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Abstract
Stability is an important measure to consider when dealing with dam structural health management system. Dams are 
hydraulic structures built with impenetrable materials which serve as a barrier to the flow of water. Geodetic and geotechnical 
observables such as seepage clarity and flow, water level, piezometric water level, pressure, temperature variation, deforma-
tion and loading conditions are often measured for dam safety control. This study is focussed on piezometric water level 
which is an important parameter to support seepage analysis of dams. The efficiency of least squares support vector machine 
(LSSVM), group method of data handling (GMDH), M5 prime and Gaussian process regression (GPR) were explored for 
the first time in piezometric water level prediction. These methods were then compared with the widely used backpropaga-
tion neural network (BPNN), support vector machine (SVM) and radial basis function neural network (RBFNN). The seven 
methods were tested on experimental data collected at four different piezometers located at different positions of the dam for a 
period of 2 years 4 months in Ghana. It was generally observed from the prediction outputs that all the methods applied could 
produce very reasonable and applicable results. However, ranking the results according to root mean square error (RMSE), 
percent mean absolute relative error (PMARE), Correlation Coefficient (R), Loague and Green (LG), and variance accounted 
for (VAF) revealed the GMDH as the best prediction approach for all the piezometers. It was concluded that the implemented 
artificial intelligent techniques constitute reliable computational tools for dam piezometric water level prediction.
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Introduction

Engineers need to analyse the movements of structures to 
enable them to compare the real-world behaviour against the 
design and theoretical models. This activity is conducted to 
enhance the safety measurement system of the structures. 
Dam is one of the most important engineering structures 
which requires constant deformation monitoring for its 

safety (Scaioni 2018). This is because dams are subjected to 
external loads that can cause deformation of the dam struc-
ture, as well as its foundations. For that matter, the safety 
of the dam may then be threatened if there is an indication 
of any abnormal behaviour. Monitoring through measure-
ment and visual observation of the loads on the dam and 
its response to them can help in identifying any abnormal 
behaviour of the dam. However, to facilitate the monitoring 
of hydraulic structures such as dam, it is very critical for the 
dam to be permanently equipped with proper instrumenta-
tion and monitoring points in accordance with the goals of 
the observation, the dam size, and the site conditions (De 
Granrut et al. 2019).

Generally, the safety control of dam requires the measure-
ment of important geodetic and geotechnical observables 
such as water levels, temperature variations, loading condi-
tions, seepage water clarity and flows, piezometric water 
levels, pressure, deformations among others (Rankovic et al. 
2014). In dam deformation monitoring, piezometers are usu-
ally installed on some selected points on the dam to monitor 
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how the water blocked by the dam could escape through the 
dam and its surroundings. Accurate information on piezo-
metric water level is of crucial importance in seepage analy-
sis of a dam, as well as the dam strength as time proceeds 
(Salajegheh et al. 2018).

Due to the critical role played by piezometric water 
level in dam safety analysis, a lot of scholars have engaged 
themselves in developing prediction tools using statistical, 
deterministic, and artificial intelligent (AI) methods (De 
Granrut et al. 2019; Rankovic et al. 2014; Salajegheh et al. 
2018; Tinoco et al. 2020). However, some identifiable chal-
lenges have been found to be associated with the statisti-
cal or deterministic methods because of their inability to 
correctly learn, adapt and generalise on the data set. These 
methods lack flexibility, robustness, and tolerance to data 
sets variations. Besides, the external factors that controls 
piezometric water level have complex nonlinear character-
istics which make the statistical and deterministic methods 
insufficient in terms of achieving high forecasting accuracy 
(Tinoco et al. 2020). Therefore, using these statistical or 
deterministic methods for piezometric water level prediction 
have shown some practical limitations due to their shortfalls 
to accommodate the imprecisions and uncertainties contain 
in a data set (Zadeh 1994). By means of addressing these 
identified challenges, there has been a surge in the approval 
rating and application of AI in literature due to its reliability 
to overcome the purported practical limitations exhibited 
by the statistical and deterministic techniques. Thus, the AI 
can produce highly accurate prediction of piezometric water 
level on a dam (Kong-A-Siou et al. 2014).

Although different variants of AI exist, the most domi-
nant found in literature for the prediction of dam piezometric 
water level is the artificial neural network (ANN), classifica-
tion and regression tree (CART), support vector machine, 
k-nearest neighbour, and random forest (Kong-A-Siou et al. 
2014; Ranković et al. 2014; Tinoco et al. 2018, 2020; De 
Granrut et al. 2019). Other scholars have also introduced 
hybrid intelligent techniques (eg, particle swarm optimiza-
tion and ANN (PSO-ANN), and harmony search learning 
algorithm and ANN (HS-ANN)) where the nature inspired 
algorithms (PSO and HS) were used to optimise the AI 
methods to improve their prediction performance (Sala-
jegheh et al. 2018).

Review of these studies showed that piezometers are fixed 
at separate locations on dams, and each are monitored to 
identify any source of leakage and designing a solution to 
rectify the problem in the seepage analysis. This individual 
monitoring is important because the seepage flow can lead 
to dam failure and loss of properties. With this scenario, 
scholars have found it prudent to not rely on a unified predic-
tion model where all the data from different piezometers on a 
dam are combined. The question that arises from such prac-
tice is, how can one determine which location on the dam 

has leakage and which piezometer is given that information? 
Therefore, for industrial application where safety is para-
mount, there is the need to monitor and develop prediction 
models for each piezometer for the dam’s structural health 
monitoring system and safety protocols. This can lead to sav-
ing human lives, properties and will not bring production to 
a halt which could have tremendous impact on the economy 
of the country. It is in view of the enumerated points that 
have led to scholars (Tinoco et al. 2020; De Granrut et al. 
2019; Salajegheh et al. 2018; Rankovic et al. 2014) research-
ing into piezometric water level prediction of dam have been 
developing individual models for each piezometer.

Moreover, as highlighted by different authors, the AI 
methods are generally not equivalent and thus vary in terms 
of their fine-tuning effort for different hyper parameters 
defined, computational speed, and their level of tolerance 
towards noisy data (Tinoco et al. 2020). In addition, the No 
Free Lunch theorem indicates that no single AI method can 
boast of having superiority of solving all predictive ana-
lytic problems (Buabeng et al. 2021). In view of the pre-
ceding discussion, it is practical to generally explore the 
prediction potency of other AI methods in dam piezometric 
water level. In this study, the goal is to assess the predictive 
efficiency and generalisation strength of seven different AI 
methods that have prospect of being used for dam piezo-
metric water level monitoring. The methods applied are the 
backpropagation neural network (BPNN), group method of 
data handling (GMDH), radial basis function neural network 
(RBFNN), least squares support vector machine (LSSVM), 
support vector machine (SVM), M5 prime and Gaussian pro-
cess regression (GPR). The selected methods were applied 
because they are found to have wide area of application in 
dam deformation studies. Furthermore, there has been close 
to no application in literature on evaluating the prediction 
competence of GMDH, LSSVM, M5 prime and GPR in dam 
piezometric water level prediction. The achieved results in 
this study showed that all the applied and tested methods 
can produce reasonable predictions. However, in this case 
study the GMDH stand out as the most efficient AI method 
for predicting piezometric water level of dam.

Study area and data used

Study area

The study is focussed on a gravity dam (hereafter Dam X) 
located in Ghana. Dam X is 108 m high above the lowest 
load-bearing part of the structure, 90 m above the riverbed 
with 492 m long crest and a maximum and minimum operat-
ing level of 185 and 167 m, respectively. The dam is made 
up of the main dam and two additional saddle dams (sad-
dle dams 1 and 2). Saddle dam 1 is a rock-fill embankment 
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dam which is found 500 m southeast to the main dam and 
is 37 m above ground level with a 300-m-long crest (Dietz 
et al. 2014). Saddle dam 2 is a zoned earth fill type located 
at 1 km southwest of the main dam with a height of 7 m and 
580 m crest length. Saddle dams 1 and 2 have a crest eleva-
tion of 187 m above mean sea level. A maximum reservoir 
capacity of 12,570 million cubic metres is created by the 
main and saddle dams. Dam X spillway is made up of five 
radial gates each 15 m wide with an elevation of 169 m and 
a maximum discharge of 10,450 cubic metres per second. 
Dam X has a single outlet at its right bank which was con-
verted from one of the diverted tunnels.

Data used

As part of the safety measurement system on Dam X, weekly 
observations are made on the dam to obtain geodetic, geo-
technical, and environmental variables needed for the dam’s 
safety analysis. To test the prediction efficiency of the vari-
ous AI methods applied, weekly data collected from January 
2013 to April 2015 (2 years 4 months) was used to train and 
test the employed methods. The data used consist of temper-
ature, pressure, modulus (modulus of elasticity of the dam 
material in which the piezometers are installed), rainfall and 
piezometric water level. Piezometric water level has been 
found to have strong relations with these observables which 
has been duly confirmed in literature (Bonelli and Royet 
2001; Ranković et al. 2014; Fine and Millero 1973). For 
this work, the available data set comprising of four different 

piezometers (P01, P02, P03 and P04) for Block 12 which 
is one out of the thirty-four blocks of the dam was used for 
the modelling. These networks of piezometers have been 
installed and distributed under the main dam, Saddle dams 
1 and 2, respectively. Table 1 provides the summary descrip-
tive statistics of the various piezometer data set used.

Methodology

Backpropagation neural network

The BPNN is a type of supervised ANN approach which 
is used to solve both linear and nonlinear mathematical 
problems (Rumelhart et al. 1986). The structure of BPNN 
considered in this study consisted of input layer, one hid-
den layer and output layer (Fig. 1). The input layer is 

Table 1   Data set statistical 
parameters

Piezometer Variable Unit Mean Standard deviation Minimum Maximum

P01 Modulus GPa 7107.097 87.782 6965.500 7257.200
Temperature °C 26.699 0.428 26.100 28.900
Pressure KPa 0.506 0.023 0.466 0.544
Rainfall mm 3.595 8.417 0.000 63.500
Piezometer water level m 150.302 2.373 146.244 154.130

P02 Modulus GPa 8560.645 4.059 8553.300 8570.000
Temperature °C 28.001 0.237 27.400 29.000
Pressure KPa 0.193 0.001 0.190 0.195
Rainfall mm 3.595 8.417 0.000 63.500
Piezometer water level M 102.658 0.117 102.387 102.871

P03 Modulus GPa 8070.135 9.369 8046.500 8084.700
Temperature °C 28.284 0.573 27.000 29.700
Pressure KPa 0.111 0.003 0.107 0.118
Rainfall mm 3.595 8.417 0.000 63.500
Piezometer water level M 104.334 0.271 103.909 105.016

P04 Modulus GPa 8425.871 11.131 8401.000 8461.600
Temperature °C 27.595 0.340 27.000 28.500
Pressure KPa 0.064 0.003 0.055 0.071
Rainfall mm 3.595 8.417 0.000 63.500
Piezometer water level M 104.559 0.292 103.631 105.214

Fig. 1   Structure of BPNN with four input variables and one hidden 
layer for predicting piezometric water level
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made up of the four predictor variables in which per the 
data used comprises of temperature, modulus, pressure, 
and rainfall. The output layer is made up of one response 
variable since the objective is to predict piezometric 
water level. To acquire the best results for the Block 12 
piezometers, various network structures were designed 
differently with respect to the individual four piezometers 
(P01, P02, P03 and P04). The uncertainty surrounding 
the number of hidden neurons to be used was overcome 
by testing various number of neurons and selecting those 
that gave best output results for each network architec-
ture designed. In performing BPNN training, a recurring 
cycle of back propagating the estimated error between the 
predicted and desired output is done with the objective 
of adjusting the weights to improve prediction accuracy. 
It is important to state that the network weight adapta-
tion which is an indispensable part of BPNN was accom-
plished using suitable training algorithm. In this study, 
the Levenberg–Marquardt algorithm (Yu and Wilamowski 
2011) was used to train the BPNN.

Group method of data handling

GMDH proposed first by Ivakhnenko (1966) is consid-
ered a type of polynomial neural network. Its computa-
tional flexibility abounds in its ability to describe a math-
ematical relation of a nonlinear system between input and 
output variables. The GMDH architecture is feed-forward 
in nature with multilayer of polynomial neurons. Inspired 
by itself organising nature, the method automatically 
identifies system variables to create a continuous model 
based on the input–output variable mapping relationship 
(AlBinHassan and Wang 2011). This automatic process-
ing of the data set enables optimal variable interactions 
and good convergence on the linear or nonlinear regres-
sion surface. In the data processing, a sequential pruning 
system is implemented on the various constructed layers 
with an optimization technique to automatically deter-
mine the optimum GMDH structure (Assaleh et al. 2013). 
Here, the process begins by creating multi-hidden layers 
of which the preliminary layer receives and distributes 
each input predictor variable. Subsequently, the succes-
sive layers created uses the number of neurons from a 
previous layer as input. This process is only terminated 
when the preceding layer’s stopping criterion (eg, mean 
square error) is better than the proceeding layer (Ivakh-
nenko 1966, 1971). The general GMDH architecture used 
in this study to predict piezometric water level is pre-
sented in Fig. 2. Four predictor variables (temperature, 
modulus, pressure, and rainfall) constituted the input data 
while the output is the piezometric water level.

Radial basis function neural network

The RBFNN is a supervised ANN approach which con-
stitute a single hidden layer with interconnected input and 
output layers (Fig. 3). The RBFNN input layer number of 
nodes equals the predictor variables (temperature, pressure, 
modulus, and rainfall) with one output response variable 
(piezometric water level). The input layer nodes are directly 
connected to the nonlinear units found in the hidden layer. 
Here, the received inputs predictor variables data are sent 
directly to the hidden layer chamber where they are weighted 
and processed before transmitting them to the output layer. 
Essential component that greatly impact on RBFNN per-
formance is the fine-tuning of certain adjustable parameters 
defined by the basis function type considered. In the hidden 
layer, basis function with parameter centres and widths are 
used to handle the nonlinearity existing in the data set. To 
achieve faster convergence, a suitable approach is usually 
applied to determine the centres of the basis function. Meth-
ods such as gradient descent, clustering and least squares are 
mostly used in literature (Broomhead and Lowe 1988). In 
this study, the least squares method was employed because 
a fixed value was set to define the width parameter of the 
radial basis function. The Moore–Penrose pseudo inverse 
(Broomhead and Lowe 1988) was then used to calculate the 
interconnected weights between the hidden and output lay-
ers. Several network architectures were designed for each 
piezometer and those that produced best prediction perfor-
mance based on the lowest residual prediction errors were 
selected.

Gaussian process regression

GPR is a nonparametric kernel-based Bayesian regression 
approach which can adequately work on smaller dataset and 
can provide information about the uncertainties associated 

New Variables

Temperature New Variables  

erusserP

       Modulus

        Rainfall

Output Layer

Hidden Layers

Input Layer

Piezometric 
Water level

Layer 1 Layer 2

Fig. 2   GMDH architecture with four input variables and multiple hid-
den layers for predicting piezometric water level
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with its predictions (Rasmussen and Nickisch 2010). The 
method works by computing probability distribution over 
all allowable fitted functions on the data set. Here, a mean 
and covariance functions are specified to assume a Gaussian 
process prior. The mean function represents the expected 
values of the function at input variables which considers 
the average of all the functions of the distribution evaluated 
at the input. At the initial stage, the choice of the kernel 
defines a prior process of which a zero value is set for the 
mean function. The covariance kernel function which allows 
for multidimensional inputs considers the inter-dependency 
between the functional values of the different inputs. In the 
Gaussian process prior, the chosen mean function and covar-
iance kernel function form is adjusted throughout the model 
selection. In this study, the widely used covariance kernel 
function of squared exponential was applied (Kang et al. 
2015). It is important to note that the training data set was 
used to compute the posterior. Hence, to predict the testing 
data, calculations were performed out of the posterior dis-
tribution by weighting all the predictive distribution. In the 
GPR model formulation, the same four predictor variables 
(temperature, modulus, pressure, and rainfall) and response 
variable (piezometric water level) were used.

Support vector machine

The concept of SVM first proposed by Vapnik (1998) and 
extended to a regression type of problem by Drucker et al. 
(1997) is a supervised learning approach. The fundamental 
principle of SVM is to try and find an optimum separating 
hyperplane to achieve the largest margin of the training data. 
For one to compute the margin and achieve the best hyper-
plane solution, a minimum constrained quadratic optimisa-
tion problem must be solved. The optimisation problem is 
usually solved using the Lagrange function and Lagrange 
multipliers which must fulfill the Karush–Kuhn–Tucker 
(KKT) situation (Farag and Mohamed 2004). In the light 
of this, the original constrained quadratic problem is then 
reduced into a dual optimisation problem. A solution to this 

duality enables the SVM to provide a fitted function on the 
training data which is used later to predict the testing data. 
It must be noted that in the SVM, a nonlinear kernel basis 
function is applied to map the input data from a lower to 
higher dimensions where a linear model is built in the fea-
ture space of the high dimension. In this study, the same 
predictor and response variables used by the other described 
methods in this study were applied to create the SVM model.

Least squares support vector machine

LSSVM proposed by Suykens and Vandewalle (1999) is 
the least squares formulation of SVM for solving nonlinear 
problems in predictive analytic and classification. LSSVM 
is considered to belong to Gaussian processes and regulari-
sation networks but emphasises on exploiting primal–dual 
interpretations (Suykens et al. 2002). Unlike SVM where 
convex optimisation problems are encountered, the LSSVM 
provides a redefinition of the optimisation problem leading 
to linear KKT systems. Here, the optimisation problem has a 
minimised risk bound with linear equations with constraints 
based on the structural risk minimisation rule. The Lagrange 
function and Lagrange multipliers are used to solve the opti-
misation problem. It is worth stating that the LSSVM per-
forms nonlinear transformation by mapping its input data to 
a high dimensional feature space. The LSSVM was applied 
in this study as a regression technique to fit a function on the 
training data which was later used to predict unseen (testing) 
data. The same predictor and response variables used by the 
earlier described methods were used in the model building 
process.

M5 prime

The M5 prime is a binary decision tree approach with 
nonparametric ability and can automatically handle the 
input–output mapping relationship at the leaf nodes (Quin-
lan 1992; Ghasemi et al. 2020). This method can work well 
on both categorical and continuous data set. The method can 
handle high dimensionality and complex problems. The M5 
prime applies synergistic model formulation procedures by 
using data splitting and pruning to fit the model to the data. 
In the splitting stage, the data is divided into different sub-
space to build the decision tree. The data division is based 
on the standard deviation reduction criterion where the sub-
space standard deviation values of a node is considered as 
an error measure of that node and computing the desired 
error reduction because of evaluating each attribute at the 
node. Attributable to the splitting, the parent node always 
carries large standard deviation than the child node. After 
analysing all possible splitting steps, the one that produces 
the maximum expected error reduction is selected. At this 
point, an overgrown tree is usually created which overfit the 

Fig. 3   The general architecture of RBFNN having four input vari-
ables, single hidden layer and one output
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data. To control the overfitting condition, a pruning method 
is applied to the overgrown tree where the subtrees that are 
pruned are replaced with linear regression functions. The 
same predictor and response variables used by the earlier 
described methods were used in the model building process.

Model building

Studies have shown that a significant difficulty in devel-
oping prediction model is the ability to design models to 
solve extremely and equally complex problems (Engelbre-
cht 2007). In this study, piezometric water level prediction 
models based on GMDH, LSSVM, M5 prime, GPR, BPNN, 
RBFNN and SVM were developed. For the model develop-
ment, MATLAB programme was used. To fit these models, 
four parameters, namely, temperature, pressure, modulus, 
and rainfall were taken as predictor variables, and the pie-
zometric water level served as the response variable. The 
four predictor variables were used because of their superior 
influence on the piezometric water level. Moreover, the used 
predictor variables agree with the normal practice of several 
authors in piezometric water level prediction (Bonelli and 
Royet 2001; Ranković et al. 2014; Fine and Millero 1973).

A total of 121 data points were used to develop and test 
the various models. First, 80 observations (66%) of the entire 
data having a span of 1 year 6 months. The fitting capability 
of the developed models were put to test using the remaining 
41 observations which span for 10 months. These training 
and testing data sets were purposively selected using the 
widely applied hold-out cross validation approach to build 
the various prediction models. It must be noted that the study 
applied hold-out cross-validation approach which follows 
the general scientific practice by scholars researching into 
the prediction of piezometric water level using AI techniques 
(Tinoco et al. 2020; De Granrut et al. 2019; Salajegheh et al. 
2018Rankovic et al. 2014). The purposive sampling was car-
ried out in this study because of the time series nature of 
the data set and thus random sampling is not appropriate. 
These selected training and testing data points enabled the 
model to give a good representation of the underlying func-
tion between the input–output variables. The RMSE was 
used as a criterion to determine the best performing model 
during training and testing phases. That is, a model is found 
suitable when it produces the lowest RMSE in both training 
and its corresponding testing.

To enhance model convergence, the predictor vari-
ables used to develop the models were first scaled into the 
interval [– 1, 1] using Eq. (1) (Muller and Hemond 2013). 
The motive was to ensure constant variability in the pre-
dictor variables since they have different physical units of 
measurement. Furthermore, the influence of large values 
on the smaller recorded value in the modelling process is 
eliminated:

where ai is the normalised result, hi is the measured pre-
dictor variable, hmin and hmax take minimum and maximum 
values of hi while fmax and fmin are 1 and −1, respectively.

Model performance evaluators

It is imperative to find the optimum model that correctly 
fit to the data and produced the lowest prediction residual. 
This is because the prediction residual is a measure of 
model adequacy and that the lower it is the better the suit-
ability of the model to be used for a prediction task. In 
the light of this, performance metrics such as root mean 
square error (RMSE), percent mean absolute relative error 
(PMARE), Correlation Coefficient (R), Loague and Green 
(LG), and variance accounted for (VAF) were used. Equa-
tions (2) to (6) are their mathematical expressions (Adoko 
et al. 2011; Ali and Abustan 2014):

where Obsi and Predi are the measured and predicted piezo-
metric water level with their average corresponding values 
given as Obs and Pred , respectively. The Abs and var indi-
cate the absolute and variance of the corresponding terms 
and i vary from 1 to N with N representing the total data.

(1)ai = fmin +
(fmax − fmin) × (hi − hmin)

(hmax − hmin)
,

(2)
RMSE =

������
N∑
i=1

(Obsi − Predi)
2

N
,

(3)PMARE =
100

N

N∑
i=1

Abs(Obsi − Predi)

Obsi
,

(4)

R =

⎛
⎜⎜⎜⎝

∑N

i=1
(Obsi − Obs) (Predi − Pred)�∑N

i=1
(Obsi − Obs)2 ×

�∑N

i=1
(Predi − Pred)2

⎞
⎟⎟⎟⎠
,

(5)LG =

⎛
⎜⎜⎜⎝

∑N

i=1
(Obsi − Obs)2 −

∑N

i=1
(Obsi − Predi)

2

�∑N

i=1
(Obsi − Obs)2

⎞
⎟⎟⎟⎠
,

(6)VAF =

[
1 −

var(Obsi − Predi)
2

var(Obsi)

]
× 100,
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Results and discussion

The practicality of the models was examined using the 
testing data set. The reason is that the testing data did 
not contribute to the model training and thus can be used 
to legitimately assess the model correctness. The various 
performances of the developed predictive models are pre-
sented in the subsequent sections.

Test performance of the BPNN model

The BPNN model was applied to predict piezometric water 
level for four different piezometers (P01, P02, P03 and 
P04) located on the dam. In all the four piezometers BPNN 
models developed, the Levenberg Marquardt backpropaga-
tion algorithm (Arthur et al. 2020) was used to train the 
neural network system for 5000 epochs with a momen-
tum coefficient of 0.7 and learning rate of 0.03. For the 
various BPNN models developed, the hyperbolic tangent 
activation function was used in the hidden layer whilst 
the linear activation function was used in the output layer. 
The hyperbolic tangent activation used was influenced 
by the data normalised interval of [− 1, 1]. The linear 
activation function was the most suitable in the output 
layer because we are dealing with a regression problem. 
The uncertainty surrounding the number of hidden neu-
rons to be used was overcome by applying the widely used 
sequential trial and error procedure where various number 
of neurons were tested and those that gave the best out-
put results based on the lowest RMSE was considered the 
optimum network architecture. In the model training, the 
hidden neurons were varied from 1 to 50 in each of the 
BPNN model developed for the P01, P02, P03 and P04. 

Table 2 presents the optimum number of hidden nodes for 
each of the designed BPNN structure for each piezometer.

A matrix presentation of the various statistical indica-
tors applied to access the validity of the developed BPNN 
models are given in Table 3. It is observed that the BPNN 
produced very low values of RMSE and PMARE for all 
the piezometers and achieved higher values of R, LG and 
VAF, respectively. Since the RMSE and PMARE values are 
approaching zero, this signify that the BPNN predictions do 
not differentiate much from the observed piezometric water 
level data. This was confirmed from the results recorded by 
the dimensionless indicators (R, LG and VAF) where a close 
to perfect association between the predicted and observed 
was established. Therefore, with regards to these results, it 
can be stated that the BPNN is an excellent model for pre-
dicting piezometric water level.

Figure 4 presents the fitted piezometric water level values 
produced by the BPNN against the observed. A study of 
Fig. 4 indicates that the BPNN was able to fit very well to 
the observed data leading to very low prediction residuals. 
This means that a higher agreement was achieved between 
the predicted and the observed piezometric water level.

Test performance of the GMDH model

Table 4 presents the GMDH best performing models for the 
various piezometers. In Table 4, the GMDH prediction mod-
els had one layer with one neuron and two used variables in 
the input layer. It must be noted that the two used variables 
out of the initial four input variables fed into the GMDH 
system were pressure (X3) and rainfall (X4), respectively. 
This phenomenon is typical of GMDH where only variables 
deemed relevant are selected to form the final model. This 
means that the GMDH feature extraction tool identified the 
modulus and temperature variables less significant and thus 
was not considered during the model development phase.

A matrix representation of the GMDH model effi-
ciency for the four piezometers are shown in Table 5. A 
negligible RMSE and PMARE results recorded by GMDH 
for all the piezometers signify a perfect fit to the observed 
data with marginal variability between the predicted and 
observed piezometric water level. This assertion can be 
confirmed from the GMDH achieved R, LG and VAF 

Table 2   Optimum BPNN 
structure

Layer Piezometer

P01 P02 P03 P04

Input 4 4 4 4
Hidden 4 3 4 2
Output 1 1 1 1

Table 3   BPNN statistical model 
efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 3.48221 × 10–7 2.58108 × 10–6 3.71952 × 10–5 2.81775 × 10–5

PMARE (%) 1.26376 × 10–7 1.92334 × 10–6 7.34370 × 10–8 3.82435 × 10–8

R 0.9999 0.9999 0.9999 0.9999
LG 0.9999 0.99999 0.9999 1.0
VAF (%) 99.9999 99.9999 99.9999 99.9999
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Fig. 4   Testing results of the observed and predicted piezometric water level from BPNN for a Piezometer 1 (P01) b Piezometer 2 (P02) c Pie-
zometer 3 (P03) d Piezometer 4 (P04)

Table 4   Optimum structure for GMDH models

NB X3 and X4 are the pressure and rainfall input variables

Piezometer Layer No No. of neurons Equation

P01 1 1 Model = 98.7000000128 − 8.21450677283 × 10−11(X4)

+101.96999995(X4) + 1.54104178927 × 10−10(X3 × X4)

+4.64950069162 × 10−13(X4)
2+4.95156341272 × 10−08(X3)

2

P02 1 1 Model = 82.9999939825 + 2.36734518209 × 10−09(X4)

+101.970062432(X3) − 1.23175693732 × 10−08(X3 × X4)

−6.30523380849 × 10−13(X4)
2 − 0.000161928172347(X3)

2

P03 1 1 Model = 93.0000001371 + 8.10068073732 × 10−11(X4)

+101.969997535(X3) − 7.22083424516 × 10−10(X3 × X4)

+2.38550853687 × 10−14(X4)
2 + 1.10770663927 × 10−05(X3)

2

P04 1 1 Model = 98 + 1.00907815025 × 10−11(X4) + 101.970000001(X3)

−1.58698017362 × 10−10(X3 × X4) − 1.73088915139 × 1015(X4)
2

−5.95687094301 × 10−09(X3)
2
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values. A diagram illustrating the GMDH predictions 
for P01, P02, P03 and P04 against their corresponding 
observed data are presented in Fig.  5. From Fig. 5, a 
close to identical prediction outcomes that matches with 
the observed data were produced by the GMDH models 
developed. The consistency in the GMDH outputs posi-
tion it to be a reliable prediction tool.

Test performance of the RBFNN model

The best performing RBFNN models for P01, P02, P03 and 
P04 had [4-30-1] which indicate four input variables, thirty 
hidden nodes and one output. The Gaussian activation func-
tion (Gui-Shen 2013) was used as the radial basis function 
in the hidden layer. Table 6 presents the adjustable width 
parameter values that produced the best RBFNN architecture 
for each piezometer.

Table 5   GMDH statistical 
model efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 4.15397 × 10–10 7.42726 × 10–10 1.88714 × 10–10 4.13090 × 10–12

PMARE (%) 7.14455 × 10–11 3.66281 × 10–10 3.32791 × 10–13 4.28707 × 10–15

R 0.99999 1.0 1.0 1.0
LG 1.0 1.0 1.0 1.0
VAF (%) 100.0 100.0 100.0 100.0
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Fig. 5   Testing results of the observed and predicted piezometric water level from BPNN for a P01 b P02 c P03 d P04
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The RBFNN models’ performance assessment results are 
presented in Table 7. Interpreting the obtained lower values 
of RMSE and PMARE as well as the higher rates of R, LG 
and VAF indicate that the RBFNN predictions are consist-
ent with the observed piezometric water level. This can be 
confirmed in Fig. 6 where a very strong linear dependency 

Table 6   Optimum width 
parameter for the RBFNN 
models

Piezometer Width 
param-
eter

P01 138
P02 139
P03 138
P04 145

Table 7   RBFNN statistical 
model efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 4.23561 × 10–5 4.29486 × 10–5 1.71766 × 10–4 2.33970 × 10–5

PMARE (%) 1.24686 × 10–4 7.59211 × 10–6 1.12800 × 10–7 7.77484 × 10–8

R 0.9999 0.9999 0.9999 0.9999
LG 0.9999 0.9999 0.9999 1.00
VAF (%) 99.9999 99.9999 99.9999 99.9999
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Fig. 6   Testing results of the observed and predicted piezometric water level from RBFNN for a P01 b P02 c P03 d P04
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is observed for the RBFNN predictions against the observed 
piezometric water level.

Test performance of the GPR model

One major component that contributes to the successful 
application of GPR is the covariance function. In this study, 
the covariance kernel function of squared exponential which 
is widely used in literature was employed to develop the 
GPR models for the various piezometers. Table 8 presents 
the optimum GPR models corresponding basis function val-
ues. From Table 9, it can be observed that the utilised perfor-
mance indicators had very close RMSE and PMARE values 
found within the zero range and R, LG and VAF values close 
to 1 or 100%. These results endorse the GPR as an accurate 
estimation model for piezometric water level prediction. It 
can also be seen from Fig. 7 that the predicted outputs from 
the GPR had stronger association with the observed data.

Test performance of the SVM model

The regularisation (γ) and epsilon (β) adjustable hyper-
parameters of the SVM was fine-tuned using chronological 
trial and error process (Tseng et al. 2016). At the end of 
the SVM training, the optimum γ and β hyper-parameter 
values that gave the best prediction outputs for all the four 
piezometers were 50 and 1 × 10–8. The type of kernel func-
tion used was a polynomial with first order. The SVM gave 
RMSE and PMARE values very close to zero with R, VAF 
and LG values approaching 1 or 100% (Table 10). These 
indicate that the SVM has good predictive efficiency. The 
closeness of the SVM prediction outcomes and the observed 
piezometric water level for the four piezometers are demon-
strated in Fig. 8.

Test performance of the LSSVM model

The performance of the LSSVM is dependent on the hyper-
parameters (regularised (γ) and width (σ)) of the kernel 
function used. In this study, the optimum values for the 
hyper parameters of the radial basis kernel function used 
were refined by means of the simplex search algorithm (De 
Brabanter et al. 2011). The γ and σ values that produced the 
best LSSVM predictions for each piezometer are presented 
in Table 11.

The LSSVM prediction efficiency was investigated using 
RMSE, PMARE, R, LG and VAF (Table 12). It is agreeable 
that when the RMSE and PMARE values move towards the 
ideal zero error value, higher corresponding values of R, LG 
and VAF are also recorded. Therefore, there is clear indica-
tion that the LSSVM models developed for each piezometer 
are excellent predictors. Figure 9 shows that the LSSVM 
models predictions fall on the least squares line of best fit 
and thus they are applicable in monitoring piezometer water 
level.

Performance of M5 prime model

In developing the M5 prime model, the method of ensembles 
was used to fine-tune the hyper-parameters to grow the indi-
vidual trees. In that regard, a minimum observation of 3 was 
set for splitting at a node with a minimum training observa-
tion and splitting threshold set at 1 and 1 × 10–6, respectively. 
The fine-tuning results (Fig. 10) showed that while growing 
the tree the best number of variables needed to be randomly 
sampled as candidates at each split was 3. Although using 
three variables (curve 3) or 4 (curve 4) produced the least 
out-of-bag mean squared error for growing 500 trees, three 
variables were chosen in this study to reduce the computa-
tional complexity of the M5 prime model. It must be noted 
that identical out-of-bag results were obtained for all the 
piezometers. Hence, three variables were used throughout 
the model development phase.

The computational prowess of M5 prime with respect 
to the generalisation capability are presented in Table 13. 
Interpreting the obtained results (RMSE, PMARE, R, LG 
and VAF) and analysing Fig. 11, it is depicted that the 
M5 prime predictions showed some deviations from the 

Table 8   Optimum basis function values for the GPR models

Piezometer β Σ

P01 1.499571900877683 × 102 0.022003139123417
P02 1.026491963023463 × 102 0.001024709312284
P03 1.043063739114323 × 102 0.001758530871025
P04 1.044071106048896 × 102 0.002215570136730

Table 9   GPR statistical model 
efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 1.30605 × 10–4 8.29157 × 10–6 1.76821 × 10–4 7.53726 × 10–5

PMARE (%) 7.62706 × 10–5 7.04911 × 10–6 2.38685 × 10–7 1.18871 × 10–7

R 0.9999 0.9999 0.9999 0.9999
LG 0.9999 0.9999 0.9999 1.0
VAF (%) 99.9999 99.9999 99.9999 99.9999
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observed piezometric water level. This reflected in the 
achieved residual indicators (RMSE and PMARE) which 
were of higher values. Although encouraging results were 
achieved (Table 13), the M5 prime prediction efficacy for 
piezometric water level is limited in this case study.

Comparison of the various models

All the seven predictive models were compared 
based on their RMSE, PMARE, R, LG and VAF 

(Tables 3,5,6,7,8,9,10,11,12 and 13). The RMSE value 
explains the extent at which the model prediction residuals 
are deviating from the ideal zero error. From the results, all 
the models produced very competitive RMSE results which 
signify that their residual predictions are much approximat-
ing to the zero-error value. With regards to the PMARE, 
a model is rated excellent if its PMARE value is found 
between the interval [0, 5] (Ali and Abustan 2014). By vir-
tue of that, it can be stated that all the models developed 
can be used as predictors for piezometric water level. This 
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Fig. 7   Testing results of the observed and predicted piezometric water level from RBFNN for a P01 b P02 c P03 d P04

Table 10   SVM statistical model 
efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 8.73383 × 10–4 2.16830 × 10–3 2.90918 × 10–4 1.43234 × 10–4

PMARE (%) 3.41323 × 10–4 1.77092 × 10–3 5.96878 × 10–7 1.86369 × 10–6

R 0.9999 0.99996 0.9999 0.9999
LG 0.9999 0.9998 0.9999 1.0
VAF (%) 99.9999 99.9930 99.9999 99.9994
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is also confirmed by the R, LG and VAF results. The rea-
son is that the R explains the degree of conformity between 
the model outcome and the observed. It is observed from 
the results that the least recorded R value was 0.98. This 
implies that the various models have stronger linear depend-
ency strength between their outputs and the observed. The 
LG value varies from 1 to − ∞ with 1 signifying higher 
prediction accuracy. Analysing the results obtained 
(Tables 3,5,6,7,8,9,10,11,12 and 13), it was noticed that in 
all cases very reasonable approximate LG values between 
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Fig. 8   Testing results of the observed and predicted piezometric water level from SVM for a P01 b P02 c P03 d P04

Table 11   Optimum hyper-parameter values for the LSSVM models

Piezometer γ Σ

P01 784,631,064,098.7886 18,937,546.08297357
P02 864,278,612,042.5234 29,274,899.7784799
P03 304,781,026,455.1946 1042.724091410425
P04 706,458,165,032.2216 22,372.64946491029

Table 12   LSSVM statistical 
model efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 8.79715 × 10–6 1.33521 × 10–7 3.69469 × 10–4 3.00986 × 10–4

PMARE (%) 1.96073 × 10–6 5.61802 × 10–8 1.74525 × 10–7 1.87468 × 10–7

R 0.9999 0.99999 0.9999 0.9999
LG 0.9999 0.9999 0.9999 1.0
VAF (%) 99.9999 99.9999 99.9999 99.9999
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0.88 and 0.99 were achieved. Therefore, it can be stated that 
the models produced closely related results that agree with 
the observed data. It is stated in Temeng et al. (2021) that a 
model producing a VAF value above 80% is classified to be 
an excellent predictor while between 20 and 80% signify a 
good predictor with 20% less value depicting a worse predic-
tor. Based on the VAF values produced by each model, they 
can be categorised as excellent predictors which indicate the 
individual model’s prediction strength. The overall analyses 
denote that the models could all produce competitive results 
and thus applicable for piezometric water level monitoring. 
The competitiveness of the developed models for predicting 
each piezometer can additionally be visualised in Fig. 12 
where closely associated predictions to the observed data 
were noticed.

Due to the highest prediction accuracy needed for stability 
assessment by structural health managers to make informed 
decision, a model is required to meet their standard of 
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Fig. 9   Testing results of the observed and predicted piezometric water level from LSSVM for a P01 b P02 c P03 d P04

Fig. 10   Error decline curve for candidate variables required for each 
split during training as the number of trees increases
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operation. Therefore, comparing all the methods applied the 
GMDH was found superior and thus selected as the best per-
forming model. It is indicative from the results that the GMDH 
produced the lowest RMSE and PMARE values and highest 
values of R, LG and VAF when compared with the other inves-
tigated methods. The GMDH has demonstrated good generali-
sation power and can be attributed to its self-organising nature. 
This is because the variable selection and variable interactions 
to create the underlying function in the model building are 

automatically executed. Hence, human involvement is very 
limited in its model development and thus leading to improved 
prediction accuracy.

Table 13   M5 prime statistical 
model efficiency testing results

Performance Piezometer

P01 P02 P03 P04

RMSE 1.06998 × 10–1 1.06181 × 10–2 1.29100 × 10–1 1.30667 × 10–1

PMARE (%) 5.32802 × 10–2 8.93944 × 10–3 7.33144 × 10–2 7.30347 × 10–2

R 0.9989 0.9972 0.9802 0.9802
LG 0.9975 0.9922 0.8786 0.8708
VAF (%) 99.7582 99.2268 99.3578 99.3514
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Fig. 11   Testing results of the observed and predicted piezometric water level from M5 prime for a P01 b P02 c P03 d P04
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Conclusion

This study evaluated the performances of seven AI methods 
of BPNN, GMDH, RBFNN, GPR, SVM, LSSVM and M5 
prime for dam piezometric water level prediction. Out of 
these stated methods, the GMDH, LSSVM, M5 prime and 
GPR were applied and tested for the first time to predict 
piezometric water level. The models predictive strength were 
tested on a weekly piezometric water level data for Dam X 
located in Ghana. The models results were compared using 
different statistical evaluators, including RMSE, PMARE, 
R, LG and VAF. From the outcomes of the study, it is con-
cluded that:

•	 All the seven AI methods implemented produced very 
competitive accurate piezometric water level prediction 
results.

•	 In all cases, the GMDH model produced superior predic-
tion performance and was selected as the most suitable 
among all the methods applied.

•	 The high generalisation strength of the GMDH approach 
was attributed to its self-organising nature where manual 
tasking is eliminated where variable selection and vari-

able interactions as well as data processing are automati-
cally executed.

Declarations 

Conflict of interest  The authors declare no competing interest.

References

Adoko AC, Zuo QJ, Wu L (2011) A fuzzy model for high-speed rail-
way tunnel convergence prediction in weak rock. Electron J Geo-
tech Eng 16:1275–1295

AlBinHassan NM, Wang Y (2011) Porosity prediction using the group 
method of data handling. Geophysics 76:O15–O22

Ali MH, Abustan I (2014) A new novel index for evaluating model 
performance. J Nat Resources Dev 4:1–9

Arthur CK, Temeng VA, Ziggah YY (2020) Performance evalua-
tion of training algorithms in backpropagation neural network 
approach to blast-induced ground vibration prediction. Ghana 
Min J 20:20–33

Fig. 12   Developed models predictions for each piezometer (P01, P02, P03 and P04) against the observed piezometer water level



2731Modeling Earth Systems and Environment (2022) 8:2715–2731	

1 3

Assaleh K, Shanableh T, Kheil YA (2013) Group method of data han-
dling for modeling magnetorheological dampers. Intell Control 
Autom 4:70–79

Bonelli S, Royet P (2001) Delayed response analysis of dam monitoring 
data. Dams in a European content, ICOLD European symposium, 
Geiranger, NOR, 25–27 June 2001, Norway, pp 91–99.

De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, 
Pelckmans K, De Moor B, Vandewalle J, Suykens JAK (2011) LS-
SVMlab Toolbox User’s Guide: Version 1.8, pp.1–115. Available 
online: https://​www.​esat.​kuleu​ven.​be/​sista/​lssvm​lab/ (accessed on 
5th May 2021).

Broomhead DS, Lowe D (1988) Multivariate functional interpolation 
and adaptive networks. Complex Syst 2:321–355

Buabeng A, Simons A, Frempong NK, Ziggah YY (2021) A novel 
hybrid predictive maintenance model based on clustering, smote 
and multi-layer perceptron neural network optimised with grey 
wolf algorithm. SN Appl Sci 3:593. https://​doi.​org/​10.​1007/​
s42452-​021-​04598-1

De Granrut M, Simon A, Dias D (2019) Artificial neural networks 
for the interpretation of piezometric levels at the rock-concrete 
interface of arch dams. Eng Struct 178:616–634

Dietz AJ, Hees S, Seuren G, Veldkamp F (2014) Water dynamics in 
the seven African countries of Dutch policy focus: Benin, Ghana, 
Kenya, Mali, Mozambique, Rwanda, South Sudan. Report on 
Ghana: the African Studies Centre Leiden and commissioned by 
VIA Water, Programme on water innovation in Africa. https://​
aquaf​orall.​org/​viawa​ter/​files/​asc_​water_​ghana_3.​pdf (accessed 
on 5th May 2021)

Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1997) Sup-
port vector regression machines. Adv Neural Inf Process Syst 
9:155–161

Engelbrecht AP (2007) Computational intelligence: an introduction. 
John Wiley and Sons

Farag A, Mohamed RM (2004) Regression using support vector 
machines: Basic foundation. Technical Report, University of 
Louisville.

Fine RA, Millero FJ (1973) Compressibility of water as a function of 
temperature and pressure. J Chem Phys 59:5529–5536

Ghasemi E, Gholizadeh H, Adoko AC (2020) Evaluation of rockburst 
occurrence and intensity in underground structures using decision 
tree approach. Engineering with Computers 36:213–225

Gui-Shen Y (2013) Marathon grades time series forecasting based on 
improved radial basis function neural network. Int J Appl Math 
Stat 39:236–242. https://​doi.​org/​10.​4236/​ica.​2013.​41010

Ivakhnenko AG (1966) Group method of data handling a rival of the 
method of stochastic approximation. Soviet Automatic Control 
13:43–71

Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE 
Trans Syst Man Cybern 4:364–378

Kang F, Han S, Salgado R, Li J (2015) System probabilistic stability 
analysis of soil slopes using Gaussian process regression with 
Latin Hypercube sampling. Comput Geotech 63:13–25

Kong-A-Siou L, Fleury P, Johannet A, Estupina VB, Pistre S, Dör-
fliger N (2014) Performance and complementarity of two sys-
temic models (reservoir and neural networks) used to simulate 
spring discharge and piezometry for a karst aquifer. J Hydrol 
519:3178–3192

Muller VA, Hemond FH (2013) Extended artificial neural networks: 
incorporation of a priori chemical knowledge enables use of ion 
selective electrodes for in-situ measurement of ions at environ-
mentally relevant levels. Talanta 117:112–118

Quinlan JR (1992) Learning with continuous classes. In: Proceedings 
of 5th Australian joint conference on artificial intelligence. World 
Scientific, Singapore, pp. 343–348.

Ranković V, Novaković A, Grujović N, Divac D, Milivojević N (2014) 
Predicting piezometric water level in dams via artificial neural 
networks. Neural Comput Appl 24:1115–1121

Rasmussen CE, Nickisch H (2010) Gaussian processes for machine 
learning (GPML) toolbox. J Mach Learn Res 11:3011–3015

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal 
representations by backpropagating errors. Nature 323:533–536

Salajegheh R, Mahdavi-Meymand A, Zounemat-Kermani M (2018) 
Evaluating performance of meta-heuristic algorithms and deci-
sion tree models in simulating water level variations of dams’ 
piezometers. J Hydraulic Struct 4:60–80

Scaioni M, Marsella M, Crosetto M, Tornatore V, Wang J (2018) Geo-
detic and remote-sensing sensors for dam deformation monitoring. 
Sensors 18:1–25

Suykens JAK, Vandewalle J (1999) Least square support vector 
machine classifiers. Neural Process Lett 9:293–300. https://​doi.​
org/​10.​1023/A:​10186​28609​742

Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle 
J (2002) Least squares support vector machines. World Sci Sin-
gapore. https://​doi.​org/​10.​1142/​5089

Tinoco J, De Granrut M, Dias D, Miranda T, Simon AG (2020) Piezo-
metric level prediction based on data mining techniques. Neural 
Comput Appl 32:4009–4024

Tinoco J, De Granrut M, Dias D, Miranda TF, Simon AG (2018) Using 
soft computing tools for piezometric level prediction. In: Third 
international dam world conference 2018, Foz do Iguacu Brazil.

Tseng TLB, Aleti KR, Hu Z, Kwon YJ (2016) E-quality control: a sup-
port vector machines approach. J Comput Design Eng 3:91–101

Vapnik VN (1998) Statistical learning theory. John Wiley and Sons, 
New York

Yu H, Wilamowski BM (2011) Levenberg-marquardt training, Indus-
trial Electronics Handbook.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.esat.kuleuven.be/sista/lssvmlab/
https://doi.org/10.1007/s42452-021-04598-1
https://doi.org/10.1007/s42452-021-04598-1
https://aquaforall.org/viawater/files/asc_water_ghana_3.pdf
https://aquaforall.org/viawater/files/asc_water_ghana_3.pdf
https://doi.org/10.4236/ica.2013.41010
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1142/5089

	Evaluation of different artificial intelligent methods for predicting dam piezometric water level
	Abstract
	Introduction
	Study area and data used
	Study area
	Data used

	Methodology
	Backpropagation neural network
	Group method of data handling
	Radial basis function neural network
	Gaussian process regression
	Support vector machine
	Least squares support vector machine
	M5 prime
	Model building

	Model performance evaluators
	Results and discussion
	Test performance of the BPNN model
	Test performance of the GMDH model
	Test performance of the RBFNN model
	Test performance of the GPR model
	Test performance of the SVM model
	Test performance of the LSSVM model
	Performance of M5 prime model
	Comparison of the various models

	Conclusion
	References




