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Abstract
A vital challenge of assessing global water resources is to achieve the optimal set of parameters in any hydrological model 
by simulating streamflow. Simulating single-site hydrological features for a large catchment may not account for regional 
variation, resulting in unmet watershed needs. The objective of this study was to assess the single-site calibration (SSC) 
and multi-site calibration (MSC) approaches using the hydrological Soil and Water Assessment Tool (SWAT) model on the 
Bharathpuzha watershed of India. The multi-site method entails splitting a large catchment into smaller ones and applying 
MSC criteria to the entire catchment. Monthly streamflow simulations were conducted to verify the model’s performance 
using the coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), percent of bias (PBIAS) and Kling Gupta 
Efficiency (KGE). Results show that single-site approach values are more meaningful than multi-site. In SSC, the parameter 
determined by optimizing the model parameters at four different stations delivers a better result than in MSC, and MSC 
has less uncertainty with lower PBIAS and r-factor values. This case study was assumed to give experience with single and 
multi-site calibration in a large catchment and reveal the positives and negatives of SSC and MSC estimated parameters.
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Introduction

Simulation of physically oriented and distributed hydro-
logical models is challenging due to limited input informa-
tion constraints. Hydrological models are frequently used 
to measure water resources issues, including the climate 
change impact on water resources, pollution concerns, lan-
duse changes and water resource planning and management 
across the world (Schellekens et al. 2017; Sharma and Tiwari 
2019; Danshgar et al. 2021; Simões et al. 2021). The cau-
tious operation of model calibration and validation includes 
distributed catchment models and this operating method is 
needed because every hydrological model is just an accu-
rate reflection of reality. Therefore, parameter values must 
be adjusted to increase the goodness of fit. Normally, the 
goodness of fit is determined by applying the data simulated 

by the model towards the corresponding observed variables 
(Montanari and Toth 2007; Althoff and Rodrigues 2021). 
Calibration is essential for developing and representative a 
reliable model at the river basin scale. It is a well-known 
approach to simulate any hydrological model at a single site 
or outlet in a watershed (Desai et al. 2021). The selection 
of single-site calibration for the entire catchment is not an 
effective method for investigating hydrology parameter spa-
tial variability and suitable for the smaller watershed. Due to 
different climatic variations, the selection of single calibra-
tion differs in short distances (Leta et al. 2017). It is always 
important to calibrate the observed data for large catchments 
at multiple places of the gauge station for improved hydro-
logical system simulation and spatial variability of informa-
tion (Wang et al. 2012; Song et al. 2021; Ghaffar et al. 2021).

Previous authors proved the importance of multi-site 
calibration (MSC) approaches against single-site calibra-
tion (SSC) on catchment outlet information (Bai et al. 2017; 
Chen et al. 2019; Pandey et al. 2020; Malik et al. 2021). 
On the other hand, some authors observed no significant 
improvement by multi-site changes related to SSC for 
streamflow (Reed et al. 2004; Shrestha et al. 2016; Franco 
et al. 2020). An issue arises as to whether the MSC overtakes 
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the SSC (Lerat et al. 2012). The multi-objective control of 
all variable parameters is best to improve model simulation 
(Rasolomanana et al. 2012; Malik et al. 2021). The capacity 
to simulate hydrological variables in space and multi-site 
information is increasingly being utilized to evaluate model 
performance due to the recent emergence of hydrological 
distributed models (Peel and McMahon 2020; Zhao et al. 
2021). In this study, the hydrological Soil and Water Assess-
ment Tool (SWAT) model was applied to the Bharathpuzha 
catchment of southern India. SWAT is a semi-distributed 
hydrological model for large-scale river basins to simulate 
flow, erosion, and nutrients (Arnold et al. 1998) and it has 
worldwide applicability for hydrological modeling for differ-
ent catchments (Ahmadzadeh et al. 2022; Chim et al. 2021; 
Sirisena et al. 2021; Akoko et al. 2021). Parameter values 
are needs to adjust throughout the calibration procedure to 
avoid excessive parameterisation (Beven 1990). Accord-
ing to Anderton et al. 2002, due to the various parameters 
in modeling the hydrological cycle, the approach of SSC 
was inadequate in its usefulness. Santhi et al. (2008) dem-
onstrated that SSC cannot account for any variation in the 
catchment and cannot provide reliable simulation outcomes. 
This could only be done using several gauges in the meas-
urement and testing processes.

This research selected four gauging stations for multi-
site simulation of monthly streamflow data. Piniewski et al. 
(2011) chose eleven Narew basin gauges for MSC, success-
fully identified uncertainty parameters, and fine-tuned the 
model. Previous studies point out that multi-site calibrated 
parameter values are more appropriate for local situations 
(Bai et al. 2017; Nkiaka et al. 2018; Mandal et al. 2021). The 
multi-calibration approach gives good results with sedimen-
tation, nutrient and evaporation simulations. Besides dis-
charge, multi-calibration methods are successfully extended 
with excellent results for sedimentation models, nutrients 
and evaporation (Barnhart et al. 2014; Shrestha et al. 2016; 
Zanin et al. 2018; Odusanya et al. 2019). In India, intensely 
studies have been done with SSC (Shivhare et al. 2018; Rani 
and Sreekesh 2019; Sinha et al. 2020; Singh and Jha 2021) 
and significantly less MSC for hydrological parameter simu-
lation (Hasan et al. 2017; Das et al. 2019). We have adopted 
17 streamflow driving parameters considered in previous 
studies in this study. Previous studies were considered a 
maximum of 12 to 14 parameters to simulate the stream-
flow. In addition, we have adopted the satellite-derived pre-
cipitation product of Tropical Rainfall Measuring Mission 
(TRMM) and one to develop the model, which was limited 
in previous research work. Satellite-derived precipitation 
products are more meaningful for hydrological modeling 
and application (Koshuma et al. 2021; Zhang et al. 2022). 
The research aims to calibrate the SWAT model with the 
SUFI-2 algorithm using on Bharathpuzha catchment by both 
single and multi-site calibration approaches and compare the 

performance of the models. This study will aid the impor-
tance of streamflow simulation for large catchments and 
improve the spatial hydrological components response in 
future.

Study area

The Bharathpuzha catchment is situated in the Palakkad and 
Coimbatore district of south India with a geographical area 
of 5789.47 km2 and an elevation from 3 to 2493 m (Fig. 1). 
Bharathpuzha is the longest (251 km) of West flowing rivers 
from Tadri to Kanyakumari basin, also known as Ponnani in 
lower reaches. This research was conducted at the Kumbidi, 
Pulamanthole, Mankara, and Pudur gauging stations. The 
climate of the catchment is the mostly coastal type and prone 
to floods and landslides (For example, August 2018 was the 
heavy flood and August 2019) (Vishnu et al. 2019). Summer 
and winter are controlled by southeast and northeast rainfall 
and the annual average rainfall of the catchment is 2340 mm. 
The geological information of the western catchment con-
sists of permeable Charnockite and less permeable gneiss 
and schist are underlined in the eastern (CGWB 2012). The 
soil texture of the lower slope is Dystric. Bharathpuzha, due 
to its agricultural, forest dominated the land and complex 
catchment, need proper catchment management, which is 
possible with the help of calibration and validation of spatial 
data in hydrological modeling. It is an essential issue in a 
complex catchment. Therefore, it is crucial for the Bharath-
puzha catchment.

Nitosol (clay loam) and Plinthic Acrisol (sandy clay 
loam), while the higher slope is Pellic Vertisol (clay), Humic 
Acriso (loam) and Chromic Luvisol (clay loam) (FAO 2003).

Data used

The catchment and topographical characteristics were 
defined with a resolution of 30 m of the Global ASTER 
(ASTGTM.003) digital elevation model (DEM) (NASA 
2019). Landuse map was derived by Landsat-8 satellite by 
supervised classification of 2005 was used (Fig. 2) and it 
was obtained from United States Geological Survey (USGS) 
web portal (https://​earth​explo​rer.​usgs.​gov/). Global digital 
soil map and attribute table extracted from the FAO soil 
database (Batjes 1997; FAO 2003). Tropical Rainfall Meas-
uring Mission (TRMM-3B42) Multi-satellite precipitation 
analysis (TMPA) derived product with 0.25° resolution daily 
rainfall data and Climate prediction centre (CPC) derived 
0.50° × 0.50 daily global temperature were used. Nine grids 
have been used for the weather data extraction for both 
precipitation and temperature. Central Water Commission 
of India provided monthly streamflow information at four 
gauge stations (Table 1).

https://earthexplorer.usgs.gov/
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Fig. 1   Study area map of Bharathpuzha catchment

Fig. 2   Landuse of the study area
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Methods

SWAT model

SWAT is physical and semi-distributed based hydrological 
model (Beven 2011). The SWAT model operates daily and is 
designed for large-scale landuse application, nutrients, and 
sediment in the watershed and works based on the water 
balance equation (Arnold et al. 1998; Gassman et al. 2014). 
The SWAT model divides the entire catchment into small 
sub-basins and many hydrological response units (HRUs). 
HRU is the smallest element of the model and it contains 
landuse, soil and slope. This model uses Soil Conserva-
tion Service Curve Number (Boughton et al. 1989), Pen-
man–Monteith method (Monteith 1965) and variable storage 
routing method to evaluate runoff, evapotranspiration and 
rout the flow, respectively (Arnold et al. 1998).

Calibration and validation procedure

In general, the performance of the hydrological model is 
evaluated using observed data for both calibration and vali-
dation. Parameterization of the model is required to achieve 
the objective function satisfaction criteria. Calibration can 
usually be defined as approximations of system parameters 
to closely fit observed data and hydrological behaviour 
(Abbaspour et al. 2007). Parameters were selected based 
on streamflow driving parameters (Li et al. 2021; Goudarzi 
et  al. 2021). The developed model was processed from 
1998 to 2016 and the first 3 years were given as warm-
up time. The entire testing process was divided into two 
stages, with calibration and validation from 2001 to 2009 
and 2010–2016. An SSC and MSC method was used for 
the monthly streamflow simulation to define a Bharathpu-
zha catchment model best suited for scenario analysis. The 
calibration procedure was assessed by comparing observed 
and simulated flow data. The SSC approach was simulated 
exclusively by information from the catchment outlet station, 
i.e., Kumbidi. The strength of a model depends on the type 

of model adopted because of the number of variables to be 
measured differently (Abbaspour et al. 2007).

The corresponding model at four internal stations was 
further evaluated during the calibration and validation 
phases. Simulation of observed and simulated data has been 
done with several iterations (Abbaspour 2011). According 
to Moussa et al. (2007) and Shrestha et al. (2016), the MSC 
approach has been implemented to the central and outlet 
stations of the catchment. Firstly, the model was calibrated 
separately to obtain the parameter combination ɸ1 and ɸ2 
for the water head catchment for Pudur and Pulamanthole. 
Subsequently, the model was calibrated to retain the param-
eter combination ɸ1 fixed for Mankara. Lastly, the Kum-
bidi model was calibrated with all three parameter sets fixed 
for their corresponding sub-catchment (Fig. 3). Therefore, 
the MSC approach has benefited from reduced information 
and enhanced parameter liberty relative to SSC. As such, 
approaches are common in the hydrological modeling of 
comparative studies (Molina-Navarro et al. 2017; Franco 
et al. 2020; He and Molkenthin 2021). The parameters of 
the SWAT model vary at different spatial stages: basin, sub-
basin and HRUs.

Specifying the same catchment parameter value in 
the entire catchment may restrict the calibration method 
because sub-catchments can have distinct basin features 
(Gong et  al. 2012; Leta et  al. 2017). Simulated flow 
derived from the parameter given as input for the down-
stream gauging station rather than setting the parameter 
collection, as mentioned above. The parameter value of 
the basin acquired at the upstream gauging station was not 
subjected to additional revision during the downstream 
gauging station calibration. The identical amounts of ini-
tial parameters ranges were used at each station to initiate 
the calibration. In this research, calibration and valida-
tion of the model parameters have been performed with 
the Sequential Uncertainty Fitting (SUFI-2) through Latin 
Hypercube Sampling technique using open-source SWAT-
CUP software (Abbaspour et  al. 2004). R-factor and 
p-factor define the uncertainty of the model performance. 

Table 1   Description of data

Data References Date/scale

Landuse and landcover Landsat TM and ETM satellite imagery (https://​earth​explo​rer.​usgs.​gov/) 30 m resolution/
acquisition 
Date:03-FEB-11

Digital elevation model The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital 
Elevation Model (DEM) (https://​gdemdl.​aster.​jspac​esyst​ems.​or.​jp/)

30 m resolution

Climate data Rainfall- https://​pmm.​nasa.​gov/​data-​access/​downl​oads/​trmm
Temperature-https://​www.​esrl.​noaa.​gov/​psd/

1998–2016

Discharge (cumec) Central Water Commission of India 2001–2016
Soil data Food and Agriculture Organization (FAO) (http://​www.​fao.​org/​soils-​portal/​soil-​survey/​soil-​

maps-​and-​datab​ases/​en/)
1:50,000

https://earthexplorer.usgs.gov/
https://gdemdl.aster.jspacesystems.or.jp/
https://pmm.nasa.gov/data-access/downloads/trmm
https://www.esrl.noaa.gov/psd/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
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Whereas r-factor indicates the mean width of the 95% 
prediction band divided by the standard deviation of the 
respective information, p-factor represents the proportion 
of observed data bracketed by 95% prediction uncertainty 
(95PPU) (Abbaspour et  al. 2007). The Nash–Sutcliffe 
Efficiency (NSE) (Nash and Sutcliffe 1970); coefficient of 
determination (R2) (Draper and Smith 1966), bias percent-
age (PBIAS) (Gupta et al. 1998) and Kling-Gupta coef-
ficient (KGE) (Gupta et al. 2009) have been adopted for 
valuing the model accuracy as follows:

where X is a variable of discharge, and s and o stand for 
simulated and observed, i is the ith simulated, observed. 
The r is linear regression coefficient between simulated 
and observed data, µs and µs are mean of simulated and 
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observed data, σs, σo are stand deviation of simulated and 
observed data.

The efficiency of the model was found to be satisfactory 
when R2, NSE and KGE close to 1 (> 0.50) and PBIAS range 
between ± 25% for flow (Moriasi et al. 2007).

Results

This additional detail is presumed to improve models 
as gauge stations increase in the catchment. Calibration 
approaches are differentiated for single-site and multi-site 
to determine whether these approaches are correct.

Single‑site performance

SUFI-2 is a highly efficient sampling method and it can 
reduce uncertainty in a specific space. In this study, around 
1000 iterations for each site performance were given for 
simulation.

The Kumbidi outlet station data were calibrated and 
validated using a single-site process for the three upstream 
stations. According to the SWAT-CUP calibration manual, 
seventeen regulated streamflow parameters were chosen for 
the flow simulation. The detailed descriptions of selected 
parameters were available in the SWAT theoretical docu-
ment (Neitsch et al. 2009). The fitted and initial values 
of calibrated parameters for all the stations are shown in 
Table 2. Many differences were found among all stations 
single and multi-site calibration approaches. For example, 
soil water capacity was calibrated from 0.3 to − 0.3 relative 
changes; 2.64% increment was found during single-site cali-
bration, and 0.9%, 2.34%, 1.72% and 2.25% decrement were 
found respectively for Kumbidi, Pulamanthole, Mankara and 
Pudur. The CANMX value was calibrated from 0 to 10 mm 
H2O. It was fitted with 5.58 mmH2O during single-site that 
required maximum canopy storage and fitted calibrated 

Fig. 3   Theoretical chart of 
single-site and multi-site 
approaches for modeling the 
Bharathpuzha catchment
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values were 3.64, 2.19, 2.35 and 4.45 mmH2O respectively 
for Kumbidi, Pulamanthole, Mankara and Pudur during the 
multi-site approach. The fitted value of CANMX was less 
in singles-site than multi-site.

The CH_K2 value was calibrated from 0 to 200 mm/h 
and it was fitted with 132.39 mm/h during single-site under 
the very high loss rate of the bed material group. For multi-
site, fitted calibrated value of CH_K2 was 69.18, 7.8, 71.32 
and 65.24  mm/h, respectively for Kumbidi, Pulamant-
hole, Mankara and Pudur. The CH_K2 value of Kumbidi, 
Mankara and Pudur was under the High loss rate of bed 
material group and moderate loss rate for Pulamanthole. 
The fitted value of CH_K2 was less in singles-site than 
multi-site. The GWQMN value was calibrated from 0 to 
1500 mm and it was fitted with 553.42 mm during single-site 
required for return flow in the shallow aquifer. For multi-
site, the fitted value of 925.73 mm, 1108.5 mm, 1130.56 mm 
and 910.44 mm, respectively, for Kumbidi, Pulamanthole, 

Mankara and Pudur. Required return flow depth was very 
less compared in single-site than multi-site approach. The 
RCHRG_DP value was calibrated from 0 to 1 and it was 
fitted with 0.001 during single-site that indicating higher 
percolation to the deep aquifer. For multi-site, fitted values 
of RCHRG_DP were 0.029, 0.015, 0.048 and 0.08, respec-
tively for Kumbidi, Pulamanthole, Mankara and Pudur. The 
CH_N2 value was calibrated from 0 to 0.3 and it was fitted 
with 0.01 during single-site that indicate earth, straight and 
uniform channel characteristics. For multi-site, fitted val-
ues of CH_N2 were 0.086, 0.280, 0.023 and 0.032, respec-
tively for Kumbidi, Pulamanthole, Mankara and Pudur. The 
GW_DELAY value was calibrated from 0 to 450 days and 
it was found 248.57 days during single-site that indicate 
delay to reach shallow aquifer range through the vadose 
zone. For multi-site, the fitted value of GW_DELAY were 
209.23, 6.75, 250.39 and 331.23 days, respectively, for Kum-
bidi, Pulamanthole, Mankara and Pudur and it indicates 

Table 2   Description of Calibrated SWAT parameters value of single-site and multi-site

A_ means adds the giving values to existing value; R_ means the present parameter value is multiplied by (1 + a given value) and V_ means the 
parameter is exchanged by a given value

S.N Parameter name Initial range Single site Kumbidi Pulamanthole Mankara Pudur

1 Available water capacity of soil,
R__SOL_AWC.sol

(− 0.3, 0.3) 0.264 − 0.091 − 0.234 − 0.172 − 0.225

2 Maximum storage of the canopy,
V__CANMX.hru

(0, 10) 5.58 3.643 2.19 2.352 4.452

3 Main channel effective hydraulic conductivity,
V__CH_K2.rte

(0, 200) 132.392 69.189 7.8 71.32 65.244

4 For return flow, threshold water depth in the shallow aquifer, 
V__GWQMN.gw

(0, 1500) 553.42 925.73 1108.5 1130.56 910.44

5 Coefficient of deep aquifer percolation,
A__RCHRG_DP.gw

(0, 1) 0.001 0.0229 0.015 0.048 0.08

6 Main channel manning’s n value,
V__CH_N2.rte

(0, 0.3) 0.01 0.086 0.2805 0.023 0.032

7 Delay time of ground water, V__GW_DELAY.gw (0, 450) 248.57 209.23 6.75 250.39 331.23
8 Mositure condition II Curve number, R__CN2.mgt (− 0.2, 0.2) − 0.169 − 0.115 − 0.0164 − 0.177 − 0.098
9 Lag time of Surface runoff,

R__SURLAG.bsn
(− 0.5, 0.5) 0.041 0.012 0.015 − 0.021 0.014

10 Soil moist bulk density,
R__SOL_BD.sol

(− 0.3, 0.3) 0.11 0.037 0.215 − 0.105 − 0.07

11 For revap to occur, threshold depth of water in the shallow aquifer
V_REVAPMN.gw

(0, 500) 343.33 264.7 16.5 410.17 288.8

12 Soil surface to bottom of soil layers depth,
R__SOL_Z.sol

(− 0.3, 0.3) 0.22 0.002 − 0.0775 − 0.101 − 0.031

15 Alpha factor of baseflow, V__ALPHA_BF.gw (0, 1) 0.085 0.088 0.267 0.00042 0.0001
14 Compensation factor of plant water uptake,

V__EPCO.hru
(0, 1) 0.599 0.711 0.613 0.722 0.91

15 Compensation factor of Soil evaporation,
V__ESCO.hru

(0, 1) 0.294 0.261 0.699 0.0277 0.025

16 ‘Revap’ coefficient of groundwater,
V__GW_REVAP.gw

(0.02, 0.2) 0.202 0.094 0.08426 0.031 0.06

17 Saturated hydraulic conductivity of soil,
R__SOL_K.sol

(− 0.3, 0.3) 0.118 0.004 − 0.115 0.07 − 0.053
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groundwater delay was very good for Mankara. The Curve 
Number (CN) was calibrated from − 20 to 20% relative 
value and it was fitted at − 16% relative value during single-
site that indicate low flow and discharge will decrease. For 
multi-site, fitted values of CN were at − 11.5%, − 1.64%, 
− 17.7% and − 9.8% relative value, respectively for Kum-
bidi, Pulamanthole, Mankara and Pudur. Both single-site 
and multi-site showed decreasing flow. The SURLAG was 
calibrated from − 20 to 20% relative value and it was fitted 
at 4.19% relative value during single-site, indicating surface 
runoff lag time was more to reach the mainstream. For multi-
site, fitted values of CN2 were at 1.25%, 1.55%, − 2.1% and 
1.44% relative value, respectively for Kumbidi, Pulamant-
hole, Mankara and Pudur. These values indicate that the lag 
time of surface runoff at Mankara was less than other and 
decreased value of SURLAG more water is held in storage. 
The SOL_BD was calibrated from − 30 to 30% relative value 
and it was fitted at 11% relative value during single-site that 
indicate the increased value of soil moist bulk density. For 
multi-site, fitted values of SOL_BD were at 3.7%, 21.5%, 
− 10.5% and − 7%, respectively for Kumbidi, Pulamanthole, 
Mankara and Pudur and here negative value indicate the 
decreased value of soil moist bulk density. The REVAPMN 
was calibrated from 0 to 500 mm and it was found fitted at 
343.33 mm during single-site, indicating a high threshold 
depth of water in the shallow aquifer to percolate to the deep 
aquifer. For multi-site, fitted values of REVAPMN were at 
264.7 mm, 16.5 mm, 410.17 mm and 288.8 mm, respec-
tively, for Kumbidi, Pulamanthole, Mankara and Pudur and 
here the lower value of indicating a high rate of percola-
tion of water to the deep aquifer. The SOL_Z was calibrated 
from -30% to 30% relative value and it was found fitted at 
22% relative value during a single-site approach that indi-
cated the increased depth of soil surface to the bottom of 
the layer. For multi-site, fitted values of REVAPMN were 
at 0.2%, − 7.7%, − 10.1% and -3.1% mm, respectively, for 
Kumbidi, Pulamanthole, Mankara and Pudur here negative 
relative value indicates the decreased value of depth of soil 
surface. The ALPHA_BF value was calibrated from 0 to 
1 day and it was found fitted at 0.085 days during a single-
site approach that indicates very less baseflow alpha factor. 
For multi-site, fitted values of ALPHA_BF were at 0.088, 
0.267, 0.0004, 0.0001 days respectively for Kumbidi, Pula-
manthole, Mankara and Pudur, and these results indicate 
slow response to recharge. The EPCO value was calibrated 
from 0 to 1. It was found to be fitted at 0.59 during the 
single-site approach, indicating that the model allows a mod-
erate amount of water uptake demand to be met by a lower 
layer in the soil. For multi-site, fitted values of EPCO were 
at 0.71, 0.61, 0.72 and 0.91 respectively for Kumbidi, Pula-
manthole, Mankara and Pudur, and here model allows more 
amount of water uptake demand to be met by lower layer 
in the soil. The ESCO value was calibrated from 0 to 1. It 

was fitted at 0.294 during the single-site approach, indicat-
ing the model can extract a moderate amount of evaporative 
demand from lower levels. For multi-site, the fitted value 
of ESCO was at 0.26, 0.69, 0.027 and 0.025, respectively 
for Kumbidi, Pulamanthole, Mankara and Pudur. Results 
indicate that the evaporative demand from lower layers 
is highest at Pulamanthole station, whereas it is lowest at 
Mankara and Pudur stations. The GW_REVAP value was 
varied from 0.02 to 0.2 mm. It was calibrated at 0.20 during 
single-site, indicating a moderate restriction of water move-
ment from the shallow aquifer to the root zone. For multi-
site, fitted values of GW_REVAP were at 0.094, 0.084, 0.03 
and 0.06 respectively for Kumbidi, Pulamanthole, Mankara 
and Pudur. These results indicate a very high restriction of 
water movement from the shallow aquifer to the root zone. 
The SOL_K value was calibrated from − 30 to 30% relative 
value and it was fitted at 11.8% during single-site approach 
that indicates the increased value of saturated hydraulic con-
ductivity of soil (ease movement of water through soil). For 
multi-site, fitted values of SOL_K were at 4%, − 11.5%, 
7% and − 5.3%, respectively for Kumbidi, Pulamanthole, 
Mankara and Pudur and here negative results indicate 
decreased saturated hydraulic conductivity. These values 
were evaluated separately for both approaches, essential for 
watershed management.

Table 3 provides the performance statistics for this model 
during the calibration and validation period for monthly 
streamflow. NSE values were expanded from 0.53 to 0.78 
and 0.54–0.81 from the catchment outlet and downstream 
flow stations, well beyond the adequate requirement dur-
ing both periods of simulation, respectively (Moriasi et al. 
2007).

The performance of the validation period and simulated 
graph are shown in Fig. 4a–d. The performance statistics of 
calibration are shown in Table 3.

Multi‑site performance

Calibrated parameters of each station have been displayed 
in Table 2, which shows each parameter's ranges and fit-
ted values. For MSC, all interior and outlet were taken into 
account and its efficiency statistics are shown in Table 3. 
The streamflow effects were slightly reduced throughout 
the simulation phase, with R2 and NSE values increasing 
from 0.52 to 0.76 and 0.53–0.83, respectively. Except for 
Mankara, streamflow modelling proved adequate for both 
approaches. However, the model showed overestimation 
and underestimating for most of the sub-catchments over 
the flow time series (Fig. 4e–h). R2, PBIAS and KGE were 
also well above the value of 0.50 for good performance. The 
comparison of NSE in Fig. 4 and Table 3 shows that the 
validation phase was performed better in both approaches. 
Pudur station suggests that the same amount of rainfall did 
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not result in the same level of streamflow as in 2007 and 
it was a La Niña year (Fig. 5a and b). Overall, multi-site 
calibrated parameters for each station will help the proper 
understanding of catchment spatial behaviour. Out of sev-
enteen parameters, SOL_AWC, CANMAX, GW_DELAY, 
CN2, SURLAG, SOL_BD, ALPHA_BF, SOL_Z, SOL_K 
and EPCO were the dominant parameters due to significant 
differences of fitted parameters ranges in SSC and MSC. The 
fundamental explanation for the difference was the sensitiv-
ity of the catchment’s characteristics.

Model uncertainty analysis

Total uncertainty was measured using the SUFI-2 algo-
rithm by calculating p-factor and r-factor statistics. For 
each station, these values were calculated using the final 
measured set of calibrated parameters for the SSC and 
MSC approaches during the validation period, as shown in 
Table 4. A p-factor should be near to one and r-factor < 1.5 
(Abbaspour et al. 2015). A p-factor should be close to 1, 
which indicates all observations are incorporated in pre-
diction uncertainty. An r-factor should be less than 1.5 for 
desirable performance (Abbaspour et al. 2007).

The p-factor values during the single-site (for validation 
period) approach were 0.62, 0.68, 0.72 and 0.90, and r-factor 
was 1.40, 0.57, 1.2 and 1.32 for Kumbidi, Pulamanthole, 
Mankara and Pudur station, respectively. The Pudur sta-
tion performed better than other stations during the single-
site approach with able to account for 90% of the observed 
streamflow narrow uncertainty band and The Kumbidi sta-
tion had higher uncertainty with a larger r-factor (1.40).

The p-factor values during multi-site approach were 
0.48, 0.61, 0.34 and 0.45 and r-factor were 0.65, 0.87, 0.76 
and 0.72 for Kumbidi, Pulamanthole, Mankara and Pudur 
station, respectively. The Mankara had broader coverage, 
accounting for 34% of observed streamflow in a larger uncer-
tainty band. The large r-factor (0.87) indicates the higher 
uncertainty for the station of Pulamanthole. Overall, the 
p-factors were higher as per the satisfying criteria in the 
single-site approach than the multi-site approach as per the 
guideline (Abbaspour et al. 2007). The p-factor was greater 
than 0.70 in Mankara and Pudur, indicating the acceptable 
range for better simulation during validation phases. The 
lower uncertainty was able to observe during MSC.

Performance criteria for all parameters are shown in 
Table 5. The p-factor values during single-site (for calibra-
tion) approach were 0.68, 0.72, 0.67 and 0.56 and r-factor 
were 0.77, 1.14, 0.72 and 0.68 for Kumbidi, Pulamanthole, 
Mankara and Pudur station, respectively. The p-factor val-
ues during multi-site (calibration) approach were 0.55, 0.64, 
0.54 and 0.49 and r-factor were 0.67, 1.07, 0.65 and 0.64 
for Kumbidi, Pulamanthole, Mankara and Pudur station, 
respectively. The r-factor of SSC and MSC varied 0.68–1.14 
and 0.64–1.07, respectively. Higher uncertainty was also 
observed during the validation phase of SSC. The r-factor 
was also represented as a box plot in Fig. 6. The larger r-fac-
tors were observed during SSC than MSC.

Except for Pulamanthole, all stations in the SSC had 
minimal uncertainty in the validation period compared to 
calibration. It indicates no depreciation from the calibra-
tion to the validation period. Except for Pulamanthole, 
all stations were under considerable r-factor uncertainty 

Table 3   Summary of both SSC 
and MSC

Gauge station Area(sqkm) Performance 
criteria

Calibration approach Validation approach

Single-site Multi-site Single-site Multi-site

Kumbidi 2138.36 R2 0.75 0.68 0.72 0.65
NSE 0.54 0.53 0.60 0.62
PBAIS − 28.4 − 21.2 − 21.6 17.4
KGE 0.60 0.64 0.58 0.61

Pulamanthole 913.15 R2 0.78 0.76 0.81 0.83
NSE 0.77 0.65 0.81 0.68
PBAIS 17.9 24.4 17.9 − 22.3
KGE 0.70 0.72 0.72 0.73

Mankara 1502.22 R2 0.53 0.52 0.58 0.56
NSE 0.54 0.53 0.58 0.54
PBAIS 5.5 − 22.6 5.5 − 21.6
KGE 0.65 0.68 0.67 0.70

Pudur 1235.74 R2 0.53 0.52 0.54 0.57
NSE 0.53 0.52 0.55 0.56
PBAIS − 19.9 − 13.96 9.9 − 18.9
KGE 0.58 0.62 0.60 0.64
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Fig. 4   Assessment of monthly streamflow simulation of calibration period (2001–2009) and validation period (2010–2016) for both single-site 
(a–d) and multi-site approach (e–h)

Fig. 5   Rainfall and streamflow for Pudur. a SSC approach. b MSC approach
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during the MSC (Abbaspour et al. 2007). In modeling, 
the r-factor results were significant to satisfactory. With 
a decreased PBIAS value and an excellent r-factor range, 
the uncertainty of the Pudur station was reduced in MSC 
(Fig. 7).

Discussions

The developed model simulated monthly streamflow data 
at each streamflow gauge station with SSC and MSC. R2, 
PBIAS and KGE were also well above the 0.50 for good 
performance during simulation, but it had uncertainty (Mori-
asi et al. 2007). Although the criteria for adequate model 
results were satisfied, most peak flows were underestimated, 
whereas the low flow was marginally overestimated for all 
stations except the outlet. The statistical values of the SSC 
approach showed better results than the MSC approach. The 
variations in parameters between SSC and MSC suggest 
that SSC belongs to a single outlet calibrated parameter set, 
whereas MSC belongs to spatially varying station calibrated 
parameters. Calibrated parameters of MSC were more essen-
tial due to spatial variability.

The peak flow and low flow were discussed based on 
the fitting curve of the hydrograph. The peak flow was per-
formed better in both SSC and MSC approaches except for 
low flow in Kumbidi. Both peak and low flow were per-
formed better in both SSC and MSC in Pulamanthole. In 

Table 4   Uncertainty analysis for both approaches for validation 
period

Gauge Station Approach Performance criteria

p-factor r-factor

Kumbidi Single-site 0.62 1.4
Multi-site 0.48 0.65

Pulamanthole Single-site 0.68 0.57
Multi-site 0.61 0.87

Mankara Single-site 0.72 1.2
Multi-site 0.34 0.76

Pudur Single-site 0.9 1.32
Multi-site 0.45 0.72

Table 5   Performance criteria 
for all parameter

Gauge Station Performance criteria

Calibration Validation

Single-site Multi-site Single-site Multi-site

p-factor r-factor p-factor r-factor p-factor r-factor p-factor r-factor

Kumbidi 0.68 0.77 0.55 0.67 0.62 1.4 0.48 0.65
Pulamanthole 0.72 1.14 0.64 1.07 0.68 0.57 0.61 0.87
Mankara 0.67 0.72 0.54 0.65 0.72 1.2 0.34 0.76
Pudur 0.56 0.68 0.49 0.64 0.90 1.32 0.45 0.72

Fig. 6   Box plot of r-factor of 
SSC and MSC (calibration and 
validation combined) for all 
stations
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Mankara, peak flow was performed better in calibration 
except for validation in SSC and both the peak flow and 
low flow were not performing better in both SSC and MSC. 
Pudur was also following the same model performance 
behaviour as Mankara. According to Abbaspour et  al. 
(2007), peak flow match is a good indicator of the better 
simulation of the model.

Sahu et al. (2016) used the SUFI-2 algorithm with NSE 
as the objective function to simulate the streamflow using 
the multi-site data in the Mahi river basin of India. They 
reported the p-factor and r-factor ranging from 0.13 to 0.42 
and 0.17–0.44, respectively. The author suggested that the 
small value of p-factor and r-factor despite R2 and NSE were 
due to situated dams on the upstream side.

In our study, single-site and multi-site accounted for 
62–90% in narrow uncertainty band and 34–61% in larger 
uncertainty band observed streamflow, respectively. Except 
for Pulamanthole, all stations indicated larger uncertainty 
with r-factor > 1.0 during the validation phase of SSC than 

MSC. Pulamanthole station showed larger uncertainty with 
higher r-factor during calibration of both SSC and MSC. 
However, the largest uncertainty with SSC. Lower uncer-
tainty stations cover larger drainage areas. As per Sahu et al. 
(2016), larger coverage drainage has higher uncertainty 
during simulation. In addition, such variation could be due 
to temporal and spatial variability of rainfall (Islam et al. 
2012).

Overall, the catchment showed that the streamflow simu-
lation of SSC performance was similar to MSC. According 
to Shrestha et al. (2016), MSC provides a better catchment 
management response. However, the predicting uncertainty 
of MSC was lower (lower r-factor). When a model is cali-
brated simply at the basin outflow, it overestimates its per-
formance compared to calibrated at the sub-basin scale and 
reduces heterogeneity (Daggupati et al. 2015). According to 
statistical performance results, SSC was performed better 
than MSC. Franco et al. (2020) also observed that single-site 
calibration is executed better than multi-site, but multi-site 

Fig. 7   Observed, Simulated and 
95 PPU for validation period at 
Kumbidi
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had lower uncertainty in the Iguazu River catchment. How-
ever, its statistical results of SSC were slightly lower perfor-
mance than MSC and with the lower performance of MSC; 
it could be the better response for the catchment. The uncer-
tainty for all sub-basins was more reliable by multi-site cali-
bration than with single-site calibration and MSC reduced 
the uncertainty of the developed model. This reduction in 
performance is thought to be caused by a disruption in the 
rainfall-runoff interaction.

The MSC was particularly beneficial for parameter trans-
ferability over time (i.e. regular time stage simulation with 
monthly-calibrated parameters). The MSC assuredly affects 
the upstream sub-basins performance, revealing poor per-
formance and higher uncertainty. Comparatively, the MSC 
approach has narrow uncertainty for flow simulation as 
indicated by lower r-factor and higher p-factor. MSC model 
parameters could be a better option for spatial hydrological 
study application with less uncertainty and implemented the 
approach in the catchment should be considered for inte-
grated watershed management. These findings significantly 
influence the calibration and validation of large-area water-
shed models.

Conclusion

Because of the increased availability of geographical data 
and the complexity of hydrological models, spatial data 
to calibrate and validate hydrological models is becoming 
increasingly important. For the Bharathpuzha watershed, 
this study was evaluated using single-site and multi-site 
calibration approaches, and it was built up for the four gaug-
ing stations using monthly streamflow data. Model results 
showed that both single-site and multi-site performed well. 
However, the uncertainty of the model is lower on multi-
site with less PBIAS than single-site. Kumbidi and Pudur 
show overestimation during calibration and validation and 
Pulamanthole show underestimation. However, Mankara 
shifts overestimation. Parameter estimated by optimizing 
the model parameters at four different stations produces a 
better result in SSC than MSC (i.e. R2, NSE and KGE are 
well above).

However, the calibration phase was performed better. 
Similar study results were reflected on Iguaçu River Basin 
(Franco et al. 2020). Therefore, these calibrated parameters, 
calibration and validation approaches can play a better role 
in watershed management. The SWAT model proved suit-
able for simulating streamflow using both SSC and MSC. 
However, the multi-site performance does not reflect the 
performance statistics and lower uncertainty could be a bet-
ter sign for spatial application of calibrated parameters for 
future study. MSC approach had narrow uncertainty for flow 
simulation and MSC simulated parameter can be used to 

minimize the spatial variability in the future. Model perfor-
mance could be considered in future using landuse change 
scenarios for spatial application. Other streamflow driving 
characteristics and the high precision of the soil and mete-
orological databases might help overcome the study's limita-
tions. This study demonstrates the significance of spatially 
dispersed hydrological measurements. It is the essence of 
any progress in interpreting, modeling and planning hydro-
logical procedures.
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