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Abstract
In places with complex topography, the reproduction of atmospheric dynamics is challenging and resource demanding. 
Recently, machine learning has been successfully implemented to forecast pollution and weather variables. LSTM (long 
short-term memory) networks have the potential to improve the forecasting precision on different theoretical fields. Despite 
this advantage, they have not been widely used in the tropics for this purpose. This research aims to implement a LSTM 
to forecast  PM2.5 and meteorological variables in a tropical mountainous city. The model was trained with 7 years of data 
from the local air quality monitoring network. The implemented model forecasts 42 days, evaluated using statistical scores 
and benchmarks. More than 95% of  PM2.5 values, radiation (99%), air temperature (98%), relative humidity (95%), wind 
speed (94%), and the u-component (91%) have excellent or good benchmarks. The v-component and the wind direction got 
the lowest percentage of excellent or good values (50%). We compared our results with other models that have focused on 
forecasting these variables in similar places and observed that the LSTM approach results are the best, especially for  PM2.5 
and wind direction. We found its accuracy can be affected by rapid changes in the tendency of the data that do not occur as 
a consequence of the diurnal tide. The LSTM model was validated as a tool to predict meteorological variables and  PM2.5 
(24 h in advance) in a tropical mountainous city and can be used as a reliable input in air quality early alert systems.

Keywords Weather · Air quality alert system · PM2.5 · LSTM · Complex terrain

Introduction

Air quality and meteorology are important for risk assess-
ment. A decrease in air quality indexes is related to eco-
nomic, industrial, and population growth in large cities such 
as Bogotá (e.g., Rojas 2004; Sokhi et al. 2021). Among the 
criteria pollutants, the 2.5-µm particulate matter  (PM2.5) has 
a high impact on public health, as it has been deemed as 
especially harmful to human health and has a great pres-
ence and persistence in cities (Gehling and Dellinger 2013; 
Ostro and Chestnut 1998). Likewise, the behavior of mete-
orological variables can produce landslides, floods and 
infrastructure damages, decrease energy production and 
even affect food security (UNDRR 2005), which may lead 
to high government costs related to hospitals, roads, energy 
and infrastructure.

To minimize the risk and economic impact generated 
by meteorological variables and pollution, researchers and 
countries have mainly used and evaluated air quality mod-
els (AQM) (e.g., Weather Research and Forecasting model 
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coupled with Chemistry—WRF CHEM, Copernicus Atmos-
phere Monitoring Service—CAMS) and machine learning 
models (e.g., support vector machine—SVM; artificial neu-
ral network—ANN; long short-term memory—LSTM). The 
first kind of model applies atmospheric principles (physical 
and chemical) to forecast air quality and meteorological vari-
ables. However, these systems are computationally expen-
sive, and for low latitudes they tend to have uncertainties 
associated with the data availability, the high importance 
of local land and topography properties which could largely 
change the dynamic and thermodynamic characteristics 
of an area (e.g., Holton 2004; Adams et al. 2013; Freitag 
et al. 2018). For example, in an equatorial city like Bogotá, 
Colombia, convection principally depends on local moist 
thermodynamics (Casallas et al. 2021), which the coarse 
resolution of the global circulation models ( ≈ 10 km) cannot 
fully resolve. The second kind of model is an alternative to 
deterministic and statistical methods of prediction and uses 
different techniques to represent the complex behavior of air 
pollutants or atmospheric variables. In the field of machine 
learning, a new approach has delivered good results: the 
LSTM, a specific recurrent neural network (RNN) architec-
ture designed to simulate temporal sequences and their long-
range dependencies (Hochreiter and Schmidhuber 1997a, b). 
This approach has been evaluated by various authors (e.g., 
Feng et al. 2019; Qing and Niu 2018; Baker and Foley 2011) 
to simulate atmospheric variables and  PM2.5, proving capa-
ble of producing good statistical parameter results.

AQM like the WRF-Chem has been widely implemented 
around the world. Some studies (e.g., Tuccella et al. 2012; 
Vera-Vela et al. 2016) have evaluated this model, finding 
it capable of forecasting weather variables and pollutant 
concentrations on an hourly basis. Additionally, the model 
may determine some of the most important properties of 
fine particles in the area (i.e., such as mass size distribution 
and chemical composition). Different studies have validated 
physical models using statistical parameters that evaluate 
the atmosphere and pollutant dynamics in Colombia (e.g., 
Kumar et al. 2016; González et al. 2018; Barten et al. 2019; 
Casallas et al. 2020; Guevara-Luna et al. 2020). Neverthe-
less, physical models are computationally expensive com-
pared to empirical models. For this reason, machine learning 
tools with high precision have been implemented and are 
currently an interesting approach to simulate and forecast 
air atmospheric variables (e.g., Zhou et al. 2019; Mogollón-
Sotelo et al. 2020).

It is important to highlight that machine learning has 
achieved remarkable results when simulating complex prob-
lems with multiple elements, as in the case of atmospheric 
modeling. The main available machine learning models are 
SVMs, ANNs, and LSTMs. SVMs, for instance, have been 
used (e.g., Steinwart and Christmann 2008; Westerlund et al. 
2014; Martinez et al. 2018; Murillo-Escobar et al. 2019; 

Mogollón-Sotelo et al. 2020) to simulate meteorological 
variables and  PM2.5 concentrations and, after comparing 
the simulations with observations, they have been acknowl-
edged as very precise when simulating atmospheric vari-
ables in complex terrains and in places without mountain 
ranges. However, SVMs have some limitations such as error 
accumulation and forecasting errors when data have sudden 
changes in their tendency (Mogollón-Sotelo et al. 2020). 
ANNs, on the other hand, are a computer model capable of 
learning the distribution of the data from its sample. Some 
studies used ANNs to simulate the behavior of particulate 
matter  (PM10 and  PM2.5), wind, temperature and precipita-
tion (e.g., Erdil and Arcaklıoğlu 2013; Pérez and Gramsch 
2016; Wang and Sun 2019; Zhao et al. 2019) and concluded 
that this approach has a good performance when simulating 
meteorological variables. Franceschi et al. (2018), for exam-
ple, used an ANN to simulate particulate matter in Bogotá-
Colombia and trained the network with meteorological vari-
ables, to forecast them. LSTM networks, in turn, are a type 
of ANN capable of saving information in batches, which 
improves their precision (i.e., they require more computa-
tional power than a normal neural network, but deliver bet-
ter results). LSTMs have been used to predict meteorologi-
cal variables such as solar irradiance, temperature, relative 
humidity, wind speed and precipitation with high accuracy 
(e.g., Maqsood et al. 2014; Qing and Niu 2018; Karevan and 
Suykens 2020). Other studies (e.g., Tong et al. 2019) have 
used this type of network to forecast  PM2.5, reporting its 
capability of predicting pollutant concentration trends pre-
cisely. Thus, this type of network has been proven to work 
accurately when predicting atmospheric variables and pol-
lutants, having the potential to be applied in tropical cities 
with high altitude and complex terrain (an extremely com-
plex system).

Despite the proven success of LSTMs when predicting 
PM concentration and meteorological variables, they have 
not been widely used in tropical areas with complex topog-
raphy. This research aims to implement an LSTM network to 
forecast  PM2.5 concentrations and meteorological variables 
(temperature, radiation, humidity, wind speed), with an addi-
tional new approach to simulate wind fields (i.e., using u and 
ν components), in a tropical city with a complex topography 
(Bogotá-Colombia), using data inputs from the Air Quality 
Monitoring Network of Bogotá (AQMNB).

Method

Study area and case study

Bogotá, Colombia (4.60971, − 74.08175 WGS84) is a large 
city with a population of approximately 8 million inhabit-
ants. The city has an area of almost 1800  km2, distributed 
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into 25% of urban and 75% of rural areas. The city has a 
complex topography, due to its location in the eastern slope 
of the Andes Mountain range at 2550–2620 m.a.s.l.

The study area has an AQMNB that comprises 12 sta-
tions along the urban area of the city, separated by localities 
(Fig. 1) (SDA 2013). This network measures criteria pollut-
ants and meteorological variables such as solar radiation, 
temperature, precipitation, relative humidity, wind speed, 
and wind direction. We use 12 air quality stations with at 
least 75% of available data for every variable mentioned 
above, in the period between 2014 and 2019. The major-
ity (11/12) of the stations have more than 88% of the data 
available, and the S7 station has 76% due to sensor mainte-
nance. Thus, the region and its air quality network are suit-
able for the analysis of the performance of LSTMs regarding 
meteorological variables and  PM2.5 behavior in a tropical 
city with complex terrain, and its subsequent impacts on 
risk assessment. For this reason, the LSTM model was used 
in Bogotá during the days with an unhealthy qualification 
according to the International Air Quality Index (AQI) in 
2019 (17 days in total) [the index defined the level of popu-
lation risk as detailed by EPA (2014)]. 65% of these days 
occurred in the local dry season, while 35% occurred in the 
local wet season. To have more robust results, we simulated 
25 random days, so that the model forecasting capabilities 

can be assessed regarding days with low, mid and high pol-
lution levels, even though these findings are not shown here, 
since they have a very similar behavior to the 17 highly pol-
luted days.

Model description

ANNs are a set of algorithms inspired by the process of 
human learning, which recognize numerical patterns con-
tained in vectors that can be translated into images, sound, 
text or time series (Bengio et al. 1994; Grivas and Chalou-
lakou 2006). ANNs can adapt to changes in the input data 
since they are generated through prior training based on 
cause–effect data sets. Thereafter, the model can be used to 
generate predictions of variables linked to dynamic systems. 
This feature gives it a valuable forecasting capability, use-
ful for atmospheric dynamics research and air quality study.

An ANN contains layers of interconnected nodes. Each 
node is a perceptron that works similarly to multiple lin-
ear regression. The perceptron reads the input values; it 
then adds them according to settled weights and inserts the 
result into a trigger function that generates the final result. 
In a multilayer ANN, the perceptions are arranged in a set 
of interconnected layers: internal layers and external lay-
ers (input and output layers). The internal layers perform 

Fig. 1  Geographic location of the 12 surface monitoring stations used in the city of Bogotá-Colombia. The red circle signals the location of the 
city within the country
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non-linear transformations of the inputs, adjusting the 
weighting factors for the data until the margin of error is 
reduced to its minimum. This type of model assumes that 
the internal layers extrapolate the main characteristics of 
the input data, providing them with significant predictive 
potential.

LSTMs are one of the most commonly used RNNs. This 
type of network can learn long-term dependencies using 
three gates to add, remove, and update the hidden state 
(memory). Every gate has three elements, a neuron, a sig-
moid function, and a multiplier element; these tools decide 
the weights and activation in the network (Hochreiter and 
Schmidhuber 1997a, b).

One important tool in the LSTM is the forget gate layer, 
used to decide the information that will be discarded and 
not taken to the state cell, Eq. (1), where ht−1 is the previ-
ous hidden state, xt is the current input, t is the index for the 
timestep, Wf  and Uf  contain, respectively, the weights of the 
input and recurrent connections, Wf  , Uf  , and bf  are the coef-
ficients learned during training, � is the sigmoid activation 
function and ft is the output vector. If any of the values in the 
output vector ( ft ) is zero, or close to zero, the information 
will be discarded. In contrast, if it reaches values equal or 
close to one, the information is saved and reaches the state 
cell (Staudemeyer and Morris 2019).

The input gate allows the cell memory to update. To 
achieve this, a sigmoid layer chooses the values that will 
be preserved through Eq. (2), where ht−1 , xt , Wi , Ui , bi , � 
are the same for Eq. (1) and ut is the output vector. Values 
close to one will be preserved and those close to zero will be 
updated. Then, a layer with a tanh activation creates a vector 
of new candidate values as in Eq. (3), where Wc and bc are 
learned coefficients during the training stage, tanh is an acti-
vation function and vt are the candidate values. Thereafter, 
the vector with the updated values is created with Eq. (4), 
where ft is the output vector of the forget gate, Ct−1 is the 
state value of the last cell, ut is the vector of values to be 
conserved, vt are the candidate values and Ct is the vector 
of the updated cell values (Staudemeyer and Morris 2019; 
Zhao et al. 2019):

The output gate decides which values are generated as 
filtered outputs from the hidden layers. To achieve this, a 
sigmoid layer decides which parts of the cell state have to 

(1)ft = �

(

Wf × ht−1 + Uf × xt + bf
)

.

(2)ut = �

(

Wi × ht−1 + Ui × xt + bi
)

,

(3)vt = tanh
(

Wc × ht−1 + Uc × xt + bc
)

,

(4)Ct = ft × Ct−1 + ut × vt.

be generated through Eq. (5) where ot is the vector with 
the filtered values, � is the sigmoidal function, ht−1 is the 
last hidden state, xt is the current input, and W0 , U0 , and 
b0 are learned coefficients during the training stage. Then, 
a layer with a tanh function is used to weigh the output 
values, deciding their level of importance (i.e., varying 
from − 1 to 1). Thereafter, this must be multiplied by the 
sigmoid output as shown in Eq. (6), where ht is the new 
hidden value, Ct is the vector with the updated cell values 
and ot is the vector with filtered values (Staudemeyer and 
Morris 2019):

This model aims to forecast  PM2.5 concentrations and 
meteorological variables, with an hourly time resolution and 
24 h in advance. Figure 2 shows the flow of information for 
the training and prediction stages in the model developed 
for this research.

Figure 2 summarizes the process of development and use. 
The first step consists in the surface data retrieval and these 
data were downloaded for the time period between January 
2014 and December 2019 from the AQMNB: hourly data 
 PM2.5 (µg  m−3), relative humidity (%), temperature (°C), 
radiation (W  m−2), wind speed (m  s−1), and wind direction 
(°). Within these data, it is possible to find missing values, 
which were imputed using the hourly mean of the data, e.g., 
a 13 h nan value of station S1 (any day) is replaced by the 
13 h mean value of S1 station for the period of 2014–2019 
similar to that by Mogollon-Sotelo et al. (2020). The input 
data normalization uses a technique often applied to prepare 
data for automatic learning. It aims to change the values of 
the numeric columns in the data set for its use at a common 
scale, improving the models’ numerical stability and reduc-
ing computational time (Önskog et al. 2011). Once with the 
normalized data, we arrange the training sets since the input 
training X-vector contains 48 values (observations), neces-
sary for the prediction. The output training Y-vector contains 
24 elements (forecast) [to simulate the direction, the wind 
is divided into components (u and v)]. The model evalua-
tion aims to assess the results obtained by the ANN, and its 
precision when it reproduces the variables trends are evalu-
ated with a loss indicator. Finally, for the Neural Network 
Model definition we used the Keras library. This tool uses 
the Sequential class as its main structure, which allows for 
the use of simple layers. Each layer has exactly one input 
tensor and one output tensor. In this step, the input number 
and output nodes, layer types, number of layers, number of 
neurons, training epochs, activation function, loss function, 
and batch size are defined. This evaluated model is then 
ready to be used for forecasting (Fig. 2).

(5)ot = �

(

Wo × ht−1 + Uc × xt + b0
)

,

(6)ht = ot × tanh
(

Ct

)

.
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The forecasting stage begins with an episode selection, 
in which the time period of prediction is fixed for the model 
to make the prediction based on the trained ANN. A time 
lapse is created to predict concentrations 48 h before the 
episode. Then, the trained neural network is charged and pre-
dictions are generated. Finally, the quality of the predictions 
is evaluated with statistical indicators (the wind components 
(u and v) are predicted, evaluated, and then converted into 
direction).

Setup

The model comprises an input layer (X-vector), defined by 
the number of observations necessary to make a prediction 
(48 h), three hidden layers (2 LSTM and 1 Dense), and an 
output layer (Y-vector), which has a vector of 24 elements 
(forecast). To find the best activation function, number of 
neurons and optimizer, we first based the model on Huang 
and Kuo (2018). Then the grid search technique (Ndiaye 
et al. 2019) is performed using 216 possible combinations, 
in which changes in the batch size (e.g., 6, 12, 24, 32), the 
number of neurons, network structure, activation func-
tions (e.g., relu, tanh, sigmoid) and optimizers (e.g., Adam, 
RMSprop, Adadelta) are performed. The best combination 
of hyperparameters found is presented in Table 1 and it is 
fairly similar to the one found by Huang and Kuo (2018) for 
their LSTM network. For the training task, to avoid overfit-
ting, we used a dropout function after the first LSTM layer 
and an early stopping method (e.g., Prechelt, 1998). The 
dropout function randomly deactivated 20% (i.e., previously 
defined in the grid search step) of the neurons.

The training process for the 12 stations took 23 h using 
hardware consisting of 16 GB of RAM and one 8-core pro-
cessor. The environment was configured on the operating 
system Linux Ubuntu V 18.04. Programming language 
Python 3.6 with the packages Tensorflow V 1.13.1 and Keras 
V 2.3.1 was used.

Model evaluation

The quantitative evaluation of the model was based on three 
statistical parameters: index of agreement (IOA), root mean 
square error (RMSE), and the correlation coefficient (r). The 
classification criterion for each parameter (Table 2) has been 
established by US EPA (2000), Emery et al. (2001), Boylan 
and Russell (2006), and Guevara-Luna et al. (2020). How-
ever, in this study, the criterion was modified to improve its 
rigorousness. The mean gross error (MGE) and the mean 
absolute bias (MAB) were used to evaluate the wind direc-
tion, as recommended by McNally (2009). Notice that the 

Fig. 2  Flow of information in 
the model developed based on 
the LSTM

Table 1  Hyperparameters used to set up the long short-term memory 
(LSTM) artificial neural network (ANN) implemented to forecast 
 PM2.5, radiation, temperature, relative humidity, wind speed, and 
wind direction

a Parameter for each of the used layers (LSTM–LSTM–dense–dense)

Parameter Value

Epochs 150
Batch size 12 values
Activation function tanh, tanh, linear,  lineara

Neurons per layer 96, 72, 48,  24a

Optimizers Adam
Loss Root mean square error (RMSE)



2956 Modeling Earth Systems and Environment (2022) 8:2951–2964

1 3

RMSE, MGE and MAB are the only statistical parameters 
that have units (depending on each variable), since the other 
parameters are indices.

Results and discussion

Temporal dimension

The LSTMs forecasting results for meteorological vari-
ables and  PM2.5 concentrations were compared with the 
observed data using the hourly mean value of every sta-
tion and simulated day (Fig. 3). The results show high 
precision when forecasting the studied variables: radiation, 
temperature, relative humidity, and wind speed. On the 
one hand, small changes in the diurnal cycle and non-rapid 
or steeper changes in the tendency of the data are evidence 
of the LSTM’s high performance. On the other hand, wind 
direction before noon and between 14 and 18 h has short 
and fast changes that the model represents with a good 
correlation but with an underestimation of the values. The 
model can accurately represent  PM2.5 concentration since 
it is capable of representing the peak concentration (i.e., 
9 h) and its subsequent reduction. In the afternoon, the 
performance of the simulation is slightly reduced due to 

some changes and noise in the data, which the model is 
not able to completely identify. In spite of this, the general 
trend of the variables can be reproduced using this fore-
casting approach.

Figures 4 and 5 show two specific stations, which are 
the only stations that measure all variables under study. 
The behavior of the variables in S9 and S12 supports the 
fact that the model has limitations when the data has rapid 
changes in its tendency. Figure 5 shows that wind direction 
and wind speed are not as well reproduced by the model as 
the other variables. The observed wind field variables have 
steeper changes in the tendency that are not well represented 
because the LSTM tries to follow the diurnal tide of the vari-
able. The model's accuracy is reduced when rapid changes 
in the tendency of the data are presented. This problem does 
not occur in regard to the other variables.

The LSTM represents the peaks of  PM2.5 in S9. These 
stations have two peaks, throughout the day, identified by the 
model. However, the highest values   are underestimated. The 
remaining variables have similar behavior to those presented 
in Fig. 3, suggesting that LSTM simulations have great accu-
racy when the variables have smooth and slow changes in 
their tendency, but also showing that its accuracy decreases 
for variables with steeper changes (wind direction) (as also 
seen in the supplementary material Figs S2 to S11).

Table 2  Statistic parameters and 
benchmarks defined to evaluate 
the model for  PM2.5 (μg  m−3), 
air temperature (°C), relative 
humidity (%), solar radiation 
(W  m−2), wind speed, u and v 
components (m  s−1), and wind 
direction (°)

Variable Evaluation parameter Benchmarks

Excellent Good Bad

PM2.5 R ≥ 0.9 (0.9–0.5] < 0.5
RMSE (μg  m−3) ≤ 10 (10–15] > 15
IOA ≥ 0.9 (0.9–0.6] < 0.6

Air temperature (2 m) R ≥ 0.9 (0.9–0.7] < 0.7
RMSE (°C) ≤ 1 (1–3] > 3
IOA ≥ 0.9 (0.9–0.6] < 0.6

Relative humidity (RH) R ≥ 0.9 (0.9–0.7] < 0.7
RMSE (%) ≤ 5 (5–10] > 10
IOA ≥ 0.8 (0.8–0.6] < 0.6

Solar radiation R ≥ 0.9 (0.9–0.7] < 0.7
RMSE (W  m−2) ≤ 50 (50–100] > 100
IOA ≥ 0.9 (0.9–0.6] < 0.6

Wind speed (10 m) R ≥ 0.7 (0.7–0.5] < 0.5
RMSE (m  s−1) ≤ 0.5 (0.5–1] > 1
IOA ≥ 0.7 (0.7–0.4] < 0.4

U-component R ≥ 0.7 (0.7–0.5] < 0.5
RMSE (m  s−1) ≤ 0.8 (0.8–1.5] > 1.5
IOA ≥ 0.7 (0.7–0.4] < 0.4

V-component R ≥ 0.7 (0.7–0.5] < 0.5
RMSE (m  s−1) ≤ 0.8 (0.8–1.5] > 1.5
IOA ≥ 0.7 (0.7–0.4] < 0.4

Wind direction (10 m) MGE (°) ≤ 35 (35—60] ≥ 60
MAB (°) ≤ 15 (15—30] ≥ 30
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A daily evaluation of all the simulated days in every sta-
tion (not shown here) shows that the model fairly follows 
the diurnal cycle of all the variables. The model tends to 
produce errors to represent variables that do not have a clear 
trend, which means that the behavior and magnitude of vari-
ables such as air temperature, relative humidity, wind speed, 
u-component, and radiation are very well represented for all 
the 42 days. On the other hand, the variables with steeper 
changes in their trends can produce large uncertainties, the 
 PM2.5, the wind direction and the v-component are examples 

of this. The LSTM fails to represent higher changes in the 
magnitude of the  PM2.5, especially in stations that normally 
do not have large values or changes in the pollutant (e.g., S7 
and S8). In terms of the wind direction, it is directly related 
to the v-component; the v-component has steeper changes 
around the day. These changes do not have trends or ten-
dencies that the model can learn, so it fails to describe the 
magnitude and behavior of the variable in 23 of the 42 days 
evaluated (not show). It is possible that this issue could be 
solved following the novel approach of Sayeed et al. (2021), 

Fig. 3  Time series of the 
modeling results using LSTM 
and observed data. Composite 
of all monitoring stations during 
the 17 highly polluted simulated 
days. Variables: PM2.5 con-
centration (μg  m−3), radiation 
(W  m−2), air temperature (°C), 
relative humidity (%), wind 
speed (m  s−1) and wind direc-
tion (°)
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in which they couple the WRF model with a neural network, 
or with the convolutional network (CNN) merged with a 
bidirectional LSTM (BDLM), since a CNN is able to select 
the important features of the data to learn, and the BDLM 
can improve the learning via its nowcasting ability.

Model evaluation

To evaluate the statistical accuracy of the model, we used the 
evaluation parameters and benchmarks in Table 2. Correla-
tion (r), RMSE and IOA were calculated separately for the 
42 simulated days (Figs. 6, 7). Wind direction for the MAB 

and MGE were computed (Fig. 8) (to prevent errors caused 
by the mean value of the wind direction).

For  PM2.5 (Fig. 6), 63.24% of the modeled data have a 
good correlation with the observed data and 35.29% have 
an excellent correlation. The remaining values have correla-
tions below this range; thus, they are considered deficient. 
The mean correlation for this variable is 0.99 (excellent). 
Regarding the RMSE, the models’ results have a percentage 
of 94.12% for excellent values and 4.90% for good values, 
with a mean value of 0.58 μg  m−3 (excellent). Finally, the 
IOA parameter delivers 66.67% of the modeled days with 

Fig. 4  Time series of the 
modeling results using LSTM 
and observed data. Composite 
of the S12 station during the 17 
highly polluted simulated days. 
Variables:  PM2.5 concentration 
(μg  m−3), radiation (W  m−2), 
air temperature (°C), relative 
humidity (%), wind speed 
(m  s−1) and wind direction (°)
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excellent predictions, 33.33% with good values, and no defi-
cient values.

The meteorological variables (Fig. 4) reported excellent 
values for the (r) parameter: between 83.19 and 96.08%, 
except for the v-component, with only 13.9%. The percent-
ages of values cataloged as bad are low for all the variables 
studied (between 0 and 8.56%), except for the v-component, 
which presents the highest percentage: 66.31%. The average 
correlation values are in a range of 0.994 and 0.999.

For the RMSE evaluation parameter, the mean values 
are in a range between 0.08 and 5.58 μg  m−3, and the per-
centages range from 45.45 to 7.49%. The variable with 

the highest percentage of excellent values is temperature 
(91.44%) and the lowest percentage belongs to the v-compo-
nent (20.86%). Finally, no variable reports bad IOA values, 
and the best results are for radiation, with 100% of the results 
classified as excellent. The variable with the worst results is 
the v-component, which reports 59.36% of excellent values 
and the remaining percentage stays within the "good" range.

The values   obtained from the statistical evaluation of 
wind direction for MAB (in degrees) and MGE (in degrees) 
are relatively low, with values between 35.29 and 58.82%, 
respectively, in comparison to the performance of the model 
when predicting the other studied variables. The percentage 

Fig. 5  Time series of the 
modeling results using LSTM 
and observed data. Composite 
of the S9 station during the 17 
highly polluted simulated days. 
Variables: PM2.5 concentration 
(μg  m−3), radiation (W  m−2), 
air temperature (°C), relative 
humidity (%), wind speed 
(m  s−1) and wind direction (°)
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of good values obtained with the model are 27.81% for MAB 
and 31.55% for MGE and the remaining percentages repre-
sent excellent values. In addition, the mean MAB and MGE 
for this variable are 6.28 and 9.26 (excellent).

Forecasting analysis

Currently, LSTMs are not completely understood. We are 
able to describe how they work (i.e., the mathematics behind 
inverse propagation or optimization theorems), but we do not 
know how they learn (knowledge extraction) or the nature 
of certain errors (e.g., d'Avila Garcez et al. 2001; Abiodun 
et al. 2018; Remm and Alexandre 2002). In this study, we 
have shown some of the characteristics of the LSTM and the 
way the weights follow the diurnal cycle (hourly mean) of 
the data. To achieve this, data examination was conducted 
(i.e., calculating the interquartile range shown in Table 3), 
leading to the observation of the limitations (i.e., the model 
is not able to represent the behavior of variables that have 
very rapid changes in their tendency) and characteristics of 
the implemented LSTM model.

The interquartile range shows the fluctuation between the 
data in each of the time series forecasted for each of the stud-
ied variables. The highest values relate to radiation and wind 
direction. Regarding the first variable, this phenomenon may 
be caused by the abrupt changes inherent to its diurnal trend. 
However, since radiation daytime cycles are very similar, 
the LSTM is capable of learning this behavior. On the other 
hand, wind direction has the highest variability of all the 
parameters studied and does not have a defined daytime 
cycle, which leads to the model’s incapability of learning 
its behavior. This variability is largely related to the v-com-
ponent and not the u-component of the wind, the meridional 
component (v) has very rapid changes and can pass from 

a largely negative value ( ≈ − 1.5) to a high positive value 
( ≈ 1.5) in a few hours, which we hypothesize increases the 
uncertainty because this is an extra element that the network 
has to address. For this reason, it is difficult for the LSTM to 
make accurate predictions related to the wind direction. In 
contrast, the other variables have a more stable and smoother 
trend, easier for the model to learn and predict.

In general, the model has good precision to forecast mete-
orological variables. Nevertheless, it has some flaws that 
have to be mentioned. The model fails when steeper changes 
are present in the data, and especially when this kind of 
changes happen in stations in which they do not happen very 
often. This feature can be easily seen in the  PM2.5 or in the 
wind direction, in a station of low pollutant concentration, 
when a steeper trend starts the model is not able to repre-
sent it. This also happens to the wind direction (due to the 
v-component): the variable does not have a defined daily 
trend or tendency in many cases, so the model cannot fully 
learn the trends and make accurate predictions, a feature 
that as mentioned in Sect. 3.1 probably could be addressed 
following Sayeed et al. (2021).

Conclusions

An LSTM model was designed to forecast  PM2.5 concen-
trations and meteorological variables. For this purpose, the 
model was trained with data from 12 AQMNB stations based 
in Bogotá, a city characterized by its complex topography 
and meteorology dynamics, located on the Andes Mountains 
of South America. To evaluate the model, 17 days with an 
unhealthy AQI category and 25 random days were selected. 
This evaluation was based on statistical parameters recom-
mended for the assessment of air quality modeling results 
(RMSE, r, IOA, MAB, and MGE).

We concluded that the predictions related to  PM2.5, radia-
tion, temperature, relative humidity, wind speed, and u com-
ponent have excellent and good performance in a city with 
complex terrain, according to the evaluation parameters and 
the benchmarks used to compare the ANN-LSTM results 
with the AQMNB stations data. Furthermore, the model 
with the lowest accuracy was the one where the v-component 
and the wind direction in degrees are not well represented; 
this phenomenon may be caused by fast changes in wind 
dynamics, which is likely due to difficulties of the ANN-
LSTM to reproduce the fast changes of the v-component 
values between positive and negative.

Using the vectorial components of the wind, instead of 
wind direction in degrees and wind speed scalar values, to 
simulate wind field is more adequate. This is demonstrated 
by the better scores of the evaluated statistical parameters 
compared to the values published in other studies using 
alternative approaches (e.g., Zhao et al. 2019; Guevara-Luna 

Fig. 6  Model’s performance in terms of the evaluation parameters 
and benchmark distribution for all 12 stations and the 42 days: cor-
relation (r), RMSE and IOA for the variable of  PM2.5
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et al. 2020; Mogollón-Sotelo et al. 2020). Nevertheless, the 
errors are due to the meridional component of the wind 
(V-component) and can be improved by the addition of a 
CNN, or by novel approaches such as the merging of the 
WRF model and neural networks as in Sayeed et al. (2021).

The model can predict the spatio-temporal variation of 
meteorological variables and  PM2.5 in Bogotá, delivering 
good results (i.e., better than other studies, e.g., Kumar 
et al. 2016; González et al. 2018; Zhao et al. 2019; Casal-
las et al. 2020; Mogollón-Sotelo et al. 2020-) in terms of 

statistical parameters, as demonstrated by the excellent and 
good results in the benchmarks (Figs. 3, 4, 5). Additionally, 
a tropical city with complex topography, such as Bogota, 
was selected to validate the model's capability of performing 
precise forecasts in places with important and fast variations 
of wind and thermodynamic fields, and also in its pollution 
behavior.

Hence, the implemented model has the potential to be 
used as a tool of risk management, i.e., an early alert system, 
in other cities with air quality and meteorology monitoring 

Fig. 7  Model’s performance in 
terms of the evaluation param-
eters and benchmark distribu-
tion for all 12 stations and the 
42 days: correlation (r), RMSE, 
and IOA for the meteorological 
variables of radiation, tempera-
ture, relative humidity (RH), 
wind speed, and wind field 
horizontal components (u and v 
components of the wind)
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stations that have a record of at least 5 years of hourly data. 
To use the model as a risk management tool to predict 24 h 
in advance, the LSTM must be trained every 2 weeks with 
the latest measured data, which can decrease its errors and 
ensure the quality of the predictions. This frequent train-
ing is required since the LSTM has difficulties forecasting 
precisely variables with a not clear daily pattern (e.g., wind 
field), variables in which different temporal components 
(seasonal, weekly, daily, etc.) may have important variation. 
This tool based on LSTM has the potential to reduce the 
negative impact on the health of vulnerable populations and 
government costs related to public health.

In general, when comparing the LSTM with other 
machine learning tools and physical models (e.g., Kumar 
et al. 2016; Casallas et al. 2020; Mogollón-Sotelo et al. 
2020), we observed that the implemented model requires 
less computational time to forecast (it takes the LSTM 
1 min to deliver results). This study concludes that the pro-
posed approach (LSTM) has better performance than other 

forecasting approaches in terms of precision and trend rep-
resentation without large computational power needs. This 
conclusion is based on the results, analysis performed, and 
evaluation of the model using the statistical parameters of 
r, MB, RMSE, MGE, MAB, and IOA, for the variables of 
temperature, radiation, humidity, wind speed, and wind 
direction. Nevertheless, it is necessary to consider the repre-
sentation of peaks in variables that do not follow the diurnal 
trend, due to variability in their behavior (e.g., wind direc-
tion). Finally, it is important to highlight that this problem 
is recurrent with different forecasting techniques; thus, a 
coupling between machine learning techniques and physi-
cal modeling, or other alternative approaches, could help to 
deal with these inaccuracies.
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