for monthly data was used of 31 years aver-
age monthly data (October 1986—September 2017). In most
studies, it is divided into two parts and divided into two parts
that can be sufficient in the modeling process (Nourani et al.
2015). The data utilized were standardized and normalized
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using scaling between zero and one to confident that all
variables have been paid equal attention during the training
step. The first 70% of the total data set to develop the model
(training), and the remaining 30% of the entire data set to
evaluate (test) the developed models, were used. Meantime,
is 1, 2, 3, and 7 time-steps days and months as forecasting
time horizons selected. The data used in this research, the
archive of the data and information of the regional water
company of Kermanshah, was obtained.

Model performance criteria

Performance evaluation of a hydrological model is per-
formed and described, usually by comparing the error val-
ues and the differences between the observed and simulated
variables. Were divided in forecasting hydrological phenom-
ena, most data into the calibration data set (training) and
verification data set (testing) to obtain correct evaluation
and comparison of model performance. It is also necessary
for Al models to find a suitable structure. In this study, for
all models developed for streamflow forecasting, statistical
criteria inclusive correlation coefficient (R), Nash—Sutcliffe
efficiency coefficient (NSE), and root mean square error
(RMSE) to evaluate the statistical relationship between the
forecasted value and the observed value, to assessment the
forecast power of the model, and to measure the variance of
the error, respectively, were used.
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where 7 is the number of data set used, F; is the forecasted
values (model outputs), O; is the observed data, and Fand O
are the average values for F; and O,, respectively. The best fit
between the forecasted value and the observed value occurs
when the values obtained from these relationships (Egs. 1-3)
reach values R and NSE to maximum one and value RMSE
to minimum zero, respectively (Gong et al. 2016; Liu et al.
2014).

Artificial neural network (ANN)
In recent decades, the ANN estimation approach as a black-
box model has been a great deal of consideration from many

researchers globally. It has been used widely in diverse
fields such as time series forecasting, pattern and sequence

Input layer

X1

X2

Fig.2 ANN architecture three-layer with one hidden layer

Hidden layer

recognition, processing data, mining data, and identifica-
tion and control system (Nayak et al. 2006). ANNs have
performed well in the input—output function approximation
such as forecasting. Hence, they have been used success-
fully for modeling and forecasting in the earth sciences
(ASCE 2000a; b). The ANN from several artificial neural
cells interconnected in several layers conforming to the spe-
cific architecture is composed. Can be using the ANNs to
forecast future values of possibly noisy time series based
on past histories. Were organized the neural networks for
converting inputs into meaningful outputs (Adamowski and
Chan 2011). In the connections between neurons are adjust-
able parameters located are called weight. The input signal
through the network in a forward direction is transmitted.
These signals are received in each neuron (node) in the input
layer from external inputs and another layer from outputs
from other neurons to which it is linked. Each neuron pro-
duces a result by an activation function that is a linear/non-
linear static function of the weighted sum of these inputs.
ANN multi-layer perceptron (MLPs), first by Rumelhart and
McClelland (1986), was proposed and is one of the most
widely used neural networks for hydrological modeling that
can recognize latent and non-linear patterns (Nayak et al.
2006; Principe et al. 2000). Figure 2 are displayed the archi-
tecture of a typical MLP network with a hidden layer in
which the logistic (sigmoid) activation function and a linear
function in the output layer. The approach of feed-forward
MLP to mathematical expression is as follows:

Output layer
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where n is the number of data set, m is the number of
neurons in the hidden layer; Wi Wik = the weight that neu-
rons have in the input and output layers, respectively; wy,,
wy;, = bias in the hidden and output layers, respectively; f;,.
fo=activation function of the neurons in the hidden and out-
put layers, respectively; x; (¢), y, (f) =the i-th input variables
and the k-th output variables at time step #, respectively (Kim
and Valdes 2003).

For ANN model development, the designation of the
structure and the model's training algorithm is critical. An
algorithm is needed that provides proper performance in
the forecast. Commonly used training algorithms include
Levenberg—Marquardt (LM), scaled conjugate gradient
(SCQG), gradient descent with momentum, adaptive learn-
ing rate (GDX), and Bayesian regularization (BR) (Mohanty
et al. 2010; Gong et al. 2016). Among these, the best BR
back-propagation algorithm was selected, according to per-
formance criteria (i.e., lowest RMSE and highest NSE and
R), to train and develop the ANN models. In these algo-
rithms, the error between the intended and forecasted out-
put is back-propagation through the network, and weights
linking the neurons in the learning phase through a training
algorithm are updated. MLPs can perform well in function
approximation, provided that there are sufficient neurons in
the hidden layer of the network enough amount of data is
existed (Cybenko 1989; Principe et al. 2000). In this study,
preliminary results showed that a hidden layer is sufficient
to approximate the relationship between observed and fore-
casted streamflow. By the trial-and-error method was deter-
mined the optimum number of neurons hidden layers. The
number of layers and neurons has been selected, with the
lowest RMSE values as the appropriate number. Meantime,
to ensure the optimal performance of the network, a cross-
verification method, be used to choose the best network
architecture (Principe et al. 2000).

In the present study, used data sets of the precipitation,
temperature, and streamflow into two subsets are divided. The
first subset is the training data set used to calculate the error
gradient and update the weight and bias of neurons in different

layers of the network. The second subset is the test suite that
an independent data set employed to verify the efficiency and
performance of the model. Primary stopping criteria were
used based on cross-validation are applied during the train-
ing of the neural networks, including the Mu (equal 1.00e™'9),
Gradient (equal 1.00e™’), and Maximum Iteration (equal 1000
epoch) criteria. The optimal structure of the ANN network
and parameter tuning were designated using a trial-and-error
method. In such a way that the optimal value of the parameters
and variables based on performance criteria, including the
RMSE, R, and NSE by sensitivity analysis, was determined.

Discrete wavelet transforms (DWT)

The wavelet transform (WT) is a mathematical tool that is
a time-dependent spectral analysis that analyzes signals in
a time—frequency space and provides a time-scale illustra-
tion of processes and their relationships (Daubechies 1990).
The WT is a valuable and essential derivative of the Fourier
transform (FT). Fourier analysis has a primary disadvan-
tage and the loss of time information in transforming into
a frequency domain. At the same time, the WT includes
a poly-resolution decomposition in the time and frequency
domains (Tiwari and Chatterjee 2011). One type of WT is
the discrete wavelet transform (DWT), which is used widely
due to its simplicity and low data generation, and the need
for short computational time. At the same time, with its con-
cise and valuable analysis, it still produces a very efficient
and precise analysis (Partal and Kucuk 2006). The DWT
using the different filters and various mother wavelets pos-
sesses long-time distances for low-frequency data and short-
time distances for high-frequency data and can reveal some
properties and hidden aspects of the time series. The DWT
is particularly beneficial when the signal contains various
embedded information, jumps, or shifts (Nalley et al. 2012).
DWT often is used for time series analysis in natural hydro-
logical problems (Nourani et al. 2014b). As shown in Fig. 3,
the DWT has two sets of functions, the original time series
passing through high-pass (detail) and low-pass (approxi-
mate) filters, and decomposes at different scales. Eventu-
ally, are shown fast events and trends in Fig. 8. Wavelets
retain the characteristics of the frequency domain and time

Low — pass filter : — Approximation(a;)

Low — pass filter : > Approximation(a,)

Time series

» High — pass filter ‘ i Details(d,)

High — pass filter ’ N

Details(d,)

Fig.3 The process of decomposition of a time series by the DWT
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domain described by the wavelet function (called the mother
wavelet) and the scaling function (called the father wavelet).
The mother wavelet mathematically is expressed as follows
(Percival and Walden 2006):

V(D) = %W(%) 5)

\/_

where the coefficient “a” is a positive number and the
parameter “b” is any real number. y, ,(¢) = wavelet function;
a={frequency or scale (or dilated) parameter; b = translation
or shifted parameter.

In the DWT, the scales “a” and shift times “b” in the
mother wavelet is considered power-of-two, i.e., scale a=2"
and location »=2"". For a discrete time-series x(f) decom-
posed into several finite subsets, which happens at a discrete-
time t, DWT can have been calculated as follows (Mallat
1989):

DWT,,, () = 27"/ / Xty ( t _2’:12 )dh 6)
where wavelet with dilation is by “m,” and it is shifted by
“n,” and this way wavelet tune and control.

Multi-discrete wavelet transforms (M-DWT), and its
hybrid with ANN models

The principal purpose of using DWT as preprocessing is to
provide more information to increase the understanding and
accuracy of model forecasting (Maheswaran and Khosa 2012).
In the last decade, hybrid modeling by wavelets-Al techniques
has expanded significantly. Studies' results wide range of
researchers represented the superior performance of coupling
models compared with single models in accurately forecast-
ing streamflow (Nourani et al. 2014b). The hybrid wavelet-Al
model to achieve the ability has been designed to model non-
linear. Choosing a suitable mother wavelet has an essential
and significant role in wavelet-Al modeling. Time series of the
hydrological phenomena have different characteristics due to
the complexity and being affected by many parameters and can
have long-term, short-term features, or various combinations.
Hence, an appropriate mother wavelet can cover those pro-
cesses compact or broad so that models provide better forecasts
(Maheswaran and Khosa 2012). Thus, it seems that a combina-
tion of different mother wavelets for time series decomposition
is more proper and can have better covering and more compat-
ibility with other time series shapes.

On the other hand, hydrological phenomena have inherently
intricate processes, and the sampled and observational data of
these processes often contain noise and redundant informa-
tion. The input data of a network must so was organized and
prepared to obtain trusted multi-time-step ahead streamflow

forecasting and such a way that it can adequately encompass
wholly the information related to the desired data. Thus,
decomposing or eliminating data noise is another fundamen-
tal step in modeling hydrological processes. The DWT-based
method with decomposition and noise decrease can improve
the performance of models if it has a suitable mother wavelet
adequate decomposition level.

Thus, the importance of selecting and combining the appro-
priate mother wavelet increases in the utilization of multiple
wavelets simultaneously. Accordingly, in this study, to obtain
high-accuracy results, applied the DWT as a preprocessor was.
Their effect on the performance of the models was evaluated
and compared. DWT processes the original signal through
high-pass and low-pass filters and decomposes them into sub-
sets. Finally, have been used the sub-signals as input to ANN
models. For example, Fig. 4 shows the approximations and
details originating from the streamflow time series decomposed
by the db7 mother wavelet at level 2. For each input data delay
to the model was formed a time series. Then, each time series
in each wavelet transform (WT) at decomposition level two was
decomposing into four subsets including, a,, a,, d;, and d,. As
represented in Fig. 5, the use of several wavelets simultaneously
with different scaling and filters lengths can contain various
parts of the signal (streamflow time series data). A suitable
combination of them can is lead to increased understanding and
accuracy of data-driven models such as ANN.

In the present study, data preprocessing has been used to
construct hybrid streamflow models both as single wavelets
and simultaneously with several mother wavelets (Daubechies;
db, Symlet; sym, Coiflet; coif, Biorthogonal; bior, and Fejer-
Korovkin; fk). Then the decomposed data by DWT in several
combinations were imported to the ANN models and as the
DWT-AI and M-DWT-AIL The matter is means were used
several different wavelets for data decomposition, and then all
the decomposed data by these wavelets were fed together as
input to the ANN model. In other words, this technique can
consider as a manner of mining and fusion data with differ-
ent features. The decomposition level selection and the type
and number of wavelets in DWTs were designated using a
trial-and-error method. In such a way that the optimal value
of the parameters and variables based on performance criteria,
including the RMSE, R, and NSE by sensitivity analysis, was
determined. Meanwhile, all the ANN models, combinations of
its, and DWTs, have been coded in MATLAB R2018 software.

Results and discussion

This study aims to apply artificial neural network (ANN)
models to provide more accurate streamflow forecasting by
introducing a new technique (i.e., M-DWT) in the short-
term up to 7 days and long-term up to 7 months beyond data
records. For that purpose, after selecting the best network
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Fig.4 Approximation (a,, a,) and detail (d,, d,) sub-signals of streamflow time series with the time scale a daily, b monthly, decomposed by

db7 wavelet at level two

architecture of the model and the respective input composi-
tion, it has been used to forecast the streamflow fluctuations
of 1-, 2-, 3-, and 7-time-step ahead for daily and monthly
time scales. Monthly flow rate forecasts are more used to
manage water resources, and the daily flow rate forecasts
are more applied to reduce flood risks.

@ Springer

Initially, the ANN model was used to model and fore-
cast streamflow of catchment with daily and monthly time
scales without any preprocessing of input data. Table 1
represents the RMSE (m%/s) for several different ANN
architectures as an instance. Each time in the model has
been placed five to 20 neurons in a single hidden layer
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functions

for network training and was selected the optimal archi-
tecture according to the better performance of the model
based on RMSE, R, and NSE performance criteria in both
calibration and verification stages. The optimal number of
neurons in the hidden layer, i.e., five neurons, was used to
predict at different time stages. As shown in Table 1, was
presenting several combinations of input data and various
architectures for the ANN model as instances also optimal
values of the artificial network structure and input data
are highlighted. On a daily time scale, the best network
structure, i.e., 22-5-1, and the best input combination, i.e.,
a synthesis with a delay of 1 day for precipitation, tem-
perature, and 1-20 days for streamflow, is presented. The
model was selected with the most negligible value RMSE

and the most value NSE and R in the verification stage as
the optimal network (i.e., RMSE=4.79, NSE=0.96, and
R =0.98). Also, on a monthly time scale, given the slight-
est error in the verification stage, the best configuration
(i.e., 20-5-1) for a combination set of inputs and networks
is to forecast the streamflow one month ahead. This struc-
ture, the best input combination, i.e., the combination with
delays of 1-20 months, and the most appropriate number
of neurons in the hidden layer, i.e., five neurons, is for
forecasts at different time steps (see Table 1). After deter-
mining the most appropriate ANN configuration based
on the performance criteria, was completed the network
calibration. The weights obtained from the network neu-
rons in the calibration stage generated in the network are
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Table1 RMSE (m%/s) results of the ANN model and a hybrid with different mother wavelets for one-time-step-ahead streamflow forecasted in
calibration and verification periods

Model inputs with delay (Wavelety,.—Inputs) Structure network Daily time scale Monthly time scale
RMSE RMSE(m?/s) RMSE(m?/s) RMSE(m?/s)
(m%/s) cali- verification  calibration  verification
bration
0 (1) 1-20-1 14.80 6.08 31.62 14.84
0 (1) 1-10-1 15.21 6.13 32.47 16.81
0 (t-1) 1-5-1 15.50 6.01 32.84 16.15
0 (t—1,-2,-3,-4,-5) 5-5-1 14.04 6.40 29.18 17.12
0 @t-1,-2,...,-20) 20-5-1 10.67 9.52 24.81 14.54
0 (-1,-2,...,-20) 20-10-1 10.32 7.39 23.60 14.68
0 (-1,-2,...,-20) 20-20-1 7.79 20.11 26.11 14.88
Q0 (t-1), T(t—1), P(t-1) 3-5-1 13.33 4.94 29.16 18.12
Q0 (t-1), T(t-1), P(—1) 3-10-1 11.28 8.49 29.17 18.09
0 (t-1, -2, -3), T(t—1), P(t-1) 5-5-1 13.22 7.31 28.94 17.73
0 (-1,-2,...,-10), T(+-1), Pt—1) 12-5-1 12.86 5.02 18.47 15.29
0 (t-1,-2,...,-20), Tt-1), P(t-1) 22-5-1 8.52 4.79 25.28 15.78
0 (-1,-2,-3), T(t-1,-2,-3), P (t—1, -2, -3) 9-5-1 10.75 5.37 20.88 15.75
o@-1,-2,...-7,T@t-1,-2,....,=-7),P(+-1,-2, ..., =7) 21-5-1 9.06 27.80 20.02 15.66
ot-1,-2,...,-7,Tt-1,-2,....,=-7),P(+-1,-2, ..., =7) 21-10-1 7.49 18.81 1.83 44.97
0 (t-1,-2,...,-20), T (-1,-2,...,-20), P (r-1, -2, ..., =20) 60-5-1 7.25 14.62 0.001 27.85
Wapas—Q(t—1), Wapas—T(t—1), Wypus—P(t—1) 12-5-1 6.65 3.88 10.56 11.91
Wapas—Q(t—1), Wgpgs—T(t—1), Wypas—P(t—1) 12-10-1 5.22 423 5.49 14.96
Weym10—Q(t=1), Waps=T(t=1), W gy~ P(t=1) 12-5-1 6.66 5.94 10.39 13.09
Wapas—Q(t=1), Wyny=T(t—=1), Wyy—P(t=1) 12-5-1 6.79 4.97 7.78 11.49
Wapas—Q (1—1, =2, =3), Wyus—T (11, =2, =3), 36-5-1 2.68 2.85 223 6.02
Wapas—P (t—1, -2, =3)
Wans=Q (=1, =2, ..., =7), Weyg=T (=1, =2, ..., =7), 84-5-1 1.52 1.93 1.47 7.30
Weyms—P (1=1, =2, ..., =7)
Winas—0 -1, =2, ..., =7), Wy 45— T (-1, -2, ..., =7), 84-5-1 0.55 0.59 0.27 4.86
Wapes—P -1, =2, ..., =7)
WabasWeym10—Q (1=1, =2, ..., =20), W =T(t=1), 168-5-1 0.057 0.041 0.057 3.08
Wan—P(t—1)
WanasWeymio—Q (=1, =2, ..., =20), Wap4s—T(t—1), 168-5-1 0.059 0.037 0.005 2.88
Wapas—P(=1)
WabasWeym1o—Q (t=1, =2, ..., =20), W= T(t-1), 168-5-1 0.054 0.035 0.17 3.31
Wana—P(—1)
WabasWsymaW coits Whiors.s Wis— Q= 1), Wapgs—T(1=1), 28-5-1 5.04 4.22 5.75 6.73
Wapgs—P(=1)
W abs W syma W eoits Wiors.s Wike— Q1= 1), Wy =T(1—1), 28-5-1 4.92 3.89 4.65 6.75
W aps—P(1—1)
WansW syma W coits Wiors.s Wik = Q= 1), Woymg—T(t—1), 28-5-1 4.90 3.68 4.84 6.69
Wsyms—P(l— 1)
WabsWsyma W eoits Whiors.s Wie—Q (7—1, =2, =3), 84-5-1 0.54 0.54 0.40 1.18
Weyms=T (t=1, =2, =3), W g—P (t—1, =2, =3)
WabsWeymaWeoits—Q (=1, =2, =3), W g W oyaWegips—T (1= 1, 108-5-1 0.956 1.30 0.52 437
=2, =3), WapsWsymaWeoits—P (1=1, =2, =3)
WabsWsyma W eoits Whiors.s Wie—Q (=1, =2, ..., =7), 196-5-1 0.031 0.030 0.004 1.75
Woyms—T (=1, =2, ..., =7), Wong—P (=1, =2, ..., =7)
WansWsym20W coits Whiors.s Wis—Q (=1, =2, ..., =8), 164-5-1 0.018 0.013 0.022 0.52
Wapas—P (1=1)
W abs W eym20 W eoits Wiors.s Wis—Q (=1, =2, ..., —6), 124-5-1 0.050 0.037 0.016 0.27

Wapas—P (=1)
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Table 1 (continued)

Model inputs with delay (Wavelety,.—Inputs)

Structure network Daily time scale

Monthly time scale

RMSE RMSE(m?/s) RMSE(m?/s) RMSE(m?/s)
(m%/s) cali- verification  calibration  verification
bration
Wan7Weym10 Weoits Whiore.s Wis—Q (¢—1, =2, ..., —6), 124-5-1 0.037 0.021 0.0061 0.15
Wabgs—P (t=1)
Wans W syma W eoits Whiors.s Wie—Q (11, =2, ..., —10), 208-5-1 0.00198 0.00125 0.015 0.86
Wapa—T(t—1), Waps—P(—1)
WabsWsyma W eoits Whiors.s Wie—Q (11, =2, ..., =20), 408-5-1 0.00113 0.00087 0.0001 1.87
Wapa—T(t—1), Wgps—P(t—1)
WabasWeyma W coits Whiors. s Wis—Q (=1, =2, ..., —=20), 408-5-1 0.00042 0.00038 0.0008 1.98
Woyms—T(—1), Wi,s—P (1)
Wan20Wsyms W coitz Whiors.s Wiaa—Q (=1, =2, ..., =20), 408-5-1 0.00049 0.00042 0.0004 243

Wana—=T(—1), Wy, mg—P(1—1)

sym8

Input variables are P precipitation, T temperature, Q streamflow data sets

stored, and these weights in the verification (testing) stage
be applied.

In the next step, has been used the single wavelet (i.e.,
DWT) to preprocess the input data to the ANN model. The
results showed that applying DWT data can significantly
improve the performance of the models. The results of
the present study are consistent and the findings of other
researchers, including Adamowski and Sun (2010) and
Tayyab et al. (2019). Therefore, due to the usefulness of
DWT hybrids with AI models such as ANN, in this study,
the multiple wavelet simultaneous technique (i.e., M-DWT)
to better decompose the data was used and increased the
streamflow forecasting accuracy.

The M-DWT was used to preprocess the input time series
to the ANN model. As shown in Table 1, was presenting
several combinations of input data and different architectures
for the DWT-ANN and M-DWT-ANN models as examples
and are highlighted optimal values of the artificial net-
work structure and input data. Indeed, the bolded part of
this table shows the most accurate models for forecasting
streamflow. For the daily time scale, the most optimal net-
work structure, i.e., is 408-5-1 for the M-DWT-ANN model
is from was obtained 1-20 delays for streamflow data and
one delay for temperature and precipitation data. The best
multi-mother wavelets simultaneously for this model include
db45, sym4, coif5, bior5.5, and fk6 wavelets, which pro-
vided more accurate forecasting of the streamflow of one and
several steps ahead compared to other combinations based
on RMSE performance criteria (see Table 1). Also, for the
monthly time scale, the most optimal network structure,
i.e., 124-5-1 for the M-DWT-ANN model, was presented
with 1-6 delays for streamflow data and one delay for pre-
cipitation data. The best results for preprocessing by multi-
mother wavelets for the M-DWT-ANN model are the db7,
sym10, coif5, bior6.8, and fk8 wavelets for the streamflow

time series and the db45 wavelet for the precipitation time
series. After selecting the optimal developed models were
utilized for different time steps.

It is worth noting that selecting an optimal architecture
for ANN models is an essential step in modeling because
improper architecture can is lead to under/over-fitting and
under/over-computing more problems. Furthermore, in mod-
eling data-driven models such as ANN, specific attention
be paid to the appropriate selection of inputs, which can
upgrade the model's efficiency in both calibrations (train-
ing) and verification (testing) stages. The effects of the cases
mentioned in the model performance can have been seeing
in Table 1. It is worth noting that some network structures
had better performance in the calibration stage but were
weaker performance in the verification stage according to
RMSE values (see Table 1). The results obtained can be
related to the model performance is that has been over-fitting
with the target data in the training stage. The error of the
testing period is usually more significant than the error of
the training period because unknown values for the model
for evaluation in the test period are used (Tapoglou et al.
2014). As shown in Table 1, this principle is reversed in
this study due to the difference in amplitude of streamflow
fluctuations in the training and test periods in some results
according to the RMSE criterion (i.e., the amount of test
error is less than the training error). This performance is
due to the dependence of the RMSE criterion on the scale
of variables. But this has been correctly assessed according
to NSE and R criteria.

Finally, the performance of the ANN model and its
hybrids with the wavelet analysis were compared and eval-
uated in streamflow forecasting. As shown in the figures
and tables in this section, models calibrated with simultane-
ous multi-wavelet preprocessing perform much better than
single-wavelet models and models without preprocessing.
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According to the obtained results, the models developed by
the M-DWT technique have high efficiency. Although this
technique increases the amount and time of calculations,
it dramatically improves the performance of the models.
As Fig. 6 clearly shows, this betters the performance of the
ANN model in the training period, and the hybrid models,
in particular, coupled with M-DWT, had lower RMSE error
rates in the number of iterations (epochs) higher. The use of
wavelet analysis, especially multi-mother wavelets, increases
the model input information and also increases the model's
understanding of the data behavior patterns. In the follow-
ing, are presented and analyzed the obtained results.

Results of ANN models and their hybrid with DWT
and M-DWT, with daily time scale

In this study, various input combinations, and different net-
work structures for each of these inputs, were used. ANN
models use past data, including streamflow, precipitation,
and temperature and as input to forecast streamflow. The
hybrid ANN model with one or more wavelets decomposi-
tion (i.e., the DWT-ANN and M-DWT-ANN hybrid models)
is composed to reduce the forecasting error. The noise and
various information contained in the data were separated
and preprocessed by the DWT were utilized as input to fore-
cast the streamflow. Figure 7 shows the results for the best
ANN structure and the best DWT-ANN and M-DWT-ANN
structure to forecast daily streamflow for one-time ahead.
As can be seen in this figure, multi-wavelet hybrid ANN
models can model and forecast the flow discharge peaks well
more accurately than the single model. In Fig. 8 are shown
the scatter and time series for comparing the observed and
calculated streamflow. As shown in this figure, the output
of the M-DWT-ANN model at different time steps has less
scatter, and its values are more compact in the proximity of
the direct-line than the DWT-ANN and ANN models, which

(@) .
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100
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indicate the better performance of this model is. The RMSE
values of the ANN, DWT-ANN, and M-DWT-ANN models
are represented in Table 1 for the forecast one step ahead of
time. Table 2 presents the R, RMSE, and NSE values of the
ANN, DWT-ANN, and M-DWT-ANN models for forecast-
ing different time steps. The best models with the slightest
error and the most efficiency and correlation were used to
forecast streamflow. Figure 6 clearly shows the proficiency
of the wavelet-neural-network model to learn the non-linear
relationship between input and target data. Results in the
verification stage, for the 1-, 2- and 3-day ahead, the NSE
and R values are entire close to 1, and the RMSE values are
less than 3 for the DWT-ANN model and less than 0.01 for
the M-DWT-ANN model. Increasing the forecast intervals
affected adversely on forecasts, the R and NSE decreased,
and RMSE increased. Yet, the forecasting results at 1-, 2-,
3-, and 7-day ahead time scales for used ANN and DWT-
ANN models and especially M-DWT-ANN models are
acceptable. For example, the NSE criterion values for the
ANN model in the 1, 2, 3, and 7 steps ahead are 0.96, 0.90,
0.75, and 0.66, respectively. Comparing the results of the
models, the M-DWT-ANN model performs better than the
ANN and DWT-ANN models based on the R, RMSE, and
NSE (see Table 2). For instance, the RMSE value in the veri-
fication stage for the best ANN, DWT-ANN, and M-DWT-
ANN models, to forecast streamflow two time-steps 7.83
(m3/s), 2.32 (m3/s), and 0.0056 (m3/s), respectively, were
obtained. Overall, M-DWT-ANN model forecasts in differ-
ent time steps are superior to ANN and DWT-ANN models.

Results of ANN models and their hybrid with DWT
and M-DWT, with monthly time scale

The data set of this study, into two subsets, including cali-
bration and validation sets, are divided. Also, different com-
binations of models’ inputs were used similar to the daily
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Fig.6 The performance of ANN, DWT-ANN, and M-DWT-ANN in RMSE(m?/s) with the time scale a) Daily, b) Monthly, for training data set
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Fig.7 Comparing observed and forecasted streamflow using the best ANN, DWT-ANN, and M-DWT-ANN models for multi-time-step-ahead
forecasted during the calibration and verification periods in the daily time scale

time scale in a monthly time scale. ANN models used the
monthly average of past data, including streamflow, pre-
cipitation, and temperature, as input to forecast streamflow.
Table 1 represents the RMSE (m?/s) for several different
ANN structures as an instance. The model structure with
the slightest value RMSE and the most value NSE and R
was selected, In a balanced way in both the calibration and

verification stages, as the optimal structure. In Table 2, the
RMSE, NSE, and R criteria values for the best ANN model
were 14.54, 0.52, and 0.76, respectively, was presented.
The DWT-ANN and M-DWT-ANN hybrid models were
used to minimize the forecasting error for the monthly
time scale. The results indicate the usefulness of the ANN
model coupled with wavelets. Figure 9 shows the superior
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Fig. 8 Scatter plot between observed and forecasted streamflow using ANN model and its hybrids with DWT and M-DWT for multi-time-step-
ahead during the calibration and verification periods in the daily time scale

performance of the M-DWT-ANN hybrid model over the
ANN and DWT-ANN models in modeling and forecasting
streamflow. Multi-wavelet hybrid ANN models have been
able to model and forecast flow discharge peaks well. The
poorer performance of the ANN model is due to the inputs
of noisy data. Also, Fig. 10 shows scatterplots comparing the
observed and forecasted streamflow using the best M-DWT-
ANN model and the best ANN and DWT-ANN models for
one month ahead forecasting during the calibration (train-
ing) and verification (testing) periods. Also, estimates of the
M-DWT-ANN model have fewer scattered, and its values
are more compact in the proximity of the direct-line, com-
pared to the DWT-ANN and ANN models, and means bet-
ter performance of the M-DWT-ANN model. Presented in
Table 1 are the RMSE values of the ANN, DWT-ANN, and
M-DWT-ANN models for the forecast one-time-step-ahead.

M-DWT-ANN model is the most accurate streamflow
forecast that offers one or more steps ahead of other com-
binations on a monthly time scale based on RMSE perfor-
mance criteria (see Table 1). Table 2 presents the R, RMSE,
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and NSE values of the ANN, DWT-ANN, and M-DWT-
ANN models for forecasting different time steps. The best
models with the slightest error and the most efficiency and
correlation were used to forecast streamflow in the calibra-
tion and verification periods. Results in the verification stage
for the NSE criterion values for the M-DWT-ANN model
in the 1, 2, 3, and 7 steps ahead are 0.99, 0.99, 0.95, and
0.59, respectively. Increas