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Abstract
Aeromagnetic data of the western part of Koraimat-Alzafarana road, Eastern Desert, Egypt is interpreted to detect the subsur-
face structures that may resulted in presence of subsurface aquifer. To reach to the main target of this study, many procedures 
are done using some magnetic analysis techniques (e.g., technique of reduction to the magnetic pole, separation technique 
of regional-residual anomalies and edge detection methods). The results have been encouraging to merit further estimation 
of the magnetic depth and analyzing the trends of the study area. To increase the credibility, the depth is revised by the 
P-depth technique. The shallow and deep magnetic components are calculated to be 2046 and 5680 m. To ease the detection 
of the structure that encasing the study area and lack the rigorous analysis, reduced the magnetic pole map, residual map and 
3D Euler deconvolution are integrated to depict the combined lineament map that prevailing tectonic pattern of the study 
area. Eventually, NE–SW trend is the predominant structural trend affecting on the study area as deducing from magnetic 
anomalies. Moreover, there are minor structural trends which were taken N–S, NW–SE, W–E, NNW–SSE and NNE–SSW 
directions. The presence of subsurface structures may assist in the occurrence and recharging of the groundwater aquifers.

Keywords  Aeromagnetic data · Interpretation techniques · Koraimat-Alzafarana road and surrounding area in Egypt · 
Subsurface structures

Introduction

The Egyptian government tends to plan new urban commu-
nities capable of accommodating industrial development and 
increasing population growth. The western part of Korai-
mat-Alzafarana road and surrounding area is one of the new 
promising areas which is approved for the establishment of 
a new projects and buildings (MHUUD 2015). The area is 
very important to be used in any sustainable development 
project which locate near to the Nile River (MHUUD 2015). 
It is necessary to know the subsurface structure of any new 

investigated area which is recognized as an underground 
system that may be capture runoff and gradually infiltrate 
it into the groundwater through rock and gravel (Geosyntec 
2004). There are many previous geological and geophysical 
works that applied by authors Khalil et al. (2016), Saber and 
Salama (2017), Tahoun et al. (2017), Zahran et al. (2011), 
Sayed et al. (2021) and Mosaad and Kehew (2019) in the 
surrounding area of the study area.

Geophysical surveys are used to image and detect the sub-
surface structures (Exploration Geophysics 2020). It also 
used in monitoring environmental impact, mapping sub-
surface archaeological sites, investigations the subsurface 
ground water, and mapping the subsurface salinity (Explora-
tion Geophysics 2020).

The magnetic method is one of the best and easiest tools 
to determine the depth of basement according to the vari-
ation in magnetic sensitivity due to the difference in min-
eral compositions and lithology of rocks (Waheed 2019). 
Basically, the magnetic survey measurements depend on 
determine the magnetic-field intensity, magnetic inclination, 
and declination at several stations (Reeves 2005) and (Aero 
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Service 1984). The aim of the study is depicting the main 
subsurface structure using aeromagnetic survey.

Location and geological setting of the study 
area

The present study area (The western part of Koraimat-Alza-
farana road) and its surrounding area locates in the stable 
shelf of Egypt (Said 1962), on the eastern bank of the Nile 
River in the Eastern desert of Egypt (Fig. 1a, b). The surface 
topography of the study area ranges between 50 and 750 m 
related to the sea level (Lisle 2006); (EROS) (Fig. 1a, b). 
The area is about 3612.68 Km2 which covers dominantly 
by Quaternary and Tertiary deposits. The main geological 
units that represent the study are shown in Fig. 1c, which 
are modified from the geological map of Egypt prepared by 
CONOCO (1987). The study area consists of Limestone of 
Cretaceous and Tertiary ages and covered by Quaternary 
deposits. The Cretaceous to Quaternary are incorporated in 
Mokattam Formation (Fm), Wadi Rayan Fm, Maadi Fm, 
Beni Suef Fm, Maghara formation and Raqaba Fm (Fig. 1c). 
These formations are described as follow: Mokattam Group: 
which consists of observatory Formation shallow marine, 
dense medium bedded limestone with local chert, Pliocene 
deposits composed of loose deposits (North of Faiyum pos-
sibly younger) (CONOCO 1987), Umm Raqaba Formation: 
composed of yellow marine fossiliferous sandstone with 
shale stringers alternating with conglomerates of lime-
stone, chert and quartz pebbles, quaternary deposits: con-
sists mainly of sand dunes, Nile silt, playa deposits, wadi 
deposits and gravels, Mokattam group wadi Rayan forma-
tion: consists of shallow marine limestone repeatedly inter-
calated by shale and sandy shale, Mokattam group Beni Suef 
formation: composed of marine shale, marl, and limestone, 
Oligocene deposits: consists of gravel and sands, Mokattam 
group Maghagha formation: composed of open marine lime-
stone and marl, in the east underlain by shale, Cretaceous 
deposits: composed of sequence of chalky limestone, Maadi 
formation: composed mainly of shallow marine shale and 
limestone, Thebes Group: composed of Abu Rimth forma-
tion that is composed of well-bedded shelf limestone and 
marl (CONOCO 1987).

Methodology

The Aero-Services company carried out a rapid reconnais-
sance aeromagnetic survey in 1983 in the western part of 
Koraimat-Alzafarana road and surrounding area as a part of 

Mineral, Petroleum and Groundwater Assessment Program 
(MPGAP) (Lisle 2006) and (EROS). The airborne survey 
used a proton free—precision magnetometer (Varian, V-85), 
with a sensitivity (0.01nT) (Aero Service 1984). The survey 
is made by gridding over the area and making measurements 
at each station on the grid to image the subsurface structures 
which the flight is directed to flight path NE-SW directions 
and flown along parallel traversed lines with azimuth of 25° 
and 225° by lines spacing 1.5 km. The flight is flown along 
tie-lines with azimuth of 135° and 315° and space between 
the lines equal to 5 km (Aero Service 1984) (Fig. 2a). To 
increase the accuracy of collecting data during the survey, 
the controlled time is adjusted to international time using 
radio with short wave (Aero Service 1984).

The collected data are enhanced and converted to contour 
lines which match the equal values together to create a mag-
netic intensity map with a good reflected magnetic anomaly. 
This magnetic anomaly represented variation between the 
magnetic field of the earth and the secondary magnetic field 
(Aero Service 1984). These variations represented in varia-
ble rocks that distributed over the crust surface (Sordi 2007). 
These rocks and minerals which have a strong magnetic sus-
ceptibility generate a secondary magnetic field which in turn 
effect on the magnetic field of the earth (Reford 1962). So, 
a good aeromagnetic interpretation depends basically on a 
good identification of geological setting (lithology and stra-
tigraphy) of the study area (Aero Service 1984).

By processing the data collected by aeromagnetic survey 
and by applying the filters technique like spectral analysis 
technique (Salem et al. 2000; Nwankwo 2014; Alasi et al. 
2017) analytical signal technique (Joshua et al. 2018), Edge 
detection techniques (Miller and Singh 1994; Verduzco et al. 
2004a, b; Silva and Barbosa 2003) and Euler deconvolution 
techniques (Silva and Barbosa 2003), a good interpretation 
for the data is predicted to demarcate the subsurface struc-
ture of the area under investigation.

Data‑analysis and interpretation

The aeromagnetic data are enhanced to delineate the depth 
of basement in the area under investigation and to infer the 
tectonic and earth’s structure history using the qualitative 
and quantitative methods. The collected data from the air-
borne magnetometer are enhanced to display an aeromag-
netic map that oriented to the magnetic field with Inclina-
tion angle equal to 39° and Declination angle equal to 2°. 
The aeromagnetic map is digitized using Didger program 
(Didger 2008). The output is processed as a colored map 
with intensity ranged between minimum value (41,496 nT) 
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Fig. 1   a Map of Egypt showing general location of the study area (Lisle 2006). b Topographic map of the study area (EROS). c Geologic map of 
the study area modified after (CONOCO 1987)
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and maximum value (41,804 nT) that represents a total aer-
omagnetic intensity (TMI) map (Fig. 2b). The TMI map is 

described by high magnetic anomalies (positive amplitude 
with Red color) and low magnetic anomalies (negative 

Fig. 2   a Flight path of the MPGAP project, specifications modified after (Aero Service 1984). b Total aeromagnetic intensity map of the study 
area. c The RTP map derived from the aeromagnetic field intensity map with the location of two profiles along the study area
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amplitude with Blue color) in which high anomalies are 
large distributed in the north and west directions of the 
study area with a circular closure shapes and elongated to 
take a part of the center, northeast and southwest direc-
tions (Fig. 2b). The high and low anomalies are distributed 
parallel to each other without lots of intersection that helps 
to give a good explanation of the magnetic distribution 
bodies under the surface.

Reduction to the magnetic north pole

The total aeromagnetic intensity map is enhanced using the 
RTP technique. This technique is used to: (1) eliminate the 
effect of magnetic field inclination and declination, (2) refine 
the position of magnetic anomalies in respect to the north 
pole, these anomalies are observed from the north pole, or 
even reduce the distortion of the magnetic anomaly, and (3) 
minimize the polarity effects too (Blakely 1996). Depending 
on Fast Fourier Transform (FFT), the RTP map is derivative 
from the TMI map by shifting the data to the north pole. 
This transform makes the magnetic anomalies became over-
lay the causative magnetic bodies and the anomalies became 
more accurate and charming in its shape (Fig. 2c).

Analysis of power spectrum transformation

The RTP map is enhanced using high and low band pass 
filters that is applied using Geosoft program (Oasis Mon-
taj 2015). This technique is applied to make a separation 
between regional and residual anomalies which may be rep-
resented on the analog curve of power spectrum with radial 
average. Depending on the fast Fourier transform (FFT), the 
grid is periodically processed on its edge (Lee 1960). By 
observation and illustration, the power spectrum curve of 
the study area it is manifested that the deep-seated mag-
netic component wavenumber varies from 0 to 0.18 cycles/
km while the near-surface magnetic component ranges 
from 0.18 to 0.25 cycles/km. It reveals that there are two 
main average levels (interfaces) which are intercepted by 
0.15 cutoff point. The valid interpretation of the spectrum 
curve reflects that the regional anomalies of the study area 
reach about 5680 m while the residual anomalies reach about 
2046 m. The power spectrum curve is dissected to three 
regions with different slopes. The first portion represents 
seated regional magnetic component, the second portion 
represents seated residual magnetic component, and the 
last portion represents white noise that may be reflects the 
surface features.

The regional-residual separation filter is used to detect 
and delineate the depth of shallow and deep anomaly 
(Fig. 3a). The deep anomalies are represented by strong and 
long wavelength, while the shallow anomalies are repre-
sented by weak and short wavelength on the power spectrum 
curve (Spector and Parker 1979). Depending on the slopes 
and cutoff points, the regional anomalies are separated from 
the residual anomalies, where the regional anomalies slope 
is smaller than the residual anomalies. The depths of the 
regional and residual anomalies are determined by the fol-
lowing equation (Spector and Grant 1970):

where, h is the depth to the anomalies and s is the slope of 
magnetic anomalies illustrated on the power spectrum curve.

The regional map is displayed using low pass filter (fre-
quencies are lower than the cutoff point) (Allen and Mills 
2004) while the residual map is displayed using high pass 
filter (frequencies are higher than the cutoff point) (Fig. 3b, 
c) (Allen and Mills 2004). Inspection of regional magnetic 
data, it is observed that the regional map represents only 
high amplitude anomalies more than it appears in RTP map. 
The regional anomalies are distributed over the study area 
and are described as following: high anomalies took large 
places from northern, western, and north-northwestern, 
and there are also two small anomalies located in ENE and 
SSE directions. Inspection of residual magnetic data, it is 
observed that the residual data are represented only low 
amplitude anomaly ranges that appeared on RTP map. The 
residual anomalies are distributed over study area with con-
trast between high anomaly and low anomaly that reflect 
the appearance of faults in the study area. Fundamentally, 
residual values reflect the shallow seated magnetic anomaly 
of the study area.

Edge detecting methods of aeromagnetic data

Vertical derivative

The RTP map is processed using the vertical derivative 
(VDR) technique which is described as a physical equivalent 
to detecting magnetic field of two points that locate verti-
cally to each other. This technique is applied by subtracting 
the magnetic data and dividing the display by the vertical 
spatial separation of the two points. The result of this tech-
nique is represented in frequency equation which leads to 
enhance the high frequencies corresponding to low frequen-
cies (Fig. 4a). Basically, the derivative technique depends on 

(1)h =

−s

4�
,
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Fig. 3   a Radially averaged power spectrum and depth estimation of aeromagnetic sources at the study area. b Regional (low-pass filtered) aero-
magnetic component of the RTP. c Residual (high-pass filtered) aeromagnetic component of the RTP the study area
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the reduction of the long wavelength-regional effects and 
determine the properties of adjacent anomalies (Milligan 
and Gunn 1997). Using first vertical technique, it is easy 
to delineate the high wave anomalies number that reflects 
surface, near surface and local geological structures such as 
(ground water channel).

Tilt derivative

The RTP map is processed using the Tilt Derivative Tech-
nique (TDR) (Fig. 4b). Several researchers described the 
process of the TDR such as: Miller and Singh (1994), Ver-
duzco et al. (2004a, b), Salem et al. (2007), Salem et al. 
(2008), Fairhead et al. (2008), Hinze et al. (2013). The 
TDR technique assists to delineate the basement structures 

in shallow depths and mineral exploration goals using Geo-
soft program (Oasis Montaj 2015). The TDR is represented 
as a tilt angle filter and then is developed to be TDR filter.

The TDR technique represented the sources edge as 
a zero value which TDR values ranged between − 90° 
to + 90° according to VDR while equal to absolute value 
according to total horizontal derivative (Salem et  al. 
2008). Using TDR technique, it is very easy to highlight 
the shallow subsurface structures according to delineate 
the separation contact between high and low magnetic 
anomalies that are bordered by contour line with zero 
value. It is observed that TDR distribution shapes are like 
first vertical derivative distribution shapes in which there 
were sudden changes in the values of magnetic anomalies 
that highlighted the subsurface faults, contacts, and edge 

Fig. 4   a First vertical derivative map of aeromagnetic data at the study area. b Tilt derivative map of aeromagnetic data. The black lines illus-
trate the zero-radian contour of the tilt angle of the study area
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Fig. 5   a Depth to magnetic basement as calculated using the AS tech-
nique in the study area. b Depth to magnetic basement as calculated 
using the Source parameter imaging technique in the study area. c 

Euler deconvolution method solution using structural index SI = 0. d 
Structural index SI = 1 of the study area
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of magnetic sources. The TDR magnetic anomalies have 
NE–SW, E–W and N–S directions.

Magnetic depth estimation

There are multiple techniques that assist to identify the depth 
of the basement and the subsurface magnetic bodies such as 
analytical signal (AS) (Salem et al. 2002), source parameter 
imaging (SPI) (Thurston and Smith 1997; Thurston et al. 
2002; Smith et al. 2005; Smith and Salem 2005), 2D mag-
netic modeling (Ruotoistenmaki 1993), and Euler deconvo-
lution (ED) (Thompson 1982; Reid et al. 1990; FitzGerald 
et al. 2004).

Analytical signal (AS) technique

The RTP map is processed in frequency domain using Fast 
Fourier Transform (FFT) to display the AS map of the study 
area (Fig. 5a) (Blakely 1995). The AS technique is known 
as a total gradient which is defined as the square root of 
summation of VDR of intensity’s total magnetic field in the 
x, y, and z directions (Nabighian 1972; Roest et al. 1992; 
Macleod et al. 1993). The basic of 3D analytical signal is 
mainly depicted by Roest et al. (1992) and MacLeod et al. 
(1993), while the basic of 2D analytical signal is mainly 
depicted by Green and Stanley (1975), Nabighian (1974).

The 2D case is used for an extremely thin dike and notice-
ably vertical step or contact, the locations of 2D maximum 
AS are nonstop above the top surface edges of causative 
magnetic body (Lin-Ping and Zhi-Ning 1998). In 3D, the 
AS amplitude depends on; (1) the burial depth, (2) the extent 
and dipping angle of a source body, (3) the body’s mag-
netization direction, and (4) the direction of earth’s mag-
netic field. In 2D magnetic sources, the analytic signal AS 
becomes independent on the magnetization direction (Li 
2006; Salem et al. 2002). To estimate the magnetic depth 
by interpreting AS magnetic anomalies, these anomalies 
reflect the depth of the study area that range between − 82 
to − 2622 m. (Fig. 5a).

Source parameter imaging (SPI) technique

The SPI technique is known as the local wavenumber tech-
nique which can be used for the calculaton of the depth to 
the magnetic bodies. The SPI method is applied using the 
second order derivatives of the field (Thurston and Smith 
1997). Basically, the SPI technique depends on the complex 
extension AS to estimate the magnetic bodies’ depth. The 

SPI technique is very satisfied on a two-dimension slop-
ing contact or a two-dimension dipping thin sheet (Adham 
Basheer 2016; Megahed et al. 2020). The SPI map inter-
pretation reflects that the depth of the study area ranged 
between − 237 and − 2026 m. (Fig. 5b).

Euler deconvolution (ED) technique

The RTP map is processed using the ED technique on Oasis 
Montaj, (Geosoft Program 2015) which is used to calculate 
the depth and location of the potential field sources. The 
concept of the ED technique was discussed by Reid et al. 
(1990), Zhang et al. (2000) and Thompson (1982). The ED 
technique is used to interpret the profile data and after that 
it is enhanced and used for gridded data (Reid et al. 1990; 
Klingele et al. 1991; Marson and Klingele 1993; Harris 
et al. 1996; Stavrev 1997; Barbosa et al. 1999; Barbosa and 
Medeiros (2001); Mushayandebvu et al. 2001; Salem and 
Ravat 2003; Silva and Barbosa 2003; Keating and Pilkington 
2004; Mushayandebvu et al. 2004).

The ED is used to integrate both geological and geo-
physical constraints into collected and grouped depth map 
to illustrate the contact SI. The amplitude function of ED is 
always positive and independent on the direction of body 
magnetization (Jeng et al. 2003). Chiefly, the ED depends 
on the SI which is related positively to the shape of the con-
tributory source. Depending on the least square inversion 
of the data within a chosen window length, the locations of 
optimum sources are founded. In the ED maps, the cluster-
ing of circles in linear shapes reflects the elongation and the 
trending of the faults which are taken in N–S, NNE–SSW, 
NEE–SWW, E–W and NE–SW directions.

The variations in SI values assists to identify different 
magnetic bodies. The SI value that equals to unity represents 
the magnetic contact between sedimentary rocks and base-
ment rocks and its depths in study area (Fig. 5c), while the 
SI value that equal to zero represents the depths of faults in 
study area (Fig. 5d).

2D magnetic modeling

The best method to appropriate geophysical parameter to 
potential data is identified as a 2D magnetic modeling. The 
potential problem is enhanced to be displayed in a potential 
model which is considered as an inverse solution to poten-
tial problem. Depending on the variation in rock properties, 
the direct modeling process converts the variation in the 
potential data to a subsurface geological model. To be more 
satisfied by the geological model, much information about 
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the surface and subsurface magnetic susceptibilities has been 
collected. The 2D magnetic modeling reflects a good illus-
tration to location, depth, dip, and magnetic susceptibility 
to the magnetic bodies. Two 2D magnetic profiles (Fig. 6a, 
b) are constructed by GM-SYS program along the extended 
magnetic anomaly of RTP map passing from west to east and 
from NNW to SSE directions (Fig. 2c). These profiles are 
interpreted basically, depending on the previously geologic 
information, magnetic depth determination and qualitative 
interpretation of magnetic maps, to determine the basement 
depth of the study area. The magnetic susceptibilities range 
between 0.001 and 0.009 in CGS unit. It assumes to be zero 
for the nonmagnetic sedimentary cover. Two-dimensional 

magnetic modeling technique is formed from observed and 
calculated magnetic data. These magnetic data are repre-
sented by black circle profile while calculated magnetic data 
are represented by solid black profile (Fig. 6). A best fitting 
between observed and calculated data is applied depending 
on the variations in magnetic susceptibilities. The error in 
fitting is represented in a red line (Fig. 6). The 2D magnetic 
profile is plotted between Y axis that represented depth in 
meter and X axis that represents the horizontal surface dis-
tance in kilometer unit (Table 1).

The first 2D profile is taken along RTP map from west 
to east in the study area. This profile passes through C_2X 
drilled well that reached the basement with depth 3506.40 m. 
The total length of this 2D profile is 119,335.483 m from 
the starting point at the west direction. A good fitting to 
the observed and calculated data was applied to represent 
the basement depth with a total error 4.638. This 2D model 
consists of two parts; first part represents the sedimentary 
cover with magnetic susceptibility equal to zero c.g.s-e.m.u 
and second part represents the susceptibility of basement 

Fig. 6   a Two-dimensional magnetic profile (P1) in W–E direction. b Two-dimensional magnetic profile (P2) in NNW–SSE direction along the 
study area

Table 1   The information of profiles (length and direction)

Profile Length (m) Direction

P1 119,335.483 W–E
P2 42,264.8777 NNW–SSE
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rocks which ranged between 0.002 and 0.0067 c.g.s-e.m.u. 
The total depth of the basement in this profile was ranged 
between 2000 and 5000 m. The second 2D profile is taken 
along the RTP map from NNW to SSE in the study area. The 
total length of this profile is 42,264.8777 m from the starting 
point at the north direction. A good fitting to the observed 
and calculated data was applied to represent the basement 
depth with a total error 4.454. This model consists also of 
two parts; first part represented the sedimentary cover with 
magnetic susceptibility equal to zero c.g.s-e.m.u and second 
part represented the susceptibility of basement rocks which 
rocks which ranged between 0.005 and 0.006 c.g.s-e.m.u. 
The total depth of the basement in this profile was ranged 
between 1500 and 2000 m.

Finally, by notice, the P-depth map it is observed that 
the depth to basement of study area ranges between − 936 
to − 3539 m according to seal level. The shallow depths are 
distributed in western, east-northeastern, southeastern, and 
the center, while the deep depths range between − 936 to 
− 1991 m according to seal level. They elongate from south 
to north and distribute in many directions within the inves-
tigated area (Fig. 7).

Trend analysis technique

Trend analysis technique is considered as a good explanation 
for the SI and interpretation of geological and geophysical 
studies. The structural geological interpretation of the study 
area is magnified using RTP, Residual and 3D ED maps. 
There is a relationship between the strength of the magnetic 
anomalies and the crust forces which the tectonic history is 
represented as a magnetic anomaly (Affleck 1963). Depend-
ing on the appearance and existing of magnetic anomalies, 

it was easy to delineate the appearance of the faults (Hall 
1964). By integrating the results, which obtained from RTP, 
3D ED and Residual maps, a good lineament map is dis-
played to reach the prevailing tectonic pattern in study area 
(Fig. 8a). Each map detected lineaments with different azi-
muth and length which may represented faults or contacts. 
Depending on the azimuth and length of these lineaments, 
statistical analysis was applied to display structural elemen-
tal rose diagram of these maps (Fig. 8b). A good examina-
tion of the rose diagram reflects that NE–SW trend is the 
predominant structural trend affecting on the study area as 
deducing from magnetic anomalies. Furthermore, there are 
minor structural trends which are taken N–S, NW–SE, W–E, 
NNW–SSE and NNE–SSW directions.

Conclusion

The collected aeromagnetic data are used to delineate the 
subsurface structures at the western part of Koraimat-Alza-
farana road and surrounding area in Egypt. By integrated 
results that are obtained from RTP, 3D Euler deconvolution 
and residual maps, a satisfied lineament map has been dis-
played to reach the prevailing tectonic patterns in the area 
under investigation. Depending on the azimuth and length of 
these lineaments, statistical analyses are applied to display 
the structural elemental rose diagram of these maps. A valid 
examination of rose diagram reflected that the NE–SW trend 
is the predominant structural trend affecting on the study 
area as deducing from magnetic anomalies. Moreover, there 
are minor structural trends which were taken N–S, NW–SE, 
W–E, NNW–SSE and NNE–SSW directions.
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Fig. 7   Basement depth map calculated by the P-depth technique at the study area
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