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Abstract
Soil is a heterogeneous medium and due to this, the parameters on which soil slope stability depends, are having high vari-
ability, which makes the analysis a complex problem. To take into account the variability in soil parameters, the current 
research approach is shifting from deterministic approach to probabilistic approach. This paper describes the application of 
three soft-computing techniques including multivariate adaptive regression spline (MARS), Gaussian process regression 
(GPR) and functional network (FN) to study the soil slope reliability based on slope stability. The stability of a soil slope 
of a given height depends on shear strength parameters c (cohesion), ϕ (angle of shearing resistance) and ϒ (unit weight), 
which are taken as input variables and Factor of Safety of soil slope (FOS) as the output. Also the model performance was 
assessed using various performance indices i.e. NS, RMSE, VAF, MAE, RSR, Bias Factor, PI, R2, Adj. R2, MAPE, GPI, 
LMI, U95, tstat and β. The results of the analyses showed that MARS model outperformed GPR and FN models. Therefore, 
MARS model can be used as a reliable soft computing technique for analyzing soil slope stability.
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Introduction

Soil slope stability is a major concern nowadays as it plays a 
major role in the construction of various structure with use 
of soil e.g. earth dams, embankments and stability of vari-
ous open pits. Soil is a natural occurring material found on 
earth, having high variability in its properties due to process 
of formation. Therefore, it’s very hard to determine the prop-
erties of soil with certainty. In spite of various methods e.g. 
Strength Reduction Method and Limit Equilibrium Method 
are available to solve or find the solution for stability of soil 
slope, failure of slopes are occurring in high percentage, 
as these methods follows the deterministic approach which 
is highly conservative. And also due to the various errors 
like the testing error or sampling error there are testing data 

variability as shown by Phoon (2002). To overcome these 
limitation of deterministic approach nowadays approach 
is shifting towards the probabilistic way and to implement 
the probabilistic approach reliability analysis is used for 
the slope stability analysis of soil slope. In the reliability 
analysis various models are being worked out using the soil 
parameters on which stability of slope depends as input and 
output of the models are analyzed to find their adaptability 
to the problem.

In past many researchers have used probabilistic approach 
in their research work. Researchers have used field and 
laboratory data values to perform probabilistic analysis to 
show the uncertainty in soil properties of an embankment 
(Christian et al. 1994). El-Ramly et al. (2002) showed the 
probabilistic analysis on the design of slope by using spread-
sheet approach based on MCS and also applied the approach 
using the James Bay hydroelectric project as an example. 
Wang et al. (2019) showed the probabilistic analysis of post-
failure of soil slope using RSPH (random smoothed particle 
hydrodynamics) and incorporated the slope failure analy-
sis. Liang et al. (1999) performed the reliability analysis on 
the multi-layer embankment and showed the incorporation 
of variability in the soil properties. Cheng (2003) showed 
how to locate the critical failure surface with higher level 
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of precision in short time using annealing method. Babu 
and Srivastava (2010) conducted the reliability analysis 
using response surface methodology (RSM) on selected 
earth dam section. By the use of multi-modal optimisation 
method (Reale et al. 2015), multiple failure modes were 
located using various probabilistic models. Earth dams were 
being analyzed by using ANN model in various conditions 
e.g. static and dynamic and the model showed good capa-
bility of predicting factor of safety of slope (Zeroual et al. 
2009). Kumar et al. (2017) used various models like MARS, 
ANFIS for the reliability analysis of infinite slope and the 
results showed that the models are reliable for the condition. 
Gao et al. (2018) developed GPR model for the forecasting 
of rock fragmentation in mines and also GPR model along 
with MPMR model were being developed by Samui et al. 
(2019) to determine the uplift capacity of suction caisson. 
After reviewing many critical literature, authors found out 
that in conventional methods of analysis variability in the 
soil properties parameters are not incorporated. Therefore, 
the main purpose of present study is to perform reliability 
analysis of soil slope stability using MARS, GPR and FN 
soft computing models. In addition, all these models are also 
tested for reliability analysis of soil slope stability.

Theoretical background of models

Multivariate adaptive regression spline

MARS was developed with an idea that in different sample 
spaces, all the variables have different level of impact on 
the response surface. The adaptive in the MARS is basically 
defines the same i.e. MARS ability to find the dominant vari-
ables in each and every sample space region. In MARS there 
is simple approach to use piecewise polynomials (Splines) 
is adopted. In order to develop MARS model, it uses basis 
function. The inputs and output values x and y, respectively, 
are related using the following equation i.e. Eq. (1):

 where Bm(x), basis function; M, no. of functions; ao and am 
are the constant and coefficient of the mth function.

Knots used to connect data points, MARS characterizes 
data using regressions or by finding it globally (Friedman 
1991; Abraham and Steinberg 2001). For getting continues 
output, the basis function in the adjacent domain intersect at 
the knot. MARS uses bended regression in place of conven-
tional regressions, to connect x properly between subgroups 
and between spline. The no. of knots should be 3–4 times the 
no. of Bm(x) of MARS model (Sharda et al. 2008). To avoid 
over-fitting adequate data in subgroup is ensured by the model 

(1)y = ao +

M∑

m=1

amBm(x),

using shortest distance between the knots (Sephton 2001; Ada-
mowski et al. 2012).

Two segmented truncated power functions separated by a 
knot location used for the formation of spline basis functions 
for MARS. The expression for the truncated function to the 
left and right are as follows:

Here q is power to which spline is raised and t is knot 
location.

For developing MARS model two steps are followed.
Forward step: In this step, Bm(x) functions are defined with 

the help of Eq. (1). But, due to large no. of basis functions 
there is over fitting problem.

Backward step:  Bm(x) basis functions are selected based 
on the generalized cross-validation (GCV) statistic which was 
calculated using the Craven and Wahba method (Craven and 
Wahba 1978):

where N is the no. of data objects, C(B) is factor of penalty:

where d is the penalty each function defined in the model.

Gaussian process regression (GPR)

A Gaussian process (GP) is a nonparametric model used for 
probabilistic analysis, in which observations are defined within 
a domain of continuous range (Grbić et al. 2013). This model 
is applicable to both types of problems i.e. regression having 
non-linear behavior (Williams 1997) and classification (Wil-
liams and Barber 1998). GPR is defined using its mean and 
covariance. The mean function is generally taken equal to zero, 
as it encodes central tendency of the function (Zhang et al. 
2016). The covariance function is having the information of 
structure of the function which is needed for our defined prob-
lem. In this study, ϒ, ϕ and c are taken as input variables and 
FOS as output of GPR. So, x = [ϒ, ϕ, c] and y = [FOS].

GPR uses the following connecting equation between the 
inputs and the output:

(2)[−(x − t)]
q

+ =

{
(t − x)q, ifx < t

0, otherwise
,

(3)[+(x − t)]
q

+ =

{
(t − x)q, ifx < t

0, otherwise
.

(4)GVC =

1

N

∑N

i=1

�
yi − f

�
xi
��2

�
1 −

C(B)

N

�2 ,

(5)C(B) = (B + 1) + dB,

(6)yi = f
(
xi
)
+ �.
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It is assumed that Gaussian noise ( � ) is independent and 
having a distribution with mean = 0 and variance = �2

n
.

Expression for evaluating output for the new input is:

where yN+1 is target variable and xN+1 is new input.
The KN+1 and other parameters are related by the Eq. (8) 

and yN+1 follows the Gaussian distribution:

Covariance between the training inputs and test input is 
given by k(xN+1) and test input auto-covariance is expressed 
as k1(xN+1). The covariance (kernel) function is a critical 
component in a Gaussian process regression. In this study 
radial basis function is adopted as covariance function to 
develop the GPR model.

Functional network (FN)

Artificial neural networks are inspired by the working of 
brain i.e. to learn from the behavior and then reproduce a 
system accordingly as per the field. Artificial neural net-
works works by using the neurons (Armaghani et al. 2020) 
to form a neural network which gives output as per the inputs 
provided.

Functional network (FN) (Castillo et  al. 1999) is a 
recently developed useful extension of artificial neural net-
works, FN in order to develop structure of the network for 
its working uses the domain background knowledge and also 
the knowledge of data provided. In FN various arbitrary neu-
ral functions were used and also used in the form of multiple 
argument (Fig. 1).

In Functional network system of functional equations 
are formed by the help of the arrangement of the neurons 

(7)
(

y

yN+1

)
∼ N

(
0,KN+1

)
,

(8)KN+1 =

[
[K]

[
k
(
xN+1

)]
[
k
(
xN+1

)T] [
k1
(
xN+1

)]
]
.

in the neural network, which provides outputs in various 
formats. The most important step in functional network is 
the procedure of learning (Castillo et al. 2000) using the 
domain background knowledge and also the knowledge of 
data provided. There are generally two types of learning:

	 i.	 Structural learning—In this initial knowledge of sys-
tem background and the properties of the system are 
used for the design.

	 ii.	 Parametric learning—In this neurons are linked in the 
network with the parameters with the help of the data 
available.

Layers included in the formation of functional network 
model: 

1.	 Storing units

	 (i)	 Input layer—layer which takes input data x1, x2, 
x3 etc. as an input for the model.

	 (ii)	 Middle layers—layers which evaluate the input 
from previous layer and provide output for the 
next layer, f4, f5.

	 (iii)	 Output storing units’ layer—output data f6 are 
stored in this layer.

2.	 Layers consists of neuron—A neuron being a computing 
unit uses the input from the previous layer to provide an 
output set for the next layer. Layer consisting computing 
units, f1, f2, f3.

3.	 Direction links—These are used to connect layer from 
each other in a right form to get a functional network. 
These directed links are used to show the direction of 
flow of information. The intermediate functions work 
based on the structure of the network. Example x7 = f4 
(x4, x5, x6) as in Fig. 2.

Fig. 1   The basis functions and 
knot location in the MARS 
model
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Model development

In this study, a 15 m high c–ϕ soil slope with side slope 1:1 
described as an example by Cho (2010) used for our reli-
ability analysis of soil slope stability using MARS, GPR 
and FN soft computing models. Details of c–ϕ soil slope is 
shown in Fig. 3. In the probabilistic analysis, the variation 
in parameter is considered for cohesion (c), angle of shear 
resistance (ϕo) and unit weight (γ). The coefficient of varia-
tion for cohesion, angle of shear resistance and unit weight 
is taken as 0.3, 0.2 and 0.03, respectively, and mean value 
as 10, 30 and 20, respectively.

For determining the factor of safety (FOS) of c–ϕ soil 
slope using Morgenstern-Price method is used using the 
GeoStudio 2016 software. The factor of safety (FOS) of 
c–ϕ soil slope depends on the parameters γ (unit weight), c 
(cohesion of soil) and ϕ (angle of shear resistance), which 
are taken as input variables and factor of safety (FOS) of 
slope as result. The permissible range of γ, c and ϕ are used 
to get 100 data set and corresponding 100 data set of factor 
of safety (FOS) using GeoStudio 2016 software. For using 
these data set in MATLAB for the MARS, GPR and FN 
models need to be normalized as given by Eq. (9):

where Xnor = normalised value , X = value of parameter , 
Xmin. = min. value , Xmax. = max. value.

The data set are used as input to the models in the normal-
ized form and corresponding predicted output of models are 
obtained. The actual observed FOS and predicted FOS val-
ues which are obtained using models are tested using various 
fitness parameters to compare and find the best models on 
their prediction capability.

Performance parameters

Models performance are assessed using the following 
parameters:

Nash–Sutcliffe efficiency (NS) (Jain and Sudheer 2008) 
shows the prediction capability of the model which is maxi-
mum if its value comes equal to 1:

Root mean square error (RMSE) (Kisi et al. 2013) calcu-
late the prediction error for the shows the error in prediction 
of the target value:

Variance account factor (VAF) (Grima and Babuška 
1999; Gokceoglu 2002; Yılmaz and Yuksek 2008) value 
used to exhibit the performance of each and the ideal value 
for VAF equal to 100 for the best performance:

(9)Xnor =
X − Xmin.

Xmax. − Xmin.

,

(10)NS = 1 −

∑n

i=1
(di − yi)

2

∑n

i=1

�
di − dmean

�2 .

(11)RMSE =

√√√√ 1

N

n∑

i=1

(
di − yi

)2
.

Fig. 2   Network diagram of functional network

Fig. 3   Cross section of typical 
c–ϕ soil slope
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R2 (Coefficient of determination) (Babu and Srivas-
tava 2007) is a parameter which shows that how much the 
model have incorporated the variability in the soil proper-
ties, along with Adj. R2 (adjusted Coefficient of determina-
tion) value and the values of both parameter need to close 
to 1 and to each other also:

Performance index (PI) (Kung et al. 2007) shows how 
well each model is performing while predicting the target 
values:

Bias factor (Prasomphan and Machine 2013) value indi-
cates whether the model’s estimation is over or under as 
per the factor value is greater or less than 1, respectively:

RSR (Moriasi et al. 2007) shows the accuracy in predic-
tion and if RSR is closer to 0 prediction is good:

Normalized mean bias error (NMBE) (Srinivasulu and 
Jain 2006) value gives the percentage of biasness of pre-
dicted value from the mean in normalized format:

MAPE (mean absolute percentage error) (Armstrong 
and Collopy 1992) parameter value indicate the good 
amount of accuracy in prediction if it comes in closer to 
zero:

Relative percentage difference (RPD) (Ray et al. 2020) 
value indicates the how the model is performing based 
on the values and corresponding performances given in 
Table1:

(12)VAF =

(
1 −

var(di − yi)

var(di)

)
× 100.

(13)R2 =

∑n

i=1
(di − dmean)

2 −
∑n

i=1
(di − yi)

2

∑n

i=1
(di − dmean)

2
,

(14)AdjR2 = 1 −
(n − 1)

(n − p − 1)

(
1 − R2

)
.

(15)PI = adj.R2 + 0.01 VAF − RMSE.

(16)Bias factor =
1

N

n∑

i=1

yi

di
.

(17)
RSR =

RMSE
�

1

N

∑n

i=1

�
di − dmean

�2
.

(18)NMBE(%) =

1

N

∑n

i=1

�
yi − di

�

1

N

∑n

i=1
di

× 100.

(19)MAPE =
1

N

n∑

i=1

||||
di − yi

di

||||
.

Willmott’s Index for agreement (WI). (Willmott 1981, 
1982, 1984) value varies between 0 and 1 and the index 
value indicates the error in prediction of targeted values:

Mean bias error (MBE) and mean absolute error (MAE). 
Raventos-Duran et al. (2010) both the values are error cal-
culator, and values closer to 0 indicates good model with 
lesser error:

Legate and McCabe’s Index (LMI). Legates and McCabe 
(1999, 2013) shows the level of divergence in prediction by 
the model from the actual data:

Expanded uncertainty (U95). Gueymard (2014), Behar 
et al. (2015) shows the short-term performance of the mod-
els in prediction:

t-statistic (Stone 1993) is a tool to indicate the perfor-
mance of the models:

Global performance indicator (GPI) (Viscarra et al. 2006) 
incorporate all the parameters to access the performance 
using single parameter:

(20)RPD =
SD

RMSE
.

(21)WI = 1 −

� ∑N

i=1

�
di − yi

�2

∑N

i=1

���yi − dmean�+�di − dmean
��
�2

�
.

(22)MBE =
1

N

n∑

i=1

(
yi − di

)
,

(23)MAE =
1

N

n∑

i=1

|||
(
yi − di

)|||.

(24)LMI = 1 −

� ∑N

i=1
��di − yi

��
∑N

i=1
��di − dmean

��

�
.

(25)U95 = 1.96 ∗
(
SD2 + RMSE2

)1∕2
.

(26)t - stat =

√
(N − 1)MBE2

RMSE2 −MBE2
.

Table 1   RPD for the 
performance of models

RPD Model performance

 < 1 Very poor
1.0—1.4 Poor
1.4—1.8 Fair
1.8—2.0 Good
2.0—2.5 Very good
 > 2.5 Excellent
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Reliability index (β) value for each model defines the 
model performance based on the reliability analysis (USACE 
1997):

Here, di = actual observed data of ith point and yi = pre-
dicted data of ith point, dmean = mean value observed data, 
SD = standard deviation, �F is mean value of factor of safety 
of soil slope and �F is standard deviations of factor of safety 
of soil slope under consideration.

Results and discussion

Reliability analysis of soil slope stability on the considered 
section done using three soft computing models MARS, 
GPR and FN by normalizing all the data set value, then 
dividing them in training and testing data and use them as 
input and FOS as an output for all the three models. After 
the predicted values of FOS are obtained from the models, 
the actual and predicted values are being represented using 
graph between the actual values and predicted values of 
FOS of soil slope for both training and testing data values 
of MARS, GPR and FN models as shown in Figs. 4, 5, 6, 
respectively. Graphs plots of all the models shows the pre-
diction done by the models are satisfactory, as the all values 

(27)GPI = MBE × RMSE × U95 × tstat ×
(
1 − R2

)
.

(28)� =
�F − 1

�F
.

of both the training and testing data are close to the line 
depicting actual equal to the predicted value. On comparing 
the three models, it can be said that MARS model perfor-
mance is good as the values are more closer to the actual 
equals to predicted line.

All the models are tested using various fitness parameters 
NS, RMSE, VAF, MAE, RSR, Bias factor, PI, R2, Adj. R2, 
MAPE, GPI, LMI, U95, tstat and β as mentioned in Table 2. In 
the Table 2 values of each parameter are mentioned for all the 
three models MARS, GPR and FN. The value of NS shows 
that all models prediction power is high as the values of NS 
are closer to 1. The RMSE and VAF values shows that the 
MARS model performed good in predicting values of FOS of 
soil slope as compared to other models, as the prediction error 
of MARS model is less among the three models. The R2 and 
Adj. R2 values for all the three model are closer to each other 
and also closer to 1, but values for MARS model are closest to 
1 among the models which shows that the MARS model have 
included most of the soil parameter variability. On comparing 
the models based on the values of Bias factor, MAPE, NMBE 
(%), RSR and PI values, MARS model’s prediction capabil-
ity is high and also the predicted values are least biased from 
the actual values of factor of safety of soil slope. WI, MAE, 
MBE and LMI values for all the three models shows that the 
models are very less deviated from the actual values of FOS. 
The RPD value of models shows that the MARS model is 
good (Table 1) i.e. works accurately among the three models. 
All the models MARS, GPR and FN performed good as U95 
and t-stat values are very small. MARS model is having high 
accuracy in predicting the FOS of soil slope as GPI value is 

Fig. 4   MARS model perfor-
mance for training and testing 
dataset
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lowest among the three models. Figure 7 shows the β val-
ues for FOSM (first order second moment), FOSM (MARS), 
FOSM (GPR) and FOSM (FN). The reliability index (β) of 
all three models MARS, GPR and FN (USACE 1997; Bae-
cher and Christian 2003) shows that the models performance 
is comparable as shown in Fig. 7. After the development of 
all the models the advantage of MARS model is that it gives 
an expression (Eq. 29) as an output result for the dataset for 

the calculation of factor of safety of soil slope stability using 
Eq. (1) in which y = FOS, M = 9, a0 = 0.00112 and Bm(x) and 
am detail in Table 3:

(29)FOS = 0.00112 +

9∑

m=1

amBm(x).

Fig. 5   GPR model performance 
for training and testing dataset

Fig. 6   FN model performance 
for training and testing dataset
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Taylor diagram (Taylor 2001) is a statistical summary to 
know the best match model in terms of standard deviation 
(SD), RMSE and correlation coefficient. The Taylor curves 
in Fig. 8 combines together all i.e. standard deviation (SD), 
RMSE and correlation coefficient together to find the most 
accurate model. Taylor diagram gives a graphical framework 
that shows the suitability of variables by the different types 
models based on the reference data. As per, the training Tay-
lor diagram result (Fig. 8), MARS model shows the best 
results, and the testing Taylor diagram also MARS model 

values are closer to the observed actual values. In summary, 
it indicates that there is a good agreement between the actual 
and the model results for MARS model.

ROC curve (Fawcett 2006) plot for MARS, GPR and FN 
for the training and testing is shown in Fig. 9 from which 
AUC (area under curve) value of all three models are cal-
culated and AUC values are shown in Table 4. AUC values 
from the Table 4 shows that its value for MARS model is 
highest among the three models, which indicates MARS 
model is having very high classification accuracy among 
MARS, GPR and FN models.

Anderson–Darling (A–D) is a statistical test (Anderson 
and Darling 1952) used to evaluate which whether the model 
follows the normal distribution or not and also to know the 
whether the given data is from the same probability distribu-
tion or not. Anderson–Darling (A–D) test provides P-value 
(shown in Table 5), which are greater than 0.05 for all the 
models MARS, GPR and FN, that shows all the three models 
works as normal distribution. Among all the three models 
MARS model follow closest to the normal distribution trend.

Table 2   Performance parameters of MARS, GPR and FN models

Parameters MARS GPR FN

NS 0.9918 0.9711 0.9700
RMSE 0.0202 0.0379 0.0386
VAF 99.2145 97.3137 97.1559
R2 0.9918 0.9711 0.9700
Adj. R2 0.9909 0.9678 0.9666
PI 1.9629 1.9030 1.8996
Bias factor 1.0033 1.0088 1.0075
RSR 0.0904 0.1700 0.1731
NMBE (%) 0.2822 0.7170 0.6155
MAPE 0.0094 0.0128 0.0130
RPD 11.0615 5.8812 5.7783
WI 0.9979 0.9924 0.9922
MAE 0.0117 0.0161 0.0174
MBE 0.0040 0.0101 0.0087
LMI 0.9332 0.9087 0.9008
U95 0.4389 0.4434 0.4437
t-stat 1.0825 1.4870 1.2407
GPI 3.11E−07 7.29E−06 5.51E−06
β 1.98 1.95 1.94

Fig. 7   Reliability index (β) bar chart for MARS, GPR and FN Model

Table 3   Estimated values of B
m
(x) and a

m
 by MARS model

Bm(x) am

B
1(x) = max(0, φ−0.307) 0.954

B
2(x) = max(0, 0.307−φ) − 0.846

B
3(x) = max(0, c−0.147) 0.741

B
4(x) = max(0, 0.147−c) * max(0, 0.654−φ) 14.384

B
5(x) = max(0, 0.652−ϒ) 0.079

B
6(x) = max(0, φ−0.625) 0.467

B
7(x) = max(0, 0.234−c) − 0.351

B
8(x) = BF3 * max(0, φ−0.612) − 0.506

B
9(x) = BF3 * max(0, 0.612−φ) − 0.345
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Conclusions

In this article, reliability analysis of soil slope stability was 
studied using MARS, GPR and FN models. An example of 
soil slope has been taken to show the procedure of working 
of the MARS, GPR and FN models. All these models were 
comprehensively analyzed and compared based on various 
performance parameters. Values of reliability index of all 
the models show that models’ prediction capability of factor 
of safety for the soil slope stability is good. All the models 
performed satisfactorily, but among three models MARS 
model outperformed based on the various performance 
parameters like NS, RMSE, VAF, MAE, RSR, Bias Factor 
etc. The training and testing data were also accumulated up 
while graphing Taylor and ROC curves. The results from 
ROC curve, the largest value of area under curve (AUC) 
was obtained for MARS model, followed by GPR and FN 
model. Models were also tested using Anderson–Darling 
(A–D) statistical test which shows that MARS model fol-
lowed the closest to normal distribution trend among the 

Fig. 8   Taylor diagram a training and b testing plotted for MARS, 
GPR and FN Model

Fig. 9   ROC curve plot for train-
ing and testing values of models

Table 4   AUC value of ROC curve for the models

Models Area under 
curve (AUC)

Training MARS 0.9936
GPR 0.9878
FN 0.9857

Testing MARS 0.9893
GPR 0.9871
FN 0.9858
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models. The developed MARS model is having additional 
advantage as it provides an equation for determination of 
factor of safety for soil slope stability analysis. Therefore, it 
can be concluded that MARS model can be used as reliable 
tool for the reliability analysis for the prediction of factor of 
safety of soil slope.
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